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Figure 1: Our video retargeting framework has motion information at its core, utilizing it to define temporal persistence of video contents
and to describe temporal coherence constraints. Left: We combine cropping and warping by forcing all informative video content inside the
target video cube, without a priori constraining the size of each frame. Right: parts of the bunny and the squirrel are allowed to be cropped

(top) since they will fully appear later in the video (bottom).

Abstract

We introduce a video retargeting method that achieves high-quality
resizing to arbitrary aspect ratios for complex videos containing di-
verse camera and dynamic motions. Previous content-aware retar-
geting methods mostly concentrated on spatial considerations, at-
tempting to preserve the shape of salient objects in each frame by
removing or distorting homogeneous background content. How-
ever, sacrificeable space is fundamentally limited in video, since ob-
ject motion makes foreground and background regions correlated,
causing waving and squeezing artifacts. We solve the retargeting
problem by explicitly employing motion information and by dis-
tributing distortion in both spatial and temporal dimensions. We
combine novel cropping and warping operators, where the crop-
ping removes temporally-recurring contents and the warping uti-
lizes available homogeneous regions to mask deformations while
preserving motion. Variational optimization allows to find the best
balance between the two operations, enabling retargeting of chal-
lenging videos with complex motions, numerous prominent objects
and arbitrary depth variability. Our method compares favorably
with state-of-the-art retargeting systems, as demonstrated in the ex-
amples and widely supported by the conducted user study.

Keywords: video retargeting, cropping, warping, spatial and tem-
poral coherence, optimization

1 Introduction

Retargeting images and video for display on devices with different
resolutions and aspect ratios is an important problem for the modern
society, where visual information is accessed using a variety of dis-
play media with different formats, such as cellular phones, PDAs,
widescreen television, and more. To fully utilize the target screen
resolution, traditional methods homogeneously rescale or crop the
visual content to fit the aspect ratio of the target medium. Simple
linear scaling distorts the image content, and cropping may remove
valuable visual information close to the frame periphery. To ad-
dress this problem, content-aware retargeting techniques were re-
cently introduced. These methods non-homogeneously deform im-
ages and video to the required dimensions, such that the appearance
of visually important content is preserved at the expense of remov-
ing or distorting less prominent parts of the input.

Most content-aware retargeting techniques to date have concen-
trated on spatial image information, such as various visual saliency
measures and face/object detection, to define visually important
parts of the media and to guide the retargeting process. They rely on
the fact that removing or distorting homogeneous background con-
tent is less noticeable to the eye [Shamir and Sorkine 2009]. Recent
video retargeting works [Krihenbiihl et al. 2009; Wang et al. 2009]
additionally average the per-frame importance maps over several
frames and grant higher importance to moving objects to improve
the temporal coherence of the result.

Yet, video retargeting is fundamentally different from still image re-
targeting and cannot be solved solely by augmenting image-based
methods with temporal constraints. The reason for this is twofold:
(i) In video, motion and temporal dynamics are the core considera-
tions and must be explicitly addressed; simply smoothing the effect
of the per-frame retargeting operator along the time axis, as was
done in most previous works, cannot cope with complex motion
flow and results in waving and flickering artifacts; (ii) Prominent
objects often cover most of the image, in which case any image-
based retargeting method reaches its limit, since retargeting is sim-
ply impossible without removing or distorting important content.
Even if each individual frame does contain some disposable con-
tent, the trajectories of the important objects often cover the en-



tire frame space. This makes it impossible to simultaneously pre-
serve the shape of the important objects and retain temporal co-
herence. All recent methods (e.g., [Wolf et al. 2007; Zhang et al.
2008; Krihenbiihl et al. 2009; Wang et al. 2009]) then degenerate
to simple linear scaling. Content-aware cropping (such as [Liu and
Gleicher 2006; Deselaers et al. 2008]) produces large virtual cam-
era motions and possible loss of salient content.

In this work, we present a video retargeting algorithm that rethinks
the problem from the temporal point of view and explicitly puts
motion information at the basis. We analyze the motion flow of the
entire video sequence and design a simple and concise retargeting
framework that achieves temporally coherent and visually-faithful
video resizing. Given the fundamental spatial limitation, our first
contribution is to give up the notion that all important content must
be preserved in every frame. Instead, we employ motion infor-
mation to determine temporal persistence of video content. This
provides a new cropping criterion, where salient objects may be
removed from some frames, but we make sure that they persist in
at least a minimal period of time, such that all important content is
visible at some point in the video. Our second contribution is a tem-
poral energy for video warping, which is designed to preserve the
motion flow and ensures temporally-coherent retargeting. The first
step in this direction was done by Wang et al. [2009], as they at-
tempted to consistently resize moving objects and preserve camera
motion. However, their method required separation of camera and
dynamic motion, which is difficult to impossible for videos with
complex dynamic scenes, perspective effects and significant depth
variation. We show that, surprisingly, using much simpler tempo-
ral constraints it is possible to handle arbitrary motion and parallax
effects without any need for camera estimation and alignment or
object segmentation.

When the video is crowded with visually important content (as in
Figure 2), our temporal persistence based cropping is beneficial
over warping, since it introduces no spatial distortion artifacts. On
the other hand, when parts of the video do contain unimportant ho-
mogeneous regions, content-aware warping is advantageous since
it can utilize these regions to hide distortion, even if the regions re-
side in the middle of the frame (whereas cropping can only remove
areas from the periphery). Our third contribution is therefore to op-
timally combine cropping and warping in one framework, where
the algorithm automatically balances between the two depending
on the video content (see Figure 1). We achieve this by defining a
critical region which must not be cropped in each frame. We then
apply content-aware warping to the video using our new temporal
coherence energy, while constraining the critical regions to remain
within the target video cube. Effectively, where previous methods
constrained the boundaries of each frame to touch the boundaries
of the target cube, we instead only ask to place the critical regions
inside the cube, without a priori constraining the frame size. The
variational optimization of the warping function then automatically
decides how the video contents is transformed and how much of it
is left outside of the target cube to be cropped out.

We demonstrate the effectiveness of our retargeting method on nu-
merous challenging examples, and compare our technique to the
state-of-the art resizing systems. To evaluate the performance of
our framework, we conducted a user study with 96 participants,
which showed strong preference of our method over recently pub-
lished techniques.

2 Related work

Image retargeting. Content-aware image retargeting methods
can be roughly classified into discrete and continuous tech-
niques [Shamir and Sorkine 2009]. Discrete methods regard im-
ages as collections of pixels and decide which pixels to remove (or
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Figure 2: Left: original frames. Right: retargeted frames. Remov-
ing some content is necessary when there are too many important
objects within the video. With our method, each prominent object
remains visible at least for a period of time when retargeting. Top:
the people on the far right will remain visible for a while and can
thus be cropped in this frame. Combining with warping allows to
retain more salient information and win some space by distorting
background content.

duplicate) in order to obtain the target aspect ratio. Cropping tech-
niques [Chen et al. 2003; Liu et al. 2003; Suh et al. 2003; Santella
et al. 2006] cut rectangular regions adjacent to the image boundary
while trying to avoid removing salient objects. Seam carving [Avi-
dan and Shamir 2007; Rubinstein et al. 2008] removes or dupli-
cates contiguous but not necessarily straight chains of pixels that
pass through homogeneous regions of the image. Multi-operator
frameworks [Rubinstein et al. 2009; Dong et al. 2009] interleave
seam carving, linear scaling and cropping operators while optimiz-
ing an image similarity measure. While this strategy combines the
advantages of the individual operators, it is very costly because of
the evaluation of a sophisticated similarity measure and exponential
dependence on the number of operators used. Some recent works
employ patches instead of individual pixels and preserve patch co-
herence between the source and target images, enabling automatic
removal of repetitive patterns [Cho et al. 2008; Simakov et al. 2008;
Barnes et al. 2009]. The ShiftMap method [Pritch et al. 2009] re-
moves entire objects at a time, alleviating the discontinuity artifacts
of pixel-based carving.

Continuous retargeting methods [Gal et al. 2006; Wolf et al. 2007;
Wang et al. 2008; Zhang et al. 2008; Karni et al. 2009; Krihenbiihl
et al. 2009; Zhang et al. 2009] use variational formulation to de-
sign warping functions, such that the shape of salient regions is
preserved while homogeneous regions are squeezed or stretched.
The warps can be discretized at pixel level or coarser, to trade qual-
ity for efficiency. Continuous approaches tend to produce smoother
results than discrete ones and have more flexibility w.r.t. the opti-
mized objective; however, in some situations removing entire im-
age parts proves better than distorting them. All image retarget-
ing methods have the fundamental spatial limitation: if there is not
enough unimportant content in the image, salient objects must be
distorted or removed.

Video retargeting. As previously mentioned, most video retarget-
ing works proceed by extending per-frame image-based techniques
with some temporal considerations. Cropping methods [Fan et al.
2003; Liu and Gleicher 2006; Deselaers et al. 2008] produce con-
trolled virtual camera motions (such as pan or zoom) and/or artifi-
cial scene cuts. Depending on temporal dynamics of the video, the
introduced virtual camera motion may be quite large; additionally,
important objects might be discarded completely, or at least for a
long period of time.
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Figure 3: We define critical regions using vertical lines when narrowing videos. The content within the regions is constrained to persist after
resizing. Notice that the sizes of critical regions may be different among frames and not all the regions outside will be necessarily discarded.

Image resizing methods were extended to video by constraining
temporally-adjacent pixels to transform similarly [Wolf et al. 2007;
Rubinstein et al. 2008; Zhang et al. 2008; Krihenbiihl et al. 2009].
Continuous methods formulate this as an energy term which pe-
nalizes strong partial derivatives of the warp w.r.t. time. The seam
carving of [Rubinstein et al. 2008] is extended to video by con-
strained surface carving using graph-cuts. Due to camera and dy-
namic motion, temporally-adjacent pixels do not necessarily con-
tain corresponding objects, so that objects may deform inconsis-
tently between frames, resulting in waving artifacts. Wang et
al. [2009] addressed this temporal coherence problem by explicit
detection of camera and object motions; however, their frame align-
ment assumes each frame to be a plane and cannot handle parallax.
The spatial limitation affects all current video resizing methods:
if salient objects cover the entire frame space, their temporally-
consistent resizing degenerates into linear scaling. By combining
warping with temporally-based cropping, we utilize degrees of free-
dom in the time dimension to overcome this spatial limitation.

3 Motion based video retargeting

Our video retargeting algorithm works by utilizing the knowledge
about pixel motions. The motion information implies inter-frame
pixel correspondence, which allows our system to (partially) crop
out temporally persistent content, as well as to consistently warp
corresponding objects throughout the video. In the following we
describe both the crop and the warp components of the algorithm
and show how to optimally combine them together to minimize vi-
sual artifacts in the retargeted media. Since our approach heavily
relies on accurate motion information, we employ the state-of-art
optical flow method of [Werlberger et al. 2009] to determine the
movement of each pixel between neighboring frames. We denote
the flow of pixel ¢ by f;.

3.1 Persistence-based video cropping

Typical video content persists over a sequence of several frames.
This provides additional freedom to the retargeting operation and
leads us to a novel cropping criterion: even the content which is
visually salient in any individual frame can be cropped from some
frames, as long as it remains visible for a sufficient amount of time.

Critical regions. We determine the regions which may be cropped
by looking at the inverse problem, i.e., by defining a critical region
in each video frame whose content may not be removed. Criti-
cal content is invisible in neighboring frames, or consists of active
foreground objects that exhibit significant motion. We use optical
flow to define these criteria and compute the critical region of the
entire video cube; content outside the critical regions can be poten-
tially discarded. Specifically, when narrowing a video, we look for
critical columns of pixels which should not be removed, and when
widening we look at critical rows; for brevity we only mention nar-
rowing from now on. We have two criteria for a critical column:
(1) its content has just entered the frame or is about to disappear

in the next frames, so it is not temporally persistent; (ii) the col-
umn contains actively moving foreground objects. We then define
critical regions as the areas between the leftmost and the rightmost
critical columns.

The horizontal component of the optical flow indicates whether
content moves in or out in the next frame; we thus take the aver-
age flow vector of each pixel column and test whether it came from
any of the previous ki frames and will remain visible in the next
ko frames (k1 = k2 = 30 in our experiments). If these condi-
tions do not hold, the column is marked as critical. Columns that
contain actively moving foreground objects (objects that move in-
dependently of the camera motion) are determined by the entropy
of the column’s flow. To compute the entropy, we quantize the flow
vectors f; (¢ € C where C is the given column pixels) using the
common fan chart scheme, where longer vectors are quantized into
more levels (tiny flow vectors typically come from noise and do
not require as many quantization bits). Let I(f;) denote the integer
value associated with the flow vector f; after quantization:

0(f:)
2m /2%

I(f)=2"+| |, with k= [0.5L(F)], 1)

where £(f;) and 0(f;) denote the length and orientation of f;, re-
spectively. The rationale of this formula is as follows: a fan chart
is comprised of concentric rings of equal width, where the outer
radius of ring k is 2(k + 1). Ring k is divided into 2* equal sec-
tors; each sector spans 27 /2 radians. All sectors are consecutively
numbered starting with the innermost one. Imagine placing the ori-
gin end of the flow vector at the origin of the chart; Eq. (1) then
computes the sector index in which the tip of the vector will be.
Specifically, k = |0.5L(f;)] is the corresponding ring number and
|0(f:)/(27/2"%)] is the particular sector we land in on the ring.

Given the quantized flow values, we then compute the histogram
of I(f;)’s and define flow probabilities P(f;) (the heights of the
histogram bins normalized by the total integral of the histogram),
such that the entropy of column C' is

H(C) ==Y P(fi) - log, P(£). @

i€eC

We consider columns with flow entropies larger than 0.7H,q2 as
critical, where Hpnqq is the maximal possible entropy (occurring
when the flows are uniformly distributed). Figure 3 shows an ex-
ample of the boundaries of detected critical regions. Note that the
crop boundaries serve as constraints, or cropping guides in our sys-
tem, and not all contents outside will be necessarily fully cropped;
the exact amount of cropping depends on the combination with the
warping operation and temporal coherence constraints, as we shall
see next. Therefore, explicit extraction of foreground objects is not
necessary in our system since the flow entropy is a sufficiently good
indicator.
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[Krihenbiihl et al. 2009]
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[Wang et al. 2009] our results

Figure 4: Consistently resizing temporally adjacent pixels in the method of [Krihenbiihl et al. 2009] introduces waving artifacts when
prominent objects move a lot. The camera estimation of [Wang et al. 2009] fails due to lack of reliable feature correspondences. As a result,
all local regions are squeezed equally to preserve temporal coherence, similarly to linear scaling.

3.2 Temporally coherent video warping

Our video retargeting framework is based on a continuous warping
function computed by variation optimization [Shamir and Sorkine
2009], and the cropping operation is incorporated by adding con-
straints to the optimization. We discretize the video cube domain
using regular quad grid meshes and define an objective function in
terms of the mesh vertices; minimizing the energy function under
certain constraints results in new vertex positions; by interpolating
the interior of each quad we then reconstruct the retargeted video.
The objective function consists of several terms that are responsible
for spatial and temporal preservation of visually important content,
as well as temporal coherence; we describe these terms next.

Notation. We represent each video frame ¢ using a grid mesh
M’ = {V' E,Q}, where V = {vi vi, ... ,vi} C R?is the
set of vertex positions, E and Q denote the edges and quad faces,
respectively (the connectivity is the same for all frames). The new
deformed vertex positions are denoted by vi’ = (zt’,y!'); these
are the variables in the optimization process. We sometimes drop
the superscript ¢ and simply use v;, v; when referring to vertices of
a single frame to simplify the notation. We denote the target video
size by (re,ry,7), Where rz, 1y is the target resolution and 7 is
the number of frames (which remains unchanged). Conceptually,
our goal is to transform the input video cube into the target cube
dimensions (without altering the time dimension).

Cropping constraints. Previous warping methods explicitly pre-
scribed the positions of all corner vertices in each frame to match
the target resolution. We, instead, design a warp that makes sure
that all critical regions (as defined in Section 3.1) are transformed
inside the target video cube dimensions (7, 7y, 7.). Non-critical
regions at the peripheries of the video may be transformed outside
of the target cube and will thus be cropped out.

Let vi and vi denote the mesh vertices closest to the top-left and
bottom-right corners of the critical region in frame ¢, respectively
(the vertices are chosen conservatively such that the critical region
is contained between them). To force the critical region inside the
target cube, we must satisfy

’ ’
mz >0, IL’i < T,

3
' >0, yi' <ry, forall 0<i<r, ©)

Note that by design, our warping function is temporally coherent
(see next section) and we do not need to design separate constraints
for the temporal coherence of the cropping region.

Spatial content preservation. To preserve the shape of visually
important objects in each frame, we employ the conformal energy
as in [Zhang et al. 2009], described next for completeness. Each
quad is to undergo a deformation which is as close as possible to
similarity. Let vy, , Vi,, Vis, Vi, be the vertices of a quad g; sim-
ilarity transformations in 2D are parameterized by four numbers
[s,7,u,v], and we wish to express the best fitting similarity be-

tween g and ¢’
S - u /
|:7" S:|Vij+|:'U:|_Vij
4)

Since this is a linear least-squares problem, we can write
[s,7,u, v]gjq, = (AT A 'Alb,/, where

4 2

[s,7,u,],, = argmin
S,7,U,V

j=1

i, —Yiy; 1 0 x,

Yiy Tiy 01 yfil
A= =] L
Tiy, —Yi, 1 0 i,

Yig @y 01 y;‘4

Note that the matrix A, depends solely on the initial grid mesh, and
the unknowns are gathered in b,/. By plugging in the expression
for [s,7,u,v],  into Eq. (4) we obtain the conformal energy term
for quad g as D.(q,q') = (Aq(AF Ag) "t AT — I)b,/ (see [Zhang
et al. 2009] for the derivation details). The total conformal energy
term for the entire video is then

De=> " wid De(d'q"), ©)
t qt

where wfz is the visual importance of quad q in frame ¢. The per-
frame spatial importance map is obtained from the combination
of intensity gradient magnitudes, Itti’s saliency measure [Itti et al.
1998] and the robust face detection of [Viola and Jones 2004], sim-
ilarly to previous warping methods [Wang et al. 2009; Krihenbiihl
et al. 2009]. The map is normalized to [0.1, 1.0] to prevent exces-
sive shrinkage of unimportant regions.



We also adopt the following energy terms from [Wolf et al. 2007]
to prevent strong bending of the mesh grid lines (this is desirable as
salient objects tend to occupy connected quads):

De=3,( 2o (i jreE, (' —25")*+
/ /
Z{i,]’}EEh (yf - y;‘ )2 )

where E,, and E, are the sets of vertical and horizontal mesh edges.

@)

Temporal coherence preservation. To achieve temporally-
coherent video resizing, we design an energy term to preserve the
motion information, such that flickering and waving artifacts can be
minimized. Given the optical flow we can determine the evolution
of every quad ¢! in the following frame, denoted as pﬁ“. We find
the best fitting linear transformation 77 such that T} (¢f) ~ pit!
(we do not include translation in 7} since we are only interested in
the transformation of the shape of each quad, not its precise loca-
tion). Our goal is to preserve this transformation in the retargeted
video, so we formulate the following energy term:

Da(¢!) = |TH (¢! — ™)1 ®)

Note that the simple energy above encompasses both motions due
to camera and independent object motions, without any need to sep-
arately handle the two. What remains is to properly formulate it in
terms of our unknowns, i.e., the mesh vertex positions. Denote the

vertices of p§+1 by u§+1; we represent each of these vertices as a
t+1

linear combination of the grid mesh vertices v;"~ in the immediate
vicinity (see Figure 5):

t4+1 t4+1
u;" = g wavy' o, )
d

where wq are the barycentric coordinates w.r.t. the quad vertices
vf;'l. Now we can properly reformulate (8) in terms of the v;’s:
Dalg)= > T i) — @i )P, (10)
(4,k)EE(q})
where E(¢}) is the set of edges of quad ¢!.
Note that there may be a set of quads Qtﬁ which the flow takes
outside of the video frame. For such quads, we simply constrain

their temporally adjacent quads to be similar after resizing, using
the following term:

Dsgh) = Y

(G.k)EE(g?)

I(v5 = Vi) = (v = Vi IP an

Let Q4 = Q' Q%. The overall temporal coherency energy is

D= % Dal@)+Y > Dsla). (12

t qteQl t qeQf

The above energy preserves temporal coherence of correspond-
ing objects using local constraints, which means that inconsistency
could accumulate among frames. To handle this problem, it is pos-
sible to preserve corresponding quads among farther frames to slow
down the error accumulation. Specifically, in Eq. (8), we look at g}
and its corresponding quad p!™* instead of ¢! and p!™' if their
motions are similar (A = 5 in our implementation). We noticed
however, that allowing slightly inconsistent resizing is reasonable
because small changes in objects’ shapes are inconspicuous, espe-
cially when the camera or objects are moving.

Note that so far the energies were only concerned with the shape
of the resized quads, while globally the video frames were allowed
to slide, effectively creating an additional “virtual” camera motion.
Although such motion may be unavoidable, it is desirable to min-
imize it since artists usually use camera movement to convey the
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Figure 5: The corresponding quads q (shown in orange) and p
(red) are determined based on optical flow. In this example, we
represent the top left vertex of p, denoted by u, using linear combi-
nation of the green mesh vertices.

story, and thus it should be respected as much as possible. We
therefore pick an anchor vertex (we chose the top left vertex v()
and constrain its position to change smoothly between neighboring
frames. That is, we use the following second-order smoothing term:

Do=ny " 2vh = (v Vi), (13
t

where n is the number of mesh vertices (this weight balances the
energy term against the other terms that use all mesh vertices and
not just a single one).

3.3 Optimized crop-and-warp

We solve for the deformed grid meshes by minimizing
D =D.+ D¢+ ~D:+Ds, 14

where v = 10 and 6 = 1.5, subject to boundary constraints. The
first boundary constraint is the inequality posed by the critical re-
gions (Eq. (3), preventing critical content from being cropped out.
We also employ the edge flipping and straight boundary constraints
as in [Wang et al. 2008; Wang et al. 2009]: edge flipping is an in-
equality constraint that prevents self-intersections in the mesh by
requiring non-negative length of all mesh edges; straight boundary
constraints are linear equations making sure the boundaries of the
retargeted frames remain straight (as required for top and bottom
boundaries of each frame).

Minimizing the objective function (14) is a linear least-squares
problem under some linear constraints and linear inequality con-
straints, therefore we employ iterative minimization. We start
the optimization by placing the leftmost and the rightmost critical
columns at the two respective boundaries of the target video cube
(note that these columns might reside in different frames; the opti-
mization runs on the entire video cube at once). In each iteration,
we solve the linear least-squares problem under the linear equality
constraints, which amounts to solving a sparse linear system. We
then enforce the detected flipped edges to have zero lengths and
also pull the critical columns that turned out to be outside of the
target video cube back to the frame boundaries, which effectively
results in new equality constraints for the next iteration. Iterations
continue until all the inequality constraints are satisfied.

Note that the system matrix changes whenever the constraints
change (depending on which inequalities were violated). We apply
the GPU-based conjugate gradient solver of [Buatois et al. 2009]
with multigrid strategy, which is more memory- and time-efficient
than direct solvers in this case. Once the deformed meshes have
been computed, we produce the retargeted video by “cutting out”
the target cube and interpolating the image content inside each quad
(we use linear interpolation, although advanced methods such as
EWA splatting [Krahenbiihl et al. 2009] could also be employed).
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linear scaling

[Wang et al. 2009] our results

Figure 6: The method introduced by Wang et al.[2009] degenerates into linear scaling when the pixel depths vary greatly. Their camera
estimation fails to transform corresponding pixels to the same position due to the parallax effect.

4 Results and discussion

We tested our algorithm on a desktop PC with Duo 2.33 GHz
CPU and Nvidia GTX 285 graphics card. We applied the method
of [Rasheed and Shah 2003] to cut videos into short clips according
to scene changes. Different scenes are retargeted independently,
since temporal coherence is not necessary when the contents are
disjoint. This strategy improves the performance and memory con-
sumption since the computational complexity is quadratic in the
number of unknown vertex positions. To trade quality for effi-
ciency, we typically use grid meshes with 20x20 pixels per quad
in our experiments (please see further discussion below). Our retar-
geting system takes 2 to 3 iterations on average, depending on the
video content, when solving the constrained optimization. We use
a multigrid strategy to satisfy the inequality constraints on coarser
levels in order to improve the performance when deforming finer
meshes. Our system can achieve 6 frames per second on average
when retargeting a 200-frames video with resolution of 688 %288,
and the performance naturally drops for larger numbers of frames.

We show some results in Figures 1, 4, 6 and 8 to demonstrate the
effectiveness of our algorithm. Please refer to our accompanying
and supplemental videos (MARcomp.mp4 and SVRcomp.mp4) for
all results and comparisons', especially as the temporal effects are
difficult to visualize and appreciate in still frames. Note that all
results were generated automatically using the default parameters
of the algorithm. In some rare cases users may want to manually
emphasize important objects; this can be done by segmenting the
objects using graph-cut in one frame, and automatically propagat-
ing the segmentation to subsequent frames via the optical flow; we
show one such example in the accompanying video.

Comparisons. We compared our method with linear scaling, and
with the motion-aware retargeting (MAR) of [Wang et al. 2009] and
the streaming video retargeting (SVR) of [Kréihenbiihl et al. 2009],
since the latter are the state-of-the-art works on content-aware video
resizing. Preceding methods [Wolf et al. 2007; Rubinstein et al.
2008; Zhang et al. 2008] did not handle temporal motion coher-
ence in video resizing and therefore inevitably would not compare
favorably with motion-aware methods (this assessment was widely

'We refer to a set of supplemental results on the project website at
http://graphics.csie.ncku.edu.tw/VideoRetargeting/
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quad 40 x 40 | 30 x 30 | 20 x 20 10 x 10 5X5
time 27 sec. 41 sec. 67 sec. 219 sec. 575 sec.
memory 58 MB 95 MB 225 MB 880 MB 35GB

Figure 7: Top: resizing results using grid meshes with quads of
20 x 20 (left) and 5 x 5 (right) pixels. Bottom: the timing and
memory consumption statistics for various mesh resolutions. This
example has 688 x 288 resolution and 208 frames. The experi-
ment was done using a CPU conjugate gradient solver due to the
huge memory consumption. Notice that the finest mesh achieves a
slightly better result but requires a much heavier computation cost.

supported by a user study in [Kridhenbiihl et al. 2009]). Interest-
ingly, the image retargeting techniques of [Dong et al. 2009; Rubin-
stein et al. 2009] combine cropping and other operators to optimize
an image similarity metric; however these methods are already ex-
tremely costly for still images and have not been extended to videos
in a temporally-coherent manner.

Our main reference for comparison is MAR [Wang et al. 2009] be-
cause it explicitly deals with temporal coherence. Since it requires
camera alignment which relies on SIFT features, it fails on videos
with homogeneous backgrounds (Figure 4). Moreover, when true
perspective effects such as parallax are present, their method cannot
coherently transform corresponding objects with different depths,
in which case the result degenerates to linear scaling (Figure 6). In
contrast, our method seamlessly handles all types of motion with-
out requiring camera alignment and therefore succeeds on scenes
with arbitrary depth variability and camera motion. Please refer to
the accompanying video and MARcomp.mp4.
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[Wang et al. 2009]

our results

Figure 8: Previous content-aware video resizing methods would fail in this example because the woman overlaps with most of the backgrounds
as the camera orbits around her. The temporal constraints of [Wang et al. 2009] cause the method to degenerate into linear scaling. We let
parts that are visible long enough to be discarded for some period, which allows preserving the woman’s face.

The pixel-level SVR method of [Krihenbiihl et al. 2009] achieves
video resizing in real time. To obtain such performance, SVR
solves the warping optimization problem on each frame separately,
merely constraining temporally-adjacent pixels to be transformed
consistently. Temporal coherence is handled by averaging the per-
frame spatial importance maps over a window of 5 frames and aug-
menting them with motion saliency (extracted from optical flow),
such that visually prominent and moving objects get higher impor-
tance. Yet, per-frame resizing cannot avoid waving artifacts when
large camera and dynamic motions are present. In our system, to
preserve temporal coherence, we sacrifice real-time efficiency and
per-pixel quality and use coarser grid meshes, which allows us to
optimize all (or at least more) video frames simultaneously. Please
refer to Figure 4 and the supplemental video (SVRcomp.mp4) for
more comparisons.

Apart from previous state-of-the-art warp-based retargeting meth-
ods, we also compared to a manually-generated cropping result in
our accompanying video (which should be at least as good as an
automatic result). We believe the advantage of warping to be obvi-
ous, especially in the challenging examples where the aspect ratio
of the video is significantly altered. In our results the width was
reduced by 50%; any kind of cropping will suffer from significant
object removal or cutting artifacts in this scenario.

It is worth noting that employing finer, or pixel-level mesh res-
olutions in our method would achieve better results because the
saliency and motion information would be more accurately consid-
ered. However, the quality improvement when using finer grids is
limited, since the contents of each quad is often homogeneous. We
have experimented with varying grid resolutions and show some
results in Figure 7 and the supplemental video (multiRes.mp4). Al-
though the computation and memory costs dramatically increase,
the retargeted videos look similar when the meshes are dense
enough. We found our choice of 20x20-pixel quads to be a good
compromise between quality and performance.

User study. We evaluated our method by conducting a user study
with 96 participants coming from diverse backgrounds and ages.
We closely followed the study setup of [Kréihenbiihl et al. 2009],
taking the paired comparisons approach [David 1963]: participants

J was preferred over — Ours MAR SVR | Total
Our method - 488 508 | 996
MAR [Wang et al. 2009] 88 - 309 | 397
SVR [Krihenbiihl et al. 2009] | 68 267 - 335

Table 1: Pairwise comparison results of 96 user study participants.
A total of 1728 comparisons were performed. Entry a;; in the mid-
dle table means: method i was preferred a;; times over method j.

were presented with an original video sequence and two retargeted
versions side by side, and they were asked to answer which retar-
geted version they prefer. The users were kept naive about the pur-
pose of the experiment and were not provided with any special tech-
nical instructions. We used 6 different videos in the experiment and
retargeted each video to 50% width using fully automatic versions
of SVR [Krihenbiihl et al. 2009], MAR [Wang et al. 2009] and our
method. Therefore, for each video there were 3 pairwise compar-
isons, and each participant was asked to make 3 X 6 = 18 com-
parisons. The videos were selected to include diverse scenes types
and motion types: live action footage and CG films, close-ups and
wide angle views, single foreground object and several objects, fast
moving and slow moving camera, clips with and without parallax
effects. We used videos from five commercial feature films and one
CG animated short. In our selection, we tried to have as much va-
riety as possible while keeping the number of clips low, since each
clip added 3 more comparisons and we could not expect each user
to spend more than 20-30 minutes on the experiment. The ques-
tions were presented in random order to avoid bias. We obtained a
total of 18 x 96 = 1728 answers, and each method was compared
2 X 6 x 96 = 1152 times.

Table 1 shows the summary of the obtained results, supporting sig-
nificant preference of our method. Overall, it was preferred in
86.5% (996/1152) of the times it was compared. It was favored
over SVR in 88.2% and over MAR in 84.7% of the comparisons. In
contrast, SVR was favored only in 29.1% (335/1152) and MAR in
34.5% (397/1152) of the comparisons. The participants tended to
agree in their choices: we measured Kendall’s coefficient of agree-
ment: © = 0.356, which was statistically significant to p < 0.01.



Kendall’s coefficient of consistence (an indicator of the number of
circular triads 1 — 2 — 3 — 1 which means statistical incon-
sistency of preferences of an individual user) was ¢ = 1 for 78%
of the users, i.e., they were perfectly consistent. The average con-
sistency coefficient was high, ¢ = 0.94 with standard deviation of
0.1, and only 3 users had consistency score ¢ = 0.5.

A thorough psychophysical testing of video retargeting is out of
the scope of this work; we decided to focus on a concise setting,
comparing to the two most recent techniques. Since in the user
study of [Krahenbiihl et al. 2009], the SVR method was shown to
be clearly superior to linear scaling and the methods of [Wolf et al.
2007] and [Rubinstein et al. 2008], we did not repeat those compar-
isons. It would be interesting to conduct a further perceptual study
and compare additional retargeting operators, on more video se-
quences (this would require a more complex experiment design and
more participants). It would be also useful to compare with a no-
reference study (where the participants do not see the original-size
video). We included the reference video in order to check whether
users would be bothered by the cropping component of our sys-
tem, namely the disappearance of important objects for a period of
time. However, judging by a small preliminary test we performed,
the presence or absence of the original video does not seem to alter
the results, because people tend to ignore the reference video and
concentrate on the two side-by-side results.

Spatial and temporal distortion propagation. As previously
discussed, preservation of temporal behavior and spatial form of
salient objects are two conflicting goals. If the trajectory of an im-
portant object covers most of the frame, i.e., the object overlaps
all background regions at some point in time, preserving temporal
coherence means consistently resizing both the object and the en-
tire background, and the only warping operator that achieves this is
linear scaling. Our method automatically goes for a temporal trade-
off in this case: it crops some areas for a part of the period they
are visible. We demonstrate this in Figure 8, where the camera path
orbits around the woman, such that almost all foreground and back-
ground regions are correlated. Compared to the pure cropping, our
preservation of motion in critical regions guarantees that important
objects persist in target videos. In addition, the combination with
warping reduces the introduced virtual camera motion. In many ex-
amples, there are sufficiently many available homogeneous regions
that absorb the warping distortion, such that cropping need not be
used to the full extent and is not noticeable; the balance between
cropping and warping is conveniently automatically decided by the
variational optimization.

Limitations and future work. First and foremost, although our
method expands the distortion propagation to the temporal dimen-
sion, as opposed to just the spatial domain, retargeting videos with
many prominent features and active foregrounds may still produce
distortions, both spatially and temporally (please see Figure 9 and
our supplemental videos). In such extreme cases it would be nec-
essary to take artistic control over the definition of critical regions
in key frames, and let users decide which objects can be perma-
nently cropped out. Similarly, our automatic cropping criterion
may be ineffective for extreme tilting camera motion, since promi-
nent objects may need to be cropped forever. Our framework is
completely flexible and can admit various cropping constraints, so
in the future specific criteria for cropping with tilting motion can
be designed. Secondly, our method heavily relies on accurate mo-
tion information. Unfortunately, even the best detection methods
are sometimes confused by noise and lighting, which would cause
our method to preserve the motion of irrelevant parts of the con-
tent and/or extend their persistence.Additionally, our method ap-
plies coarse grid meshes to retarget videos, and each quad of the
mesh may contain several layers of objects moving independently.

In this case, the quad transformation may be insufficient to rep-
resent the interior motions. Fortunately, continuous warping has
high error tolerance, such that the resulting local waving artifacts
are less noticeable. Working on a pixel-level grid would eliminate
this problem altogether. Finally, due to the computational costs,
our method is currently limited in the length and resolution of the
videos it can process. It is possible to improve the scalability of
the system by using a streaming approach with a sliding window,
similarly to [Kridhenbiihl et al. 2009; Wang et al. 2009], though this
method potentially suffers from temporal incoherence. We leave
this extension as our future work.

5 Conclusion

We introduced a framework that achieves video retargeting by fo-
cusing on motion information. Motion plays the major role in video
and distinguishes video retargeting from still image resizing. Our
observation is that motion completely dictates the temporal dimen-
sion of the retargeting problem, and to a large extent defines the
visually prominent content in video. We therefore let the optical
flow guide the retargeting process, using it both for spatial com-
ponents (temporally-coherent warping) and for temporal decisions
(persistence based cropping).

Since analysis and optimization over the entire video sequence up
to scene cuts is essential to the success of our method, the com-
putational cost is higher than that of real-time systems which only
utilize per-frame optimization. Yet we believe that our method pro-
vides valuable insights into the video retargeting problem and a
non-negligible step forward in terms of the quality of the results,
making it suitable for offline high-quality video processing.
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