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Abstract

In sports training, effective learning necessitates that stu-
dents accurately replicate their coach’s movements. How-
ever, anatomical differences, such as variations in limb
length and skeletal proportions, can make it difficult to
achieve proper pose alignment and may diminish training
effectiveness. To tackle this issue, we propose a virtual pose
coach framework. This innovative approach uses motion
retargeting to create personalized virtual poses tailored to
each student’s body structure, which enhances their ability
to imitate the coach’s movements accurately. Unlike cur-
rent methods that adjust joint rotations between characters
and often experience discrepancies in rotation distributions
during training and testing — due to the countless possible
transitions between two poses —our framework focuses on
joint positions for retargeting. This strategy eliminates am-
biguity and enables effective motion retargeting across dif-
ferent body structures, facilitating motion transfer between
skeletons with varying anatomical designs. We illustrate
the advantages of our system through a case study that
shows how our retargeting method significantly enhances
students’ ability to replicate a coach’s movements, indicat-
ing its potential to improve sports training outcomes.

1. Introduction

Mastering proper poses and motions is essential for begin-
ners aiming to improve their skills in sports like golf and
tennis. With advancements in communication and digital
twin technologies, virtual coaching has become a feasible
solution for “anytime, anywhere” learning [3, 20]. Various
coaching systems have been developed to enhance training
efficiency, leveraging sensor-based data collection [6, 23],
AR Visualization [18], sports science theories [5, 7, 9],
and imitation-based learning [10, 12, 16, 22]. However,
a critical challenge remains: these systems often overlook
the anatomical differences, such as variations in height and
bone length, between beginners and professional athletes,
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which can hinder the effectiveness of training outcomes.

To address this challenge, this work focuses on motion
retargeting - a technique for transferring motion from a
coach’s skeleton to a student’s skeleton, before measuring
the similarity between their motion sequences. Traditional
approaches to motion retargeting [8] framed it as a spa-
tiotemporal optimization problem, requiring the manual de-
sign of energy functions. With the advent of larger motion
datasets, data-driven approaches [17, 21] have been pro-
posed to achieve automated motion retargeting. Early meth-
ods, however, assumed that the source and target skeletons
shared identical articulated structures. To overcome this
limitation, recent approaches [2, 11] introduced the shared
latent space for cross-structural retargeting. This advance-
ment enables motion transfer between skeletons with differ-
ent topologies, facilitating more robust motion adaptation
across diverse body shapes and anatomical structures.

Early motion retargeting models use the joint positions
of a source character as their input. However, recent tech-
niques, such as PAN [11], first transform these joint posi-
tions into joint rotations before applying the animation to
a target character. Generally, methods based on rotations
produce higher quality results because they limit the de-
grees of freedom, ensuring that bone lengths remain con-
sistent throughout the animation. However, calculating the
joint rotations between two 3D poses is complex [19, 21],
as there can be countless paths connecting the two poses.
Additionally, during testing, the inputs to the model may
fall outside the range of what it was trained on, leading to
retargeting errors, which hinders the model’s overall ability
to generalize effectively.

To address the limitations of rotation-based methods, we
present an enhanced version of the PAN model that uses
joint positions as input while maintaining its ability to re-
target motions effectively. Our method modifies the input
format, data preprocessing techniques, and loss functions,
which allows for clear and efficient motion retargeting. By
taking joint positions as input, our model avoids the ambi-
guities often present in joint rotations.



Our approach improves coaching in sports poses by en-
abling students to replicate their coaches’ movements effec-
tively. We employ the dynamic time warping technique to
compare the motion sequences of both the coach and stu-
dent, regardless of differences in timing. This technique
allows us to quantitatively evaluate how closely the stu-
dent’s poses match the coach’s, accommodating individual
anatomical variations and offering a tailored training expe-
rience. Furthermore, we include quantitative evaluations to
demonstrate the effectiveness of our method for both intra-
structural and cross-structural skeleton retargeting using the
Mixamo dataset. Our contributions are outlined below:
Revise the PAN model [11] by using joint positions in-
stead of joint rotation for retargeting. Our approach also
introduces redesigned input format, data preprocessing,
and loss function, leading to better motion efficiency.
Develop a system to analyze golf putting movements by
comparing students’ and coaches’ virtual motions to pro-
vide posture suggestions and score. This demonstrates its
potential to enhance the effectiveness of sports training in
real-world applications.

Extensive evaluations on the Mixamo dataset show that
our method outperforms other position-based approaches
on both intra-structure and cross-structure skeletons.

2. Related Work

The field of precision sports has made substantial progress,
leveraging a variety of technologies to enhance training and
performance assessment. Sensor-based systems have been
widely explored, using pressure sensors to monitor center
of pressure [6], body weight balance [23], and providing
visual feedback [18]. Optical motion tracking [12] and vir-
tual reality [10] have also been applied to improve posture
visualization and interactive training experiences. Systems
based on sports science theories focus on metrics such as
center of gravity [9] and movement statistics [7] to guide
users in optimizing their movements. Advanced pose esti-
mation models and motion analysis techniques have been
developed to identify and correct improper poses [5, 22],
and analyze spatial and temporal differences between users
and professionals [16]. These approaches aim to provide
more personalized and effective training solutions, integrat-
ing advanced machine learning models and real-time feed-
back mechanisms for improved accuracy and usability.

Motion retargeting refers to the process of transferring
motion from one character to another while maintaining the
fidelity of the original poses and movements. Traditional
methods primarily relied on constraint-based approaches,
where motion adaptation was achieved through the use of
spacetime constraints [8] or smooth motion transitions en-
abled by inverse kinematics and B-spline interpolation [15].
While effective, these methods required extensive manual
tuning and lacked scalability.
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To address these limitations, data-driven methods have
been introduced to achieve end-to-end motion retargeting.
These methods can be broadly categorized into position-
based and rotation-based approaches. (1) Position-based
methods focus on directly manipulating joint positions. Ap-
proaches like [1] decompose 2D pose sequences into mo-
tion, skeleton, and camera view, which are then reassembled
to produce retargeted 2D motion. Similarly, [25] disentan-
gled skeleton sequences into motion, structure, and view,
enabling precise 2D-to-3D retargeting. For 3D motion, [21]
employed RNNs with forward kinematics to retarget mo-
tion between 3D skeletons, while [17] enhanced adaptabil-
ity by learning separate embeddings for pose and move-
ment. (2) Rotation-based methods operate on joint rotations
rather than positions, enabling better alignment of joint ori-
entations. In [2], cross-structural retargeting is achieved by
embedding motion from skeletons with different topologies
into a shared latent space. Building on this, [11] divided the
skeleton into body segments and employs attention mecha-
nisms to dynamically adjust joint weights, further enhanc-
ing retargeting performance.

3. Methodology

Our objective is to develop a model that enables a stu-
dent to replicate a coach’s pose sequence in sports activi-
ties such as golf or tennis. Since the height and the bone
lengths between a coach and a student are often different,
the coach’s pose sequence is then retargeted to the student’s
skeletal structure, producing a student’s virtual pose se-
quence. Fig. | illustrates our pose retargeting framework,
which takes three inputs: (1) the coach’s 3D pose sequence,
denoted as P¢ € R¥*™*3_ where / is the sequence length
and m represents the number of joints in the skeleton; (2)
the student’s reference T-pose, denoted as T® & Rm,X?’,
where m/ is the number of joints; and (3) the student’s 3D
pose sequence, denoted as P* € RY ™' *3_ Notably, m and
m/ can differ due to variations in keypoint formats between
the coach and student.

Once the coach’s pose sequence is retargeted to the stu-
dent’s skeleton, the resulting virtual sequence is represented
as P € RO %3 To assess the student’s mimicry per-
formance, we compute the discrepancy between the virtual
pose sequence P~ and the student’s observed pose se-
quence P using dynamic time warping. This approach
provides a robust measure of the alignment between the stu-
dent’s movements and the coach’s intended poses.

3.1. Countless Possible Transitions between Poses

A pose can be described in terms of either the positions of
joints or the rotations of joints in relation to a standard T-
pose. Recent studies [2, 11] that focus on joint rotations
have shown remarkable success. However, this method has
a significant limitation: many different rotations can con-
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vert the T-pose into the same target pose [19]. This prob-
lem becomes particularly important when a model trained
on certain joint rotations faces new, unseen rotations during
real-world application. Such new rotations often fall out-
side the range of what the model was trained on, which can
hinder the effectiveness of rotation-based methods.

To illustrate this problem, we conduct an experiment us-
ing the rotation-based method PAN model [11]. Let the
source character’s pose at frame ¢ be denoted as P;™¢ ¢
R™*3, where m represents the number of joints. This pose
P can be generated by applying a rotation representation
R;" to the source T-pose T*"“ using forward kinematics
(FK). Conversely, given the same source pose P;"¢, we can
compute a different rotation variant R$"* via inverse kine-
matics (IK) relative to T®"¢. By applying this alternative
rotation Rf”/ to the T-pose using forward kinematics, we
obtain a new pose Pf”/. The entire process is mathemati-
cally formulated as:

Pfrc — FK(TS’I”C,R;S"”C)7 (1)
Rfrc/ — IK(TSTC, Pch)y (2)
P;_STC/ — FK(TSTC, R;S’I‘C’ ) . (3)

We adapt the pose from the source skeleton to the target
skeleton by applying the previously established joint rota-
tions, R and Rf”/, starting from a common target T-
pose T?". Given that the skeletal structures of T*"¢ and
T*" may vary, we refine the joint rotations using the PAN
model. The resulting poses are defined as follows:

Pl = FK(T"", PAN(T"" R"™)), 4)
P! = FE(T"", PAN(T"" R{™)). (5
Fig. 2 provides a visual comparison of these poses. Sub-

figures (a) and (c) illustrate that P;"“ and Pf”/ are highly
similar. This result is expected because Pf“/ is obtained
by forward and inverse kinematics applied to P$"¢. How-
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Figure 2. The poses shown in (a) and (c) are similar but repre-
sented with different joint rotations (i.e., Rj"¢ and Rf”l) in re-
lation to the T-pose of the source character. However, when these
poses are transferred to a target character, the outcomes differ sig-
nificantly, likely because R;" is not within the training set.

ever, a different outcome is observed when the pose is re-
targeted. As shown in subfigures (b) and (d), the two retar-
geted poses P*" and P exhibit significant differences,
even though they originate from similar transformations of
the same source pose PJ".

3.2. Position-based Motion Retargeting

The current sports datasets [14, 24] provide 3D human
poses, which are position-based data. Building on the pre-
vious analysis, we present a redesigned version of the PAN
model [11] that facilitates position-based motion retarget-
ing. While maintaining the original structure, the skeleton
is divided into n key segments, such as the torso, head, and
four limbs. Features of these segments are extracted and
then organized for retargeting. To support position-based
input, we adjust the tensor dimensions and modify the loss
functions. The model produces joint rotations for the target
character. We then use forward kinematics (FK) to con-
vert the T-pose T into the student’s virtual pose sequence
P<7%. This approach allows the position-based model to
effectively manage motion retargeting tasks while ensuring
high-quality results.

Data-Preprocessing. We create a normalized local pose
sequence, denoted as p¢ € R‘*™*3_ from P¢, which is
defined in the world coordinate system. In this context,
we use the hip joint as the root joint, from which we es-
tablish five kinematic chains that extend to the endpoints
of the head, left hand, right hand, left foot, and right foot.
Each joint in p© is represented by its relative position in rela-
tion to its parent joint according to these kinematic chains,
with the root joint fixed at the coordinates (0, 0, 0). To
account for the movement of the root joint, we represent
its normalized trajectory in the world coordinate system as
v¢ € RY1X3_ For clarity, we define the combined sequence
as X¢ = pc o Ve € fo(m+1)><3

Network Architecture. Fig. 3 shows our motion retarget-
ing module. It consists of three stages. The first stage is
feature extraction, which consists of a skeletal feature ex-
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Figure 3. Our motion retargeting network consists of three main stages: (1) an extractor for skeleton features SFEs and an extractor for
motion features M E.; (2) the fusion of these features through addition (H7,,.); and (3) the generation of joint rotations using a decoder
M Dy, followed by forward kinematics that transforms the joint rotations into a virtual pose sequence. During the training process, we
implement a discriminator on C; to assess the realism of the retargeted sequence from the coach. Finally, we compare the student’s motion

with the coach’s retargeted motion using Dynamic Time Warping.

tractor (SE) and a motion feature extractor (ME):
H§ = SE(T*) € R4
HS; = ME,(X®) € Rixnxd

(6)
(7

where d is the number of channels. The second stage fuses
the above features by an addition: H},,, = Hg + Hy,. In
the final stage, we feed H ;use into a motion decoder (MD)
and then apply the FK to generate the retargeted pose:

Pes = FKS(TS, MDS(HJS”'U,S@)) ®)

Skeleton feature extractor (SE). Using the n body seg-
ments as the core components, both the Skeleton Encoder
(SE) and the Motion Encoder (ME) extract features strictly
within their respective segments. To avoid interference, a
masking multi-layer perceptron (MLP) is implemented in
the SE. In this masking process, we adjust the weight ma-
trix W € RPowtXdin where d;,, represents the size of the
input channels and d,,,; denotes the size of the output chan-
nels. When d;,, and d,,,; relate to different body segments,
we set the relevant weights to zero. This allows us to cre-
ate distinct skeleton features for each segment. Formally,
the SE is formulated as mipyy; = Relu(IW + b), where T
represents the input matrix, and W; ; = 0 if joints ¢ and j
pertain to different body segments. The output of the SE is
denoted as H € R1*nxd,

Motion feature extractor (ME). For ME, the input se-
quence X will go through three modules. The first mod-
ule is a Pose-aware Attention Network (PAN) for capturing
the interrelationships among joints. The second module is
masking 1D convolutions (Conwv;) for extracting temporal
features of the joints. The third module is a layer of masking
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1D convolutions (C'onvs) integrated with a residual connec-
tion (C'onwv,.) for maintaining the integrity of features. The
result generated by ME is denoted as Hj, € R4 xnxd,

Pose-aware attention network (PAN). Within the motion
feature extractor (ME), there is a crucial component known
as the pose-aware attention network (PAN), as depicted in
Fig. 4. To begin, each joint in X¢ is transformed into a
higher-dimensional embedding space using an MLP. This
transformation is enhanced by adding features derived from
positional encoding, resulting in a feature representation
X¢ ¢ REX(m+1)xd where d denotes the channel size. The
positional encoding enables the network to recognize the
relationships between joints, maintaining awareness of the
skeleton’s structure. Subsequently, we utilize body segment
tokens O € R**"*4 to encapsulate the motion features for
each body segment. Specifically, we combine X¢ and O
into X¢ = 0@ X, X¢eRO*(m+l+n)xd The tokens O
are learnable parameters, with each initialized by sampling
from a normal distribution. The random values are scaled
down by multiplying by 0.1, similar to the PAN model [11].
Following this, we employ a self-attention mechanism to
merge the features of the joints with their respective to-
kens in O. Specifically, we derive the query (Q), key (K),
and value (V) matrices from X¢. For effective motion re-
targeting across different skeleton structures, it’s essential
to prevent the exchange of information between different
segments while calculating these attention values. Follow-
ing [11], we incorporate a masking matrix U into this self-
attention module and define the attention layer as follows:

QKT +U

Attention(Q, K,V,U) = softmax( NGn
k

WV, )
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Figure 4. The pose-aware attention module processes input se-
quences with a multi-layer perceptron (MLP) that includes posi-
tional encoding, combined with tokens for body segments. Self-
attention mechanisms aggregate joint features into these tokens,
while joint features themselves are excluded to focus on body seg-
ment characteristics.

where QK T represents the attention matrix, which indi-
cates the correlation scores between different joint pairs.
The value U; ; equals O if joints ¢ and j are from the same
body segment, and it equals —oo if they are not. This allows
the softmax function to effectively suppress any attention
values to 0 when —oo is present. The primary objective of
the PAN is to learn motion features that are linked to specific
body segments; therefore, we keep only the body segment
tokens O in the outputs of this self-attention module.

Masking 1D Convolutions (Conwvy,Convs, and
Conwv,). The tokens O from the previous PAN module
are passed through two masking 1D conv to capture the
motion’s temporal dynamics. A masking matrix is created
using body segments and joints; it starts as a zero matrix
and updates specific elements to 1 based on the relation-
ships between parts and joints. Additional zero columns
are added, the diagonal is set to 1, and the last column is
filled with 1 before truncating to a specified size. In each
conv, the weight matrix W € Rdewt*dinxl j5 controlled
through masking to maintain the independence of body
segments, with d,,; as the output channel size, d;,, as the
input channel size, and [ as the kernel size. The output
is convyyr = Relu(IW + b), where I is input matrix,
and Wy, ., .4,.,q1 = 0 for different body segments. The
diagonal structure preserves distinct features for each body
part, ensuring anatomical consistency, and controlled joint
influence. The stride of the masking 1D conv is set to 2,
halving the temporal dimension after each layer. Finally,

we obtain the independent motion feature HS, € R3*mxd,

Feature fusion stage (). In the feature fusion stage, mo-
tion feature I, and skeleton feature H¢ are fused. Note
that since the shape of Hj, and H¢ are dependent on n (the
number of body segments), but not m and m/, it is inde-
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Figure 5. Motion retargeting architecture (training). Note that the
two copies src and tar are different. The procedure is divided into
a reconstruction path and a cycle path.
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times and then perform element-wise addition. The fused
. £

feature is denoted by H% € Rixnxd,

Motion decoding stage (MD and FK). The fused feature
H3, ;. is fed into the motion decoder MD and then the FK
procedure to generate the retargeted motion sequence. MD
generates retargeted joint rotations and the global position
of the root joint, denoted as Y e ROX((m'=1)x4+3)
where m/ is the number of joints in the target skeleton, with
4 for quaternions and 3 for the root’s position. We make two
remarks here. First, the output is joint rotations. However,
in the loss function, positions will be used as a loss (refer to
Ly..). Second, masking will be used for predicting joint ro-
tations. However, the root’s positions are treated as a global
feature and no masking will be applied. Therefore, the de-
convolution (deconv) consists of upsampling followed by a
masking 1D conv. The upsampling uses a dilation factor
of 2 and applies linear interpolation along the temporal di-
mension to generate a new tensor. The masking 1D conv is
the same as the one in the ME, but with a stride of 1. As
a result, after one layer of deconv, the temporal dimension
doubles in length.

After acquiring joint rotations, the FK rotates each joint
from the root along the kinematic chains to determine its
position. Since the model outputs are in quaternion format,
they are converted into rotation matrices before any trans-
formations take place. The position of joint k is computed
using the equation p* = pP*(*) 1 RFs* where pP(*) rep-
resents the parent joint’s position, R¥ denotes its rotation
matrix, and s” is the offset vector in T between the parent
joint and joint k. By assembling these global positions, we
can derive the retargeted motion sequence P¢~* for T*.
Discriminator (C). The overall framework can be regarded
as a adversarial network with unsupervised learning, where
the modules (SE, ME, and MD) function as a generator. A
discriminator C is created using standard 1D convolutions
(without masking) to assess the generated motion sequence
and ultimately improve the generator.



3.3. Network Training

We adopt an unsupervised method to train our motion re-
targeting model because the desired retargeted motions are
often nonexistent. As illustrated in Fig. 5, the training pro-
cess comprises both a reconstruction path and a cycle path,
during which we update the network parameters utilizing
four different loss functions.

In the motion reconstruction process, the source motion
sequence X37°, which has a duration of ¢, is first trans-
formed into a motion feature H3;¢ by M E,... After this
transformation, H ;¢ is combined with the source skeleton
feature Hg"™°. This unified representation is then passed to
a motion decoder M Dy, and a forward kinematic function
F K, to generate the reconstructed source motion PSTC
To evaluate the accuracy of the reconstruction, we quantify
the difference between the original motion sequence X7
and the reconstructed motion PW Specifically, the recon-
struction loss L,... is defined as follows:

rec _ HXsrc src||2 + 100”,],,37'0
+ 200Hu5’r‘c _ ASTCH /h

Pl /s

src

sre)

(10)
where r denotes the local joint positions in relation to the
root joint within a normalized space, while u refers to the
trajectory of the root joint in the world coordinate sys-
tem. The loss function is composed of three components.
The first component measures the positional errors of each
joint concerning its parent joint, whereas the second and
third components assess the errors relative to the root joint.
Moreover, we adjust the second and third components based
on the character’s height to minimize the effect of the char-
acter’s size. The coefficients 100 and 200 are chosen based
on empirical observations of their value ranges.

In the cycle path, the source trajectory X37° is trans-
formed into the source feature H;;° and combined with the
target skeleton feature H5*". This combined result is then
processed by M Dy, and F' K,,, to produce the target mo-
tion P1%". Given the absence of ground truth for P1%", we
normalize it into Xt and input this into the discriminator
Car to evaluate its authent1c1ty The discriminator Cl, is
specifically trained to recognize the real input motions Xiar
while categorizing the retargeted motions th‘[ as fake. The
adversarial loss is constructed as follows:

2
Laao = 1 = Coar (XD |* + [ CoarXien)|” a1

Although the source and target skeletons may be defined
differently, their end-effectors remain consistent since these
skeletons are all based on a humanoid form. We thus define
an end-effector loss L. to ensure the consistency of end-
effector velocities between X7 and X“”’

Lee:Z

V'L

Ysre

hS’I‘C

(i
‘/ta'r'

)
htar

(12)
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where EY = 5 represents the number of end-effector joints,
V' represents the movement speed of the ith end-effector
(left hand, left foot, right hand, right foot, and head), and &
represents height.

In this cycle path, we also retarget the target motions
back to the source. Initially, Pt is translated into X%,
which is then converted into feature H%}". The result is
added with H" and then passed into M Dy, and F'K ;..
to synthesize the source motion, denoted as P i7¢, which is
then normalized to X37°. We aim to encourage that the re-
targeted motion X f’tc remains consistent with the original
input motion X7{"f. The cycle consistency loss can be for-
mulated as:

src

—STC” /h (13)

where r represents the local joint positions relative to the
root positions. Furthermore, to achieve motion retargeting
across different structures, we anticipate that the learned
motion features can act as shared features among diverse
skeleton structures. Since the target motion Xm[ should
perform the same action as the source motion X{'f, we re-
quire that their corresponding motions, H37¢ and H!$", be

highly identical when being converted into features.
L('y(‘2 _ HHSTC _ tar”l

Let Lcyc = Lcycl + Lcch'
defined as follows:

Leyer = [|r7;

sre?

(14)

The overall loss function is

L= /\rechec + /\cychyc + AeeLee + /\ad’uLadva (15)

where A\ec = 1, Aeye = 2.5, Aee = 50 and Ayqp, = 1 are
weighting factors.

3.4. Pose Scoring and Visualization

Once we adjust the coach’s pose sequence for the student,
we calculate a performance score by considering both the
spatial and temporal aspects. To assess the differences be-
tween the student’s pose P° and the adjusted coach’s pose
sequence P°7*, we utilize the Dynamic Time Warping
(DTW) algorithm [4]. This algorithm helps align the two
sequences by minimizing the joint position errors, with the
root joint fixed at the origin. As illustrated in Fig. 6, the
DTW algorithm successfully matches the poses in both se-
quences and generates an optimal alignment path, indicated
as DTW (P#,P°7#). The summed distance along this path
is used as the performance score. By following the optimal
alignment path, we can correlate each frame of the student’s
pose sequence with the corresponding frame from the ad-
justed virtual pose sequence.

3.5. Case Study

Fig. 6 shows a retargeting example of our coaching sys-
tem by a golf putting motion. There are four types of ad-
vices that our system can offer to a student: (i) pose align-
ment advice: Using DTW to analyze the correspondence of
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Figure 6. This example demonstrates virtual pose coaching for
golf putting. Red skeletons show the coach’s retargeted motion,
while green skeletons represent the student’s motion. Using DTW,
the system aligns these two movements to provide four types of
feedback to students.

poses between a student’s original sequence and the virtual
sequence on the timeline, helping the student understand
when to display the corresponding pose. (ii) pose score ad-
vice: The joint position error is used to score student’s pose,
with lower scores indicating closer similarity between the
student’s original pose and virtual pose. This score s serves
as a quantitative indicator of sport performance. (iii) tem-
poral alignment advice: The execution rate of the student’s
motions is compared with the student’s virtual motions. If
certain actions are too fast or too slow, the system provides
specific timing adjustment suggestions to help the student
achieve the correct rhythm. (iv) spatial alignment advice:
By overlaying the student’s skeleton onto the student’s vir-
tual skeleton, the student can directly see the spatial differ-
ences and correct their poses accordingly.

4. Evaluations

4.1. Setups and Quality Assessments

We used a 3D motion dataset from Mixamo [13], created by
SAN [2], featuring 29 unique humanoid characters perform-
ing over 2,000 distinct motion sequences. We followed [2]
for training and testing splits, dividing the characters into
two groups by skeletal structure. Group A had 24 char-
acters, with 20 for training, while Group B had 5 charac-
ters, 4 of which were also for training. Group A includes
six more joints than Group B, located in the limbs, torso,
and head. Each motion sequence was randomly assigned
to a character to prevent duplication. We conducted intra-
structural experiments with four characters from Group A
serving as both source and target, and cross-structural ex-
periments with four Group A characters as targets and one
Group B character as the source.

We assess the joint position errors to evaluate the qual-
ity of the retargeting results. Given the variations in body
structure among characters, we adjust this error based on
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Table 1. We compare baseline methods on the Mixamo dataset,
reporting joint position errors across all motions and clips. (Bold
indicates the best, underline the second, and italics the third.)

Method Intra-Stru  Cross-Stru

baseline Direct-Copy 8.86 e-3 -
NKN/NKN* [21] 5.84 e-3 7.36 e-3

position-based ~ PMnet/PMnet* [17] 493e-3 6.88 e-3
Ours 1.76 e-3 6.77 e-3

. SAN [2] 2.76 e-3 2.25e-3
rotation-based b\ 05¢3  1.62e3

each character’s height as follows:

N, N, K
s t
e >R =PI/
k=1

2.2,
(16)

Here, I represents the total number of motion sequences,
N, indicates the number of source characters, and NV, sig-
nifies the number of target characters. The symbol f’ﬁ“,g" de-
notes the predicted position of joint £ in the target skeleton
while Pffk refers to the corresponding ground truth posi-
tion. To minimize the influence of body size, we divide the
error by the character’s height h; ;.

I
I[N.J[NJK

4.2. Comparisons to Existing Models

We evaluated our models against several frameworks: NKN
[21], PMnet [17], SAN [2], and PAN [11], as well as a base-
line method called “direct-copy,” which applies joint rota-
tions directly to the target character. To reduce the impact of
skeleton differences, we adjusted the root movement speed
based on the height ratios of the characters.

Tab. 1 shows our experimental results. NKN and PMnet
use joint positions as input, while SAN and PAN use joint
rotations. To enable cross-structural comparison, the mod-
ified NKN and PMnet methods, based on [11], are referred
to as NKN* and PMnet*. Our approach excels in intra- and
cross-structural evaluations among position-based methods.
Compared to rotation-based methods, it surpasses SAN in
intra-structural evaluations but does not perform as well in
cross-structural evaluations. It’s important to note that joint
rotations during inference may differ from those in training,
leading to unexpected outcomes, as shown in Fig. 2. This
issue may seem minor due to the similarity of joint rota-
tions between the training and test sets of the Mixamo. We
also provide visual examples to compare our model’s results
with those of the PAN and the ground truth, as shown in
Fig. 2 of the supplementary material. Although our method
may not completely outperform rotation-based methods, it
can still be effectively applied to position-based scenarios,
as most real-world datasets, such as sports-related datasets
like [14, 24], are recorded in a position-based format.



Table 2. Ablation study on input motion formats, reconstruction
loss, and cycle consistency loss.

(a) global root position errors (X 1073).

Intra-structural Cross-structural

Method G&~Mo  Mr«+V  Overall B—G B—V  Overall
parent-based 0.245 0.282 0.412 7.423 9.233 6.645
root-based 0.315 0.592 0.604 59.672  78.224  53.750
use L. 0.213 0.119 0.307 120.349 155.341 107.288
use L, 0.219 0.147 0.329  72.061  94.448  65.190
(b) local joint position errors (x 10~3).
Intra-structural Cross-structural
Method G+~Mo Mr<V Overal B—G B—V Overall
parent-based 1.737 1.375 1.614 1.629 1.431 1.380
root-based 1.915 1.584 1.763  2.641 2.339 1.794
use L), 1.953 1.364 1.718 3.730 4.014 3.323
use L’ryr 1.739 1.431 1.636  2.568 2.073 1.644
4.3. Ablation Study

We conducted an ablation study examining factors like in-
put motion formats, reconstruction loss, and cycle consis-
tency loss. We report both global and local joint position
errors. Global errors, assessed in the world coordinate sys-
tem, can be substantial if two visually similar poses have
different root positions. In contrast, the local method resets
the root position to the origin, focusing on pose similarity
alone. This study involves five characters: Mousey (M o),
Goblin (G), Mremireh (M), Vampire ('), and BigVegas
(B). In intra-structural retargeting, the process is bidirec-
tional (+>), while in cross-structural retargeting, it is unidi-
rectional (—), as shown in Tab. 2. All results are located in
Tab. 2 and Tab. 1 in Sec. 2.3 of the supplementary material.
Joint Position Representations. Previous studies [17, 21]
defined a joint’s position relative to the root joint, which
implied connections to parent and child joints rather than
making them explicit. This ambiguity can hinder accurate
inferences. In our research, we define a joint’s position rel-
ative to its parent joint, labeling these approaches as root-
based” and “’parent-based.” Results in Tab. 2 show that the
parent-based representation outperforms the root-based ap-
proach in both intra- and cross-structural retargeting scenar-
ios, demonstrating the effectiveness of our design.

Design of reconstruction loss. In the reconstruction loss
L., both X and r provide local position information, dif-
fering only in their reference points: X is relative to the
parent joint, and 7 is relative to the root joint. To eliminate
redundancy, we remove the X component from L,.. and
redefine the loss as

L;"ec - 1OOHT5TC ASTCH /hsrc (17)
+ 200||ué7c ﬁ’irtLH /hsrc'
Compared t0 Ly, L., lacks || X57¢ — X57¢||2. The results

5932

are labeled as “use L/, .” in Tab. 2. For intra-structural retar-
geting, the source and target skeletons share the same struc-
ture but vary in bone proportions, making our parent-based
design less critical. This leads to mingled global and local
joint position errors, as seen in Tab. 2. However, in cross-
structural retargeting, our parent-based method clearly out-
performs the L/ . approach, as indicated in Tab. 2. This
emphasizes the value of including the term || X357¢ — X57¢| |2
for accurate motion reconstruction and preservatlon of key
motion features. In summary, supervising with both X and
r enhances our model. The relative position to the parent
joint tracks fine details, while the position to the root joint
ensures overall motion coherence, enabling the generation
of precise and cohesive actions.

Design of Cycle Consistency Loss. The cycle consistency
loss L., ensures that the retargeted motion from the target
character to the source character is consistent with the orig-
inal input motion. We compare our cycle consistency loss
Ly with that of PAN:

cyc = ||H5rc

+ Husrc _

H [+ (135 = A1 /R

(18)
Gl

src*

src

Compared to Leye, Ly, adds an additional term |[uj’f

ui’f]|? /h2,.. referenced as “use L,,.” in Tab. 2. In intra-
structural retargeting, using LCUc slightly outperforms our
parent-based method in global joint position error but falls
slightly short in local joint position error, making the over-
all impact unclear. However, for cross-structural retargeting
tasks, our design of L.y, shows clear advantages. When
dealing with different source and target structures, enforc-
ing root position consistency may force the model into un-
natural positions, overlooking target features. Thus, remov-
ing the additional term in Ly, . benefits our model.

5. Conclusions

In this study, we tackled the difficulties associated with mo-
tion retargeting caused by the numerous joint rotations be-
tween two poses. Although methods using joint rotations as
inputs generally produce higher quality results than those
that depend on joint positions, this rotation-based represen-
tation can occasionally result in failures. To address this,
we have restructured existing rotation-based models to work
with joint positions instead. Experiments conducted using
the Mixamo dataset demonstrate promising outcomes for
both intra- and cross-structural retargeting.

Our case study primarily focused on golf, but the frame-
work we developed can be applied to various other sports
as well. Furthermore, our motion retargeting model takes
joint positions as input, making it ideal for digital twin
applications. This allows for realistic interactions be-
tween real people and virtual characters in gaming environ-
ments.
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