This page is still under development, but the main substance dates from Nov/Dec 2008.
The original authorisation for the current dates of Easter Sunday is, as for the current Leap Year rules, Pope Gregory XIII's Papal Bull Inter Gravissimas of 1582. For more links about the Bull, including text and translation on the Web, see my Leap Years and Date Links pages.
Although the Bull determines Leap Years completely, it does not contain the Easter Rules, merely referring to an "explanation". The Six Canons, published in 1582, contain some details and enable the dates of Gregorian Easter to be determined up to AD 4999. They lack an explanation of the Lunar Correction, which is needed to obtain perpetual dates.
Some Web pages by Rodolphe Audette, Les textes fondateurs du calendrier grégorien (+) ff., now hosted by Henk Reints, provide more legible Latin, with a parallel French translation, for at least the most important parts. Follow the links to the Six Canons and see Table des matières de l'Explicatio de Clavius, extraite du tome 5 de ses Opera Mathematica (+). One can get the French material in something resembling English by using Google Translate.
The full explanation, published about twenty years later, is in the lengthy Romani calendarij à Gregorio XIII. P. M. restituti explicatio (1603) by Christopher Clavius, which is included with the Bull and the Canons in the fifth volume of Opera Mathematica (imaged) (1612).
European Cultural Heritage Online (ECHO) has a much better copy of the Romani Calendarii a Gregorio XIII. P. M. Restituti Explicatio (URL from Al Petrofsky) (+). Compared to Notre Dame's copy, this version is better focused, in higher resolution, and in colour, and it also has the benefit of being the original 1603 typesetting, rather than the 1612 reprint in the Opera Mathematica. The page numbering and chapter numbering are different.
Text on this page should express the essence of the necessary Latin, referring back to the corresponding parts of the original material, and from those the algorithms are derived.
Text with this background colour will show enough, when toggled by click, to locate the appropriate part of the original Latin (and so the French). Try here. The Latin. Paragraph boundaries are indicated thus : ¶.
This page derives JavaScript algorithms for the Date of Gregorian Easter Sunday, and for the (Julian) Date of Julian Easter Sunday, in "Literal" and "Optimised" versions.
Easter is determined by using representations of Clavius's Tables from the Six Canons. The code reads copies of the .innerHTML strings of the relevant parts of the displayed Tables - which is equivalent to reading the Tables from the screen - and follows Clavius's instructions closely.
Those representations are calculated, for convenience; but their validity is based not on the calculation but on the visible agreement between the displayed representation and Clavius's Tables. They have been re-shaped or extended to facilitate their calculation, display, and/or usage, so that their string form can easily be read by code.
In Canons 2 & 4, (Epacts & Sunday Letters), Tables need one entry per centade. Here they are used directly for AD 0 to 9999. For Canon 2, the corresponding part of the arithmetic method for the Epact (which was used to generate the Table) is used after 9999. For Canon 4, the year is used modulo 10000, since it is clear enough from the Bull and the lengths of common and bissextile years that the week pattern repeats every 400 years. ( 400×365 + 100 - 4 + 1 = 146097 = 7×20871 )
Material with this background is used by the Literal Gregorian method.
These use arithmetic, yet are traceable to Clavius.
Material with this background is used by the Optimised Gregorian method.
Material with this background is used only for Julian Easter.
I now write and develop code mainly with Firefox 3, and do long tests with Opera.
Suffix 1, 2, ... is applied to global identifiers for "Literal" methods, and ..., 9 to those for "Optimised" methods.
Code which reads Tables may assume a four-character year format.
JavaScript : X|0 is equivalent (for X<231) to Math.floor(X), so X/Y|0 is integer division; X\Y in some languages. And X%Y is X mod Y, remainder of division
Material in ? is computed by code on this page.
These routines are specific to this page; for others, see JavaScript Include Files.
The Six Canons of 1582, with the Bull, provided all that was needed to give the Date of Easter Sunday up to AD 4999. Extension requires only the knowledge that the Lunar Correction repeats every 2500 years; all else can be deduced from Bull and Canons.
Romani Calendarii a Gregorio xiii P.M. Restitvti Explicatio
(1603) TO BE CHECKED | |
---|---|
Section | Pages |
Blank | 1 pp. |
FROM THE LIBRARY OF / ENRICO GIUSTI Affixed Bookplate | 1 pp. |
Blanks | 2 pp. |
ROMANI CALENDARII A GREGORIO XIII P.M.
RESTITVTI Explicatio | 1 p. |
Blank | 1 p. |
SANCTISSIMO PATRI / AC DOMINO NOSTRO / CLEMENTI VIII | 3 pp. |
CLAUDIVS AQVAVIVA, / Societatis Ieſu Præpoſitis Generalis. | 1 p. |
CLEMENS PAPA VIII and CLEMENS PAPA OCTAVVS | 2 pp. |
LECTORI S and AD LECTOREM | 3 pp. |
INDEX CAPITVM Explicationis Calendarij with
INDEX CAPITVM PRIMÆ PARTIS Computi Ecclesiastici INDEX REGVLARVM, ET TABVLARVM secundæ partis Computi Ecclesiastici | 2 pp. |
INDEX RERVM PRÆCIPVARVM / quæ in quolibet capite explicantur. | 11 pp. |
INDEX ALPHABETICUS | 11 pp. |
Blank | 1 p. |
PROŒMIVM | 1-2 |
COMPENDIVM NOVÆ RATIONIS | 3-12 |
INTER GRAVISSIMAS with Note | 13-15 |
CANONES / IN CALENDARIVM / GREGORIANVM / PERPETVVM
Canon 1 - DE CYCLO DECENNOVENALI AVREI NVMERI Canon 2 - DE EPACTIS, ET NOVILVNIIS Canon 3 - DE CYCLO SOLARI, SIVE LITERARVM Canon 4 - DE LITERA DOMINICALI Canon 5 - DE INDICTIONE Canon 6 - DE FESTIS MOBILIBVS |
16-35 16-19 19-24 24-26 26-31 31-33 33-35 |
TABELLA TEMPORARIA FESTOrum mobilium | 36 |
TABVLA PASCHALIS Antiqua Reformata | 37 |
TABVLA PASCHALIS NOVA REFORMATA | 38-39 |
IANVARIVS - DECEMBER (Calendarium) | 40-51 |
IN CALENDARIVM GREGORIANVM
ANNO CORRECTIONIS MDLXXXII | 52 |
OCTOBER / NOVEMBER / DECEMBER | 53-55 |
QVID OBSERVANDVM SIT, SI / ... | 56 |
ROMANI CALENDARII A GREGORIO XIII P.M.
RESTITVTI EXPLICATIO | 57- |
CAPVT PRIMUM / Quid in Sacris literis de Paſchæ celebratione præcipitatur, & quid de eadem à SS.Patribus, & Concilijs ſanctitim ſit. | 57-70 |
CAPVT II. / Calendarium cur corrigi debuerit, & in quo eius correctio conſiſtat. | 70-72 |
CAPVT III. / Aequinoctium Vernum cur ad diem 21. Martij potiſsimum, & qua ratione / reuocatim ſit. | 73-75 |
CAPVT IIII. / Eccleſia cur poſthabitis motibus veris apparentibusve, | 75-79 |
CAPVT V. / Quæ intercalandi ratio adhibita ſit, ut ænoctium prope diem 21 Martij, / ad quem eſt reuocatum, retineatur. | 80-88 |
CAPVT VI. / De periodo anomaliæ Aequinoctiorum, & inæqualitatas annorum, ex Nicolai /Copernici doctrina. | 88-96 |
CAPVT VII. / Soluuntur dubitationes variæ de æquali anni Solaris formula in / Calendario nouo præſcripta. | 96-102 |
CAPVT VIII. / Quo pacto cyclus Decennouennalis aurei
numeri annos 19. / Solares exæquet.
In which is established the Decennovennial cycle of Golden Numbers
years 19.
Compensated for the Sun. | 102-105 |
CAPVT IX. / Quo pacto Aurei Numeri in Calendario diſponantur : & cur, ijs amotis, in eorum locum / Epactæ ſubſtitutæ ſint. In which is established the Golden Numbers in the Calendar to be arranged : and why, those? removed, in the same place Epacts are substituted. | 105-119 |
CAPVT X. / Quo Artificio Epactæ in Calendario deſcribantur. How Epacts are described in the Calendar. | 119-126 |
CAPVT XI. / Conſtructio tabulæ Expanſæ Epactarum, & tabulæ æquationis earundem Epactarum, ex auctoris Calendarij ſententia. Construction of ... | 126-156 |
CAPVT XII. / Innuentio aurei numeri, & Epactæ quolibet anno propoſito : ... | 156-196 |
CAPVT XIII. / De Calculo Nouiluniorum, & Plenilunorum mediorum per Epactas veras. | 196-204 |
CAPVT XIIII. / De Calculo Nouiluniorum, & Plenilunorum mediorum faciliore per Nouilinia me- / dia ad 76. annos ſupputata. | 204-284 |
CAPVT XV. / De triginta Calendarijs Aureorum numerorum, ... | 285-334 |
CAPVT XVI. / Lunationes Omnium triginta Cyclorum tabulæ Epactarum expanſæ, ... | 334-366 |
CAPVT XVII. / De Emboliſmis, Ac Saltu, quem dicunt, Lunæ. | 366-379 |
CAPVT XVIII. / Quartadecima Luna quæ ſit, & Epactæ in Calendario ita ſint diſpoſitæ, atque / æquatæ, ut earum Nouilunia medias ac veras coniunctiones Luminarium / plerunque ſubſequantur. | 380-390 |
CAPVT XIX. / Soluuntur variæ dubitationes de Epactarum in Calendario deſcriptione, ... | 390--400 |
CAPVT XX. / Inuentio Cycli Solaris quouis anno propoſito. | 400-404 |
CAPVT XXI. / Inuentio Literæ Dominicalis. | 405-415 |
CAPVT XXII. / Feſtorum Mobilium Inuentio.
Sequitur tabula Feſtorum Mobilium an anno / 1600. vſque ad annum 5000. | 415-565 419-561 |
CAPVT XXIII. / QVOD UNO EODEMQUE DIE IN OMNIBUS MUN- / di partibus sacroſanctum Paſcha ſit celebrandum. | 565-566 |
CAPVT. XXIIII. / EXPENDITVR CALENDARIVM FRANCISCI VIETÆ / & reſellitur. | 566- |
SEQUITUR / Conſpectus Calendarij Gregoriani ex / ſententia Vietæ. | 567 |
SEQUITUR / Tabella cycli Epactarum perpetua, cum vtraque / tabula æquationis earundem Epactarum. | 584 |
SEQUITUR / Tabula cum erroribus Vietæ in priori æquatio- / nis tabula commiſis. | 586 |
CAPVT XXV. / DE ALIA RATIONE SUPPVTANDI NOVILVNIA | 597-605 |
CAPVT XXVI. / DE NOVA QVADAM ALIA, AC FACILLIMA RATIONE | 606-609 |
CAPVT XXVII. / CONFVTANTVR ALII, QVI GREGORIANVM / Calendarium oppugnarunt. | 609-624 |
CAPVT XXVIII. / DE CALCVLO LVNATIONVM VSQVE / ad Quarua. | 624-634 |
COMPVTVS / ECCLESIASTICVS / PER DIGITORVM ARTICUVLOS, / & tabulas traditus. | 635 |
PRAEFATIO. | 636 |
COMPVTI ECCLESIASTICI PARS PRIMA / / per digitorum articulos memoriter. | 636-667 |
COMPVTI / ECCLESIASTICI / Pars Secunda per Tabulas. | 668-678 |
TABVLA FESTORVM / Mobilium Perpetua. | 679 |
Tabula ix. inuentionis temporis quo / Luna noctu lucet. | 680 |
Erratorum correctio. | 681 |
REGESTUM. | 682 |
Blanks | 6 pp. |
Operum Mathematicorum Tomus Quintus (1612) | |
---|---|
Section | Pages |
i-viii | |
PROŒMIVM | 1-2 |
COMPENDIVM NOVÆ RATIONIS | 3-12 |
INTER GRAVISSIMAS with Note | 13-15 |
Canon 1 - DE CYCLO DECENNOVENALI AVREI NVMERI | 16-18 |
Canon 2 - DE EPACTIS, ET NOVILVNIIS | 18-21 |
Canon 3 - DE CYCLO SOLARI, SIVE LITERARVM | 22-23 |
Canon 4 - DE LITERA DOMINICALI | 24-27 |
Canon 5 - DE INDICTIONE | 28-29 |
Canon 6 - DE FESTIS MOBILIBVS | 29-31 |
TABELLA TEMPORARIA FESTOrum mobilium | 32 |
TABVLA PASCHALIS Antiqua Reformata | 33 |
TABVLA PASCHALIS NOVA REFORMATA | 34-35 |
IANVARIVS - DECEMBER (Calendarium) | 36-47 |
IN CALENDARIVM GREGORIANVM
ANNO CORRECTIONIS MDLXXXII | 48 |
OCTOBER / NOVEMBER / DECEMBER | 49-51 |
QVID OBSERVANDVM ... | 52 |
ROMANI CALENDARII A GREGORIO XIII P.M.
RESTITVTI EXPLICATIO | 53-596 |
INDEX CAPITVM Explicationis Calendarij | 597 |
INDEX CAPITVM PRIMÆ PARTIS Computi Ecclesiastici | 598 |
INDEX REGVLARVM, ET TABVLARVM secundæ partis Computi Ecclesiastici | 598 |
INDEX RERVM PRÆCIPVARVM quæ in quolibet capite explicantur. | 599-608 |
More Indexing | 609-622 |
The current background is used in this major section for material not directly representing what Clavius wrote.
Zero was not favoured at the time.
Canon heading links are to the source text.
The text which follows is digested from Rodolphe Audette's Latin and French versions indexed at Les textes fondateurs du calendrier grégorien (+) under "Table des Textes"; his abstract is under Les canons, and he shows the index at Table des matières de l'Explicatio de Clavius, ... (+).
The Compendium (+) is dated 1577, and therefore may lack the full authority of the Papal Bull.
It includes, on page 9 of Opera V, above Tabula epactarum expansa Aloysii Lilii, cum tabella æquationis earumdem epactarum., :-
... This repeated comparison applies every 300 years, as said before, but not every 2400 years, because it is not exactly 300 years before there is a difference of one day, but twelve years and six months more, so that after 2400 years would be too much by a third of a day, therefore the application of the comparison should be carried forward to the next century year, ... ... Ea autem multiplex est ; una quæ 300. annis debitur ut diximus : Altera quæ bis millenis & quadringenis : quoniam non exacte 300. illis annis unus debetur dies. 12. enim anni & sex menses desiderantur, qui in 2400. annis tertiam fere diei partem conficiunt, & in sequentum centesimum æquationem transferunt ; ...
That indicates a cycle of 8 Lunar Corrections in 2500 years.
Clavius's Gregorian Ranges | |
---|---|
Canon | Years |
1 | 1 to 899,999,999 |
2 | 1583 to 4999 |
3 | 1 to 899,999,999 |
4 | 1700 to 17599 |
5 | 1 to 899,999,999 |
6 | - |
Tables | Perpetual |
It seems that the Canons were released in 1582.
Tables in Canons 2 & 4 here are computed to cover AD 0 to 9999. The extension for Canon 2 to cover AD 0 to 9999 requires justification of function Greg_CYPHER (which is also required for Table II of the Calendar Act Annexe). It is evidently to be found in liber novæ rationis restituendi calendarii Romani. The extension for Canon 4 back to AD 0 is obvious.
The whole of this Canon is for both Julian and Gregorian.
The Golden Number is cyclic, 1 to 19, year 1577 has Golden Number = 1.
¶ Cyclus decennovennalis aurei numeri
...
...
qui dicitur aureus, est 1.
...
...
anno 1596 aureus numerus sit rursus 1 et anno 1597 sit 2, etc.
From that, one can get GN = 1 + ( (Y-1577) mod 19 ) As 1577 mod 19 = 0 GN = 1 + Y mod 19
New Moon dates repeat, approximately, every 19 years. Continet autem hic cyclus aurei numeri annos 19 quia post 19 annos solares elapsos revertuntur novilunia ad eosdem dies mensium, licet non omnino præcise, sed aliqua diei particula citius, ut a computistis et in libro novæ rationis restituendi calendarii Romani ostenditur.
The Golden Number changes at the Dec/Jan change; 1..19,
repeated. Then some history.
Quilibet vero annus aurei numeri ...
...
idemque magis ac magis in dies futurus sit inutilis, ...
Acknowledges the loss of 10 days in October 1582 and the new Leap Year Rules. ... tum propter decem dies ex mense Octobri anni 1582 auferendos, tum etiam propter tres bissextos omittendos quibusque quadringentis annis,
Would need 30 calendars. nisi in 30 ordines redigatur, hoc est, nisi 30 calendaria construantur, ut ex illis seligatur semper illud, quod certo cuidam tempori congruit: quæ res quantas perturbationes, quantosque sumptus personis præsertim ecclesiasticis esset allatura, nemo non videt.
Sumulationtion of 30 calendars selected by epoch. 30
Epacts. Epact depends on Golden Number.
Hoc incommodum ut vitetur, substitutus est in locum aurei numeri in
calendario, cyclus epactarum constans ex 30 numeris epactalibus;
...
...
locumque amplius non habeat ad novilunia festaque mobilia invenienda.
¶
The following table is to find Golden Number for any year from 1582. ¶ Igitur ut aureus numerus quolibet anno proposito inveniatur, ... duratque in perpetuum. ¶
---------------------------------------------------------------------- | vj vij viij ix x xj xij xiij xiv xv xvj xvij xviij xix j ij iij iv v | ----------------------------------------------------------------------Table of the cycle of the Golden Number, from 1582, year of the reform Tabella cycli aurei numeri initium sumens ab anno correctionis 1582.
Short explanation of tedious use of that table for Golden Number.
¶
Ex ea enim aureus numerus cuiuslibet ...
...
propositus cadit dabit aureum numerum quæsitum. ¶
Previous is tedious far from 1582, so another Table for any year. ¶ Sed quoniam valde laboriosum ... 1582 invenietur, hac arte. ¶
General Table for Finding the Golden Number. Tabula ad Aureum numerum cuiuslibet anni inveniendum.
Explanation of the use of that table for the Golden Number.
¶
Quæratur annus propositus in tabula sub annis Domini;
...
...
Quod si post additionem unitatis numerus compositus fuerit 19 ita
ut detractis 19 nihil remaneat, erit aureus numerus 19. ¶
Examples. Reason for adding 1. Notes that AD 1 has Golden Number=2. Construction of Table. ¶ Exemplis res fiet illustrior. Sit inveniendus aureus numerus anni 700. ... numero anni 1595. ¶ Additur autem semper ... numerus 3, etc. ¶ Compositio quoque huius tabulæ ... et præterea anno 1000 respondet aureus numerus 12, etc. ¶
Introduction of præcepta arithmetices (division) !
¶
Porro sine hac tabula facillimo quoque negotio per præcepta
arithmetices aureus numerus cuiuslibet anni reperietur hoc modo.
Anno Domini proposito addatur 1 et numerus compositus per 19 dividatur.
Numerus enim qui ex divisione relinquitur ( ... ) erit aureus numerus
anni propositi. Et si ex divisione nihil remanet, erit aureus numerus
19. Ut si quæratur
...
...
Atque ita de cæteris. ¶
Words for GN := (Y+1) mod 19 ; if GN=0 then GN := 19 ;
That is GN := 1 + Y mod 19 ;
New Moons are 11 days later each year. Epact of one year (with Golden
Number=1, see table) is 11, of next is 22, keep adding 11 and
subtracting 30 when possible, but for Golden Number=19 (when Epact=29),
add 12, get 41, subtract 30 getting 11 for next Golden Number=1.
(18*11+12) mod 30 = 210 mod 30 = 0.
Thus 19 Epacts, one per Golden
Number. That was before the reform of the calendar.
¶
Epacta nihil aliud est quam numerus dierum
...
...
quo in hac tabella dispositæ sunt. ¶
Table of relation between Epacts and Golden Numbers before
the calendar correction.
For Julian Easter?
Tabella epactarum respondentium aureis numeris ante calendarii
correctionem.
Now there are 30 epacts, *,1,...,29 (0 = * = 30 mod 30). Sequences
step 11 & 12 as before.
¶
Quia vero cyclus decennovennalis aurei numeri imperfectus est,
...
...
in cuius locum hæ nostræ epactæ succedunt. ¶
Three tables for different sets of centades,
1582-1700, 1700-1900, 1900-2200.
NOT NEEDED HERE.
Tabella epactarum respondentium aureis numeris ab Idibus Octobris anni
correctionis 1582, detractis prius X diebus, usque ad annum 1700
exclusive.
Tabella epactarum respondentium aureis numeris ab
anno 1700 inclusive usque ad annum 1900 exclusive.
Tabella
epactarum respondentium aureis numeris ab anno 1900 inclusive usque
ad annum 2200 exclusive.
On the three tables. ¶ Quælibet autem tabella ab eo aureo numero ... ante correctionem calendarii. ¶ Itaque si epacta quocumque ... sequenti anno, etc. ¶ Exemplum. Anno correctionis 1582 aureus ... explicatum est. ¶ Quod si quando epactæ ... ubi omnia hæc copiosissime explicantur. ¶
To show where those three tables came from, ... this extended table.
¶
Verum, ut videas unde præcedentes tres tabellæ
sint depromptæ
...
...
restituendi calendarii Romani, ubi tabula illa expansa
continetur, reiicimus. ¶
Perpetual Table of the Cycle of Epacts Tabella cycli epactarum perpetua
Currently shown here in two forms.
Table of the Equation of the Perpetual Cycle of Epacts Tabula æquationis cycli epactarum perpetui
Table (Years 1 to 4999, Julian before 1582) of centades mapping via letters to Epacts - must do same job as BCP Table II. This reproduces part of the content of that Table, extended.
Function Greg_CYPHER should be justifiable from the Bull and the Explicatio. The first term is the Solar Correction, corresponding to the pattern of missing Leap years defined by the Papal Bull. The second term is the Lunar Correction with 8 steps per 2500 years.
Table entries shown here for years 0-1500 and 5000-9900 are non-Canon.
The Canons show a Lunar Correction eight times in 2500 years, repeating; but do not say that the pattern repeats perpetually. For perpetual Easter, that must be definitively established, and the Explicatio seems the only possible source.
Augustus De Morgan, in A Budget of Paradoxes (p.365, 11) (+), directly asserted that Clavius said so : ", put forward the moon's age a day 8 times in 2,500 years.", implied perpetually.
And it is in Clavius's Compendium of 1577, above Tabula Epactarum Aloysii Lilii, cum tabella æquationis earundum epactarum (Dutch, Henk Reints; Latin & French, HTML, Rodolph Audette; Opera Mathematica V, p.9). But that precedes Papal authority.
I have now, apparently, located a defining statement of perpetual 8/2500 in the Explicatio.
2009-06-07 : CAPUT VIII, page 103 of the 1603 printing,
foot, and thereabouts, include :
in annis 312½
in 312½ years
CAPUT IX, page 118, paragraph 11,
ac tandem annis 312½
so finally 312½
also in paragraph 13; CAPUT X p.124 foot, p.125 top,
CAPUT XI p.128 para 5, p.129 para 6 ITAQVE, ...?
CAPUT XI, page 129 (1603) :
6 ITAQVE radix æquationos
ſtatuatur à nobis in anno 550 ...
... Quoniam vera in tabula æquationis ſolos annos
ceteſimos deſcribimus, tanquam celebriores, notorioresque,
ſtatuemus Lunam vno die anteuertere ſedes ſuas
trecentorum annorum ſpatio, quanquam reipſa eius æquatio
annos 312½ poſtulet; ita vt veram equationem
præueniamus annis 12½ quorum tamen ratio habenda ſit,
quando ſumma ex illis collecta annos 100 confecerit. Quemadmodum
enim ſupra in æquatione anni Solaris decreuimus, diem
intercalarem omittendum eſſe centeſimo quoque anno,
præuienientes veram æquationem, ſecundum
Alphonſinas tabulas, annis 34 quorum tamen ratio quarto quoque
centeſimo habetur; (Cum enim ad ſummam 136 annorum tunc
execreuerint; niſi quarto quoque anno centeſimo fieret
conſueto modo vnius diei intercalatio, ænoctia die integro
verſus fines menſium prolaberentur) ita quoque in
æquatione Lunæ ratio habenda eſt illorum annorum
12½ trecenteſimo quoque anno omiſſorum; adeo, vt
quando ſummus ex illis collecta ad 100 annos peruenerit, non
ſit adhibenda tunc æquatio Lunæ trecenteſimo anno
poſt proxime antecedentem æquationem, ſed
quadringenteſimo : propterea quod Luna tunc non trecenteſimo
anno, ſed quadringenteſimo vnum diem anticipat in
Calendario.
Nam cum in 300. annis ponamus Lunam uno
...
...
Quibus autem centeſimis annis ſumma annorum 12½
omiſſorum vſq. ad 100 excresſcat, ac proinde
æquatio Lunæ in ſequenten centeſimum differenda
ſit, ex ijs, quæ mox ſubjuciemus, planum fiet.
7 HIS poſitis, ...
6 THEREFORE,
...
...
so too in the Lunar equation the ratio to be had those years
12½ three-hundredth also years of omission, so when the total
collected from these reaches 100 years, it is not to be brought then the
equation of the Moon three-hundred years after the previous, but
four-hundred : therefore what Moon then not three-hundredth year, but
four-hundredth one day is anticipated in the Calendar. ...
There we have the 2500 year sequence, but perhaps not yet a positive statement that it is to be perpetually repeated in the Gregorian Easter calculation.
For which 8 in 25 centuries, we have Canon 2, which omits "perpetual".
CAPUT XI, page 131 (1603) :
ATQVE hoc modo ex auctoris Calendarij
ſententia, continuabitur tabula æquationis in infinitum,
ſi ratio habeatur tam diei intercalaris ſiue omiſſi,
ſiue retenti, quam æquationis Lunæ, quæ ei 300.
quibuſsque annis debetur, dummodo anni illi 12½, quolibet
ſpatio 300, annorum omiſſi non negligantur, ſed cum
prima ſumma 100. annorum ex ijs fuerit collecta, æquatio
Lunæ in proximum annum centeſimum differantur, vt factum est
à nobis anno 1700. ex quo æquationem Lunæ in annum
1800. reiecimus. Quod quidem iterum faciendum erit anno 4200. annis
nimirum 2400. poſt annum 1800. in quem dilata ſuit Linæ
æquatio, propter 100. illos annos, qui ex omiſſione
12½. annorum excreuerant. Nam æquatio Lunæ quæ
fieri deberet anno 4200. propter 300. annos ab vltima, æquatione
anni 3900 elapſos, facienda eſt inſequenti anno
centeſimo 4300. Eodemque modo poſt annos 2400. Lunæ
æquatio ex anno 6700. in annum 6800. reijcienda, erit &c.
Ita vt quolibet ſpatio 2500. annorum Luna anteuerat
ſedes ſuas in Calendario, octo diebus.
2500 years ... eight days
Many pages of Tables (pp.132-133, 134-153) follow. The letters in the second set must correspond to the sum of the Solar and Lunar Corrections. The second set closes with :-
Atque ita in infinitum, eo ordine ab anno 301700 ſeruato, qui ab anno 1700 ſeruatus eſt, vt hic factum eſſe vides. And then thus in infinity, proceed in order from year 301700 delivered, which from year 1700 is delivered, as here exploit you see to be.
The combined Solar and Lunar correction cycle has a period of 300,000 years, which no doubt combines with the 19 year Golden Number cycle to give the 5,700,000 year cycle of Easter Sunday dates.
REMAINING QUESTION : is this part definitive (as it looks) or merely discursive and superseded later?
Page 154 (1603) top - more confirming 2500-year repeat.
10 ETSI autem ... perpetua ſit futura, ... EVEN IF on the other hand ... perpetual ? future ...
Page 179 (1603) : HOC ordine obſeruato, ... quolibet 2500. annorum ſpatio octo dies requirit, ... This rule observed, ... anywhere 2500 years span eight days requires, ...
Chapter 12 continues ... possibly an improved method - TABULA ÆQVATIONIS emendata poſt annum 8100, vſque ad annum 28400. TABLE OF THE EQUATION amended after year 8100 up to year 28400.
Page 196 (1603) CAPUT XIII
Function Greg_CYPHER(Centade) contains divisors of 4, 25, and 30, and so can be expected to repeat every 4×25×30 = 3000 centades. The factors of 3000 are 2, 3, & 5; so, if Greg_CYPHER repeats any more often than 3000 centades, it must repeat after 1500, 1000, or 600.
There is no pattern repeat less than 3000 centades, which, with the Golden Number cycle of length 19, supports the Easter date pattern period of 57000 centades.
Get the Cypher Letter from the Table. Get the Golden Number. Then in the
table of the cycle of epacts seek the cell that contains the same
letter. From this cell inclusive, count three left (means go left
2), and the cell reached is awarded the Golden Number 1, count up to
the Golden Number of that year, returning to the start of the table if
we reach the end, and counting as a single cell that of the uppercase
letter F, in which lies the epacts XXV and 25. The epact of the year in
question is in the cell corresponding to the Golden Number.
¶
Utriusque autem usus hic est.
...
...
et aureus numerus investigetur anno proposito congruens.
Deinde in tabella cycli epactarum
perpetua similis litera notetur et cellulæ,
...
...
quam aureus numerus propositi anni cadit, epacta illius anni
reperietur. ...
... If the Golden Number is greater than 11, and the cell of the letter F is reached, take the epact 25; but XXV if the Golden Number is less than or equal to 11. Diligenter tamen observandum est, ut quando aureus numerus anni propositi maior fuerit quam 11, quales sunt posteriores octo aurei numeri a 12 usque ad 19, cecideritque in cellulam literæ F ubi sunt duæ epactæ XXV-25 diversis numeris scriptæ, sumatur epacta 25; altera vero XXV si in eamdem cellulam aliquis ex prioribus undecim aureis numeris ab 1 usque ad 11, qui omnes minores sunt quam 12, ceciderit. ¶
Function Epact1 is a direct implementation of Clavius.
Function Greg_TempEpact9 was derived from Greg_Epact1; find the Cell, go back 2, count up GN, then ... .
Inspection with the Greg_TempEpact9 button shows that much of the result fits :- Cell = (GN*11 + 50 - Cy) % 30 so use that retaining the corrections and see what happens - it agrees - therefore, use of Greg_Epact9 is justified.
Let us illustrate this by examples.
¶
Exemplis planum id faciemus. Anno 1582
...
...
Atque hoc modo epactam cuiuslibet anni invenies in perpetuum. ¶
On constructing short Tables. ¶ Ex his facile quivis tabellam componere poterit ... et ab epacta XIII illius anni sic stabit. ¶
Table for 2200 up to 2300 Tabella epactarum respondentium aureis numeris ab anno 2200 inclusive usque ad annum 2300 exclusive.
On constructing short Tables. Use of perpetual table instead. ¶ Sed eædem hæ epactæ facilius ... restituti reperies. ¶
Solar Cycle 1 to 28, or cycle of 7 Sunday Letters, 28=7×4, which
step at each change of year and at each quadrennial Leap Day.
¶
Cyclus solaris, seu literarum dominicalium,
...
...
ut ad finem sequentis canonis docebimus. ¶
Short Solar Cycle table, from 1582.
¶
Ut igitur quolibet anno proposito
...
...
annum 1582 investigabitur hoc modo. ¶
Table of the Solar Cycle from 1582, year of reform. 23 24 25 26 27 28 1 2 3 4 ... 19 20 21 22 Tabella cycli solaris initium sumens ab anno correctionis 1582.
Tedious use of short table.
¶ Anno 1582 tribuatur primus numerus
...
...
numerum cycli solaris quæsitum indicabit. ¶
Less tedious table to follow.
¶
Sed quoniam valde laboriosum est ac molestum,
...
...
1582 invenietur hac ratione. ¶
Long explanation of use of less tedious Table.
¶
Quæratur annus propositus in tabula
...
...
erit numerus cycli solaris 28. ¶
General Table for Finding the Solar Cycle. Tabula ad numerum cycli solaris cuiuslibet anni inveniendum.
Examples.
¶
Exemplis rem illustrabimus.
Inveniendus sit numerus cycli solaris anno 1000.
...
...
Cui tandem appono 9 efficioque numerum cycli solaris 28 pro anno 7075.
¶
Reason for adding 9. ¶ Adduntur autem semper 9 ultimo numero, ... cycli solaris 11, etc. ¶
Construction is as for Golden Number. ¶ Compositio quoque huius tabulæ ... quotcumque annos volueris. ¶
Use for any year. ¶ Cæterum sine hac tabula facili ... Et sic de cæteris.¶
SC = 1 + (Y+8) mod 28
The first paragraph of Canon 4 implies that Canon 3 is all Julian.
Get the Sunday Letter from the Solar Cycle for Julian in Canon 4.
The days of each year, omitting February 29th, are given the letters Abcdefg cyclically. Thus January 1st and December 31st are both always lettered A. I use 0123456 as corresponding Sunday Numbers.
The missing 10 days and the missing leap years now break the old
system.
¶
Quoniam tum propter decem dies ablatos ex mense Octobri anni 1582
...
...
usque ad annum 1700 exclusive. ¶
Table of Sunday Letters from the Ides of October 1582, year of the reform, (after the suppression of 10 days), to 1700 exclusive. Not used here Tabella literarum dominicalium ab Idibus Octobris anni correctionis 1582 (detractis prius X diebus) usque ad annum 1700 exclusive.
To use that table :
the Sunday Letters sequence as before. Late 1582 has letter c, 1583 has
b, 1584 has Ag, up to 1700 (not leap).
¶
Usus huius tabellæ hic est. Anno correctionis 1582 post Idus
Octobris (detractis prius X diebus) tribuatur litera c primæ
cellulæ;
...
...
ad festum S. Matthiæ, inferior autem b, in reliqua parte anni.
¶
To help, the following table of years like 1582.
¶
Verum ut in annis, qui parum ab anno 1700 distant,
...
...
anno 1700 ad quem usus tabellæ literarum dominicalium
non pervenit. ¶
Years in which the Sunday Letter table starts. Not used here. 1582 1610 1638 1666 1694 Anni a quibus tabella literarum dominicalium incipit.
Use of that Table.
¶
Itaque si annus cuius litera dominicalis quæritur,
...
...
quæ tertia est post bissextum et dominicalis eo anno. ¶
After 1699, as follows.
¶
Finito autem anno 1699
...
...
hoc modo. ¶
Perpetual Table of Sunday Letters, from 1700, if three leap-days are omitted every 400 years. Tabella literarum dominicalium ab anno 1700 inclusive perpetua, si quibusque 400 annis tres bissexti omittantur.
Table of the Equation of the Perpetual Table of Sunday Letters, from 1700. Tabula æquationis supradictæ tabellæ literarum dominicalium ab anno 1700 perpetuæ.
This shows the 400-year repeat.
For 1700 onwards, seek in the larger Table whichever of I II III is
against the highest number less than or equal to the year. Seek that in
the Table of letters, count forwards from that from the number just
found to the actual year, circularly, take its (lower) letter.
Inventurus literam dominicalem cuiuslibet anni,
...
...
quemadmodum in aliis annis bissextilibus. ¶
The week pattern repeats every 400 years; mod 10000 is used here.
Example.
¶
Exemplum. Anno 1710 ...
...
cum in tabula æquationis non contineatur. ¶
Not needed?
¶
Hic autem utendum erit quoque artificio supra descripto,
...
... in cellulam duarum literarum b, A, ut prius. ¶
Not needed. 3500 3528 3556 3584 3612 3640 3668 3696 -
Not needed? ¶ Immo eadem hæc tabella cuilibet ... 3500 proxime insequitur. ¶
Not needed? ¶ Facillima porro est constructio tabulæ æquationis. ... numeri antiqui I, II, III ordine repetuntur. ¶
Not needed?
¶
Ex his non difficile erit cuilibet ex nostra tabella perpetua
...
...
Sequenti deinde anno 1801 litera dominicalis sit d, etc. ¶
Table of Sunday Letters from 1800 to 1900 exclusive. Not needed Tabella literarum dominicalium ab anno 1800 usque ad annum 1900 exclusive.
To find Julian Sunday Letter of any year ¶ Expedite quoque eamdem literam dominicalem cuiusque anni ... sit bissextilis et tunc idem numerus antiquus repetatur, ita se habet. ¶
Solar cycle or old perpetual cycle of 28 years of Sunday Letters. Cyclus solaris seu literarum dominicalium antiquus 28 annorum perpetuus.
Table of the equation of the old solar cycle. Tabula æquationis cycli solaris antiqui.
The table has "biss" against every fourth centade after 1582; we do not need that part.
Instructions similar to Gregorian
¶
Inventurus ergo literam dominicalem quocumque anno dato,
...
...
quemadmodum in aliis annis bissextilibus. ¶
Examples.
¶
Exemplum. Anno 1699 respondet ...
...
Sed prior ratio expeditior est, cum solari cyclo non egeat. ¶
It is clear that the Sunday Letter is [gfedcbA] and cyclically decrements at each New Year and each Leap Day. From that, the arithmetical method for the Sunday Letter applying to Eastertide is deducible for either Calendar.
The Julian period of 28 years is stated explicitly.
I see no explicit mention of the 400-year repeat (but a Table shows it; and it can be deduced from the Bull). The Canons do not seem to have a good long-term method.
Test Sunday Letters in 3rd, 12th/13th. and 22nd centuries;
all letter columns should agree :
Irrelevant for Easter; and rather like the Golden Number.
Nicæa : Easter is the Sunday next following the 14th day of the lunar month, which is the month having its 14th day on or after March 21st. ¶ Quoniam ex decreto sacri concilii Nicæni Pascha, ex quo reliqua festa mobilia pendent, celebrari debet die dominico qui proxime succedit XIV lunæ primi mensis (is vero apud Hebræos vocatur primus mensis cuius XIV luna vel cadit in diem verni æquinoctii, quod die XXI mensis Martii contingit, vel propius ipsum sequitur) efficitur ...
Which is like saying that Easter is the Sunday next following the Full Moon which is or after March 21st (and that the Full Moon is on the 14th day of the lunar month).
Get the Epact from Canon 2, find it in the CALENDARIVM (Printed pp.36-47; pp.38,39 shown below) (+) between March 8th and April 5th inclusive, add 14 days to reach PFM), go to the Sunday next following for Easter Sunday. ... ut si epacta cuiusvis anni inveniatur ex canone 2 ... sit dies Paschæ. ¶
Example. 1583, April 10th; 1585, April 21st;
1592, March 29th.
¶
Exemplum. Anno 1583 iam emendato epacta est VII
et litera dominicalis b. ...
...
celebrabitur eo anno Pascha die 29 Martii. ¶
After having found Easter, one can easily find the other moveable feasts.
... paragraph of no present interest.
¶
Invento autem die Paschæ, facile alia festa mobilia invenientur.
...
... investigare paulo infra. ¶
We have also constructed the two following Paschal tables, one old, one new, to help find moveable feasts. ¶ Cæterum ut facilius omnia festa mobilia inveniantur, compositæ sunt duæ sequentes tabulæ paschales, una antiqua et nova altera. ...
Using the old table, seek Epact, find first lower Sunday Letter, use date on that line. Examples: 1583, Epact is VII, SL is b, get Apr 10. 1585, XXIX, f, Apr 21. Currently using GN not Epact ... Ex antiqua, ita festa mobilia reperientur. ... et Pascha die 21 Aprilis, etc. ¶
Note also : in common years, if SL is on same line as Epact, go to next
below; in leap years, if one of the two SLs is on same line as Epact, go
to next below of these two. ** Eh? **
¶
Notandum autem est, quod quemadmodum in anno communi,
...
...
ut festa mobilia inveniantur. ¶
Using the new table, look in the cell of the Sunday Letter for the
Epact. The date is on the same line. Example : 1585, SL is f, Epact is
XXIX, get 21 Apr.
¶
Ex tabula vero paschali nova ita eadem festa mobilia reperientur.
...
...
et Pascha die 21 Aprilis, etc. ¶
Whether one uses the old or the new Easter table, all
moveable feasts must be found, in Leap Years, using the second Sunday
Letter ... Little interest
¶
Sed sive antiqua, sive nova tabula ...
...
quare nihil additur, etc. ¶
Little interest
¶
Rursus anno 3784 bissextili epacta erit ...
...
numerentur usque ad Septuagesimam. ¶
Little interest
¶
Adventus Domini celebratur semper ...
...
quia ibi est litera g in calendario, etc. ¶
Little interest
¶
Numerus quoque dominicarum inter ...
...
inter Pentecostem et Adventum Domini. ¶
From the above one sees how to construct the two general Easter tables. ¶ Ex his omnibus facile intelligi potest, qua ratione utraque tabula paschalis composita sit. ¶
They are preceded by a table for several years.
¶
Utrique tabulæ paschali generali ...
...
pro quibuscumque annis. ¶
In the reformed old table, Golden Numbers are added
to allow finding Easter etc. from the Council of Nicæ to 1582.
Find the Golden Number, move down to the Sunday Letter to find the
dates of feasts.
¶
In priori porro tabula paschali antiqua ...
...
et sic de cæteris. ¶
Audette has the following Tables in his Canon 6 page; Clavius separates them.
The full Table gives dates for Easter Sunday and also for other Feasts.
Indexed by 7 Sunday Letters (A to G) and 31 Epacts (* j ij ... xxv 25 xxvj ... xxix); the full Table gives dates for Easter Sunday and also for other Feasts.
The Gregorian Epact gives the phase of the Moon at the beginning of March, and the Paschal Full Moon is on one of the 30 days starting with March 21st. Note that 21 + 53 = 74 = 14 + 2×30.
Better explanation needed, giving exact expression.
Easter Sunday follows the Paschal Full Moon by one day, plus zero to six days to reach a Sunday. Variable PFM is Day-of-March. The Sunday Number counts up from 0 to 6 from January 1st and from every seventh day thereafter omitting February 29th. For March 1st, it is 3 (the Sunday Letter is d). And 60 is 3 less than a multiple of 7, and is sufficient to keep the left operand of mod non-negative,
By inspection, that code moves ahead by 1 to 7 days. Testing verifies that it reaches a Sunday.
Tests have covered years 0 to 5700000+ Gregorian.
The following form has several parts :-
• Greg_Test1 Gregorian, literal, following Clavius
• Greg_Test9 Gregorian, arithmetical,
to be traceable to Clavius
• Juln_Test1 Julian, literal
• Juln_Test9 Julian, arithmetical
Results are compared with known-good values :
Code for four tests :-
Long tests are best done in a browser which does not give "busy" warnings; I often use Opera for this.