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ABSTRACT

We present TrackNetV3, a sophisticated model designed to enhance
the precision of shuttlecock localization in broadcast badminton
videos. TrackNetV3 is composed of two core modules: trajectory
prediction and rectification. The trajectory prediction module lever-
ages an estimated background as auxiliary data to locate the shut-
tlecock in spite of the fluctuating visual interferences. This module
also incorporates mixup data augmentation to formulate complex
scenarios to strengthen the network’s robustness. Given that a shut-
tlecock can occasionally be obstructed, we create repair masks by
analyzing the predicted trajectory, subsequently rectifying the path
via inpainting. This process significantly enhances the accuracy of
tracking and the completeness of the trajectory. Our experimental
results illustrate a substantial enhancement over previous standard
methods, increasing the accuracy from 87.72% to 97.51%. These re-
sults validate the effectiveness of TrackNetV3 in progressing shuttle-
cock tracking within the context of badminton matches. We release
the source code at https://github.com/qaz812345/TrackNetV3.
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1 INTRODUCTION

The exponential growth of deep learning research in recent years
has led to its widespread application in numerous domains, one of
which is sports analytics. With the advent of the internet, abun-
dant game footage is now available for in-depth analysis. Machine
learning has become a key player in this field, paving the way for au-
tomated systems that enable efficient game analysis [1, 4, 7, 24, 28].
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Figure 1: Given the small size of shuttlecocks and their ten-
dency to blend into backgrounds, tracking them can be chal-
lenging. For clarity, we have marked the shuttlecock posi-
tions using red circles. Note that our TrackNetV3 can suc-
cessfully detect the shuttlecocks in these two examples.

In this context, our work is dedicated to the tracking of shuttle-
cocks in badminton, a sport with a global footprint that requires its
participants to engage in strategic planning.

The unique attributes of a shuttlecock, including its lightweight
nature and rapid motion, present particular challenges for tracking.
Firstly, during a smash, a shuttlecock can achieve instantaneous
peak velocities reaching 426 km/h, making it the fastest moving
object in all racquet sports. This rapid movement often leads to mo-
tion blur when captured by standard cameras, causing a ghosting
effect of the shuttlecock. Secondly, the wide-angle perspective of
court view shots usually reduces the shuttlecock to a minuscule por-
tion of the frame, further complicating the tracking task. Thirdly, a
shuttlecock can blend seamlessly into the background components,
such as the net and court lines, rendering it nearly invisible if its
dynamics are not analyzed through consecutive video frames.
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Given these challenges, our goal is to develop a more precise
shuttlecock tracking system. The suggested TrackNetV3 consists of
two fundamental modules: trajectory prediction and rectification.
Building on the foundation of TrackNetV2, the trajectory prediction
module considers a series of video frames to generate correspond-
ing heat maps that indicate the positions of the shuttlecock. We
further enrich this model by feeding it an estimated background,
which acts as supplemental information to better differentiate the
shuttlecock from various visual distractions. The trajectory predic-
tion module also incorporates mixup data augmentation, creating
complex scenarios that enhance the network’s robustness. Recog-
nizing that a shuttlecock may occasionally be concealed, making
its true position undeterminable through visual cues, we rectify the
trajectory based on the shuttlecock’s motion dynamics. Specifically,
we generate repair masks by assessing the predicted trajectory and
train the rectification module that considers the predicted trajectory
and the mask for rectification. This process considerably enhances
the accuracy of tracking and the completeness of the trajectory.

Our system was assessed against advanced techniques like YOLOv7
and TrackNetV2. The results of these comparative experiments
demonstrate that TrackNetV3 significantly outperforms these base-
line methods, yielding accuracies of 97.51%, contrasted with 94.98%
for TrackNetV2 and 53.47% for YOLOv7. Furthermore, we conducted
an ablation study to evaluate the presented tracking strategies.
This study corroborates the efficacy of the proposed strategies in
tracking swift and minuscule shuttlecock trajectories in broadcast
badminton videos.

2 RELATED WORKS

Deep learning models have been widely used in tracking balls across
various sports, encompassing tennis, golf [23, 29], and badminton
[12, 25]. This task shares considerable overlap with object detection
applications and can be executed using conventional methods like R-
CNN (regions with convolutional neural network features) 8, 9, 21]
and YOLO (you only look once) [18]. Specifically, R-CNN employs
a region proposal network (RPN) to recognize objects and suggest
numerous regions of interest (ROIs) as candidates. These ROIs un-
dergo categorization and localization, producing the final category
and bounding box for all objects. YOLO approaches detection as a
regression problem. It divides the image into an N X N grid, predict-
ing multiple results centered on each cell. Overlapping results are
discarded using confidence scores and Non-Maximum Suppression.
YOLO has experienced several iterations [3, 18-20, 26], with the lat-
est being YOLOv7 [26], which employs several methods relating to
model re-parameterization, dynamic label assignment strategy, and
model scaling. These enhancements have minimized the model’s
necessary parameters and computational demand, thereby improv-
ing speed and accuracy.

In terms of object tracking [2, 5, 11, 14, 15, 27, 30], the standard
procedure commences by defining the target object’s position in
the initial frame. A search radius is established around the target,
and the model matches features within this radius to ascertain the
object’s new position at the next temporal point. This updating of
the search radius and object location persists until the end of a video.
The most common approach involves the use of Siamese networks
[6], typically comprising two feature extractors that share weights.
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Figure 2: The left image represents the median frame derived
from a rally. On the right, we showcase a cleaner background,
which we ascertain by calculating the median of such median
frames from an entire match.

They separately extract the features of the target and the search
area and compare them to pinpoint the target’s location. SiamFC [2],
the pioneer in using Siamese networks for object tracking, utilized
a fully convolutional network [17] structure to extract features and
compute cross-correlation to gauge the similarity between target
and background features. SiamBAN [5] proposed a box adaptive
head capable of predicting bounding boxes directly, eliminating the
need for additional anchor boxes.

Despite the proven effectiveness of the YOLO series in object
detection and tracking, challenges arise when dealing with balls,
as they are small objects that can blur and produce ghost images
when moving at high speeds. This makes it challenging for stan-
dard detection models to identify their location based on static
images alone accurately. For tracking models, the ball’s velocity
might surpass the estimated search radius, causing the model to
lose sight of its target. Furthermore, significant distortions caused
by motion blur could interfere with feature similarity matching,
resulting in an inability to specify targets. In response to these
issues, TrackNet [12] focuses on tracking badminton shuttlecocks
and generates a corresponding heatmap for each video frame, indi-
cating the shuttlecock’s position. By taking multiple frames into
account simultaneously, this approach enables the model to learn
the features of the shuttlecock and its trajectory, counteracting diffi-
culties in detection and tracking due to the shuttlecock’s diminutive
size. TrackNetV2 [25] employed the U-Net architecture [22]. The
skip connections fused low-level and high-level features, improv-
ing tracking precision. They also introduced weighted binary cross
entropy to handle class imbalances in the heat maps.

Building on TrackNetV2 [25], the introduced TrackNetV3 utilizes
an estimated background as supplemental data to pinpoint the shut-
tlecock’s location. It also incorporates mixup data augmentation
to establish intricate scenarios, thereby bolstering the network’s
robustness. Furthermore, since a shuttlecock can occasionally be
concealed, we generate repair masks by assessing the forecasted tra-
jectory. We then rectify the path through inpainting. The integrated
strategies considerably improve the precision of tracking.

3 METHOD

The presented TrackNetV3 comprises a trajectory prediction mod-
ule and a rectification module. The architecture of our tracking
module (see Figure 3 (a)) is designed with a U-Net structure, in-
corporating convolution layers and skip connections. The inputs
to this network are concatenated video frames and an estimated
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Figure 3: The network architecture of TrackNetV3. (a) The
tracking module processes a sequence of video frames to
produce respective heat maps, identifying the shuttlecock
locations. (b) The rectification module refines shuttlecock
trajectories by filling in erroneously detected shuttlecock
positions.

background image. The outputs are a series of heat maps, each cor-
responding to a frame and indicating the probable location of the
shuttlecock. A higher heat map value indicates a higher likelihood
of the shuttlecock’s presence. Since most heat map areas are nearly
zero, the trained networks are prone to degenerate and produce
heat maps with universally zero values. To mitigate this imbalance
problem, we adopt the strategy from TrackNetV2 and train the
network by minimizing the weighted binary cross-entropy loss.

Lybee == ) (1= w)?iilogy; + w (1= i) log(1 — i), (1)

n
i=1

where y; and §; denote the predicted and ground truth heat map
values, respectively. We set w = y; to amplify the contribution of
incorrectly predicted pixels, akin to the focal loss strategy [16]. After
training, the shuttlecock’s position was estimated by binarizing the
heat map using a threshold of 0.5 and calculating the centroid of
the largest separate blob.

Our tracking module’s training process utilizes the heat map gen-
eration method proposed in TrackNet. Specifically, we determine
the shuttlecock’s average size in match videos and dynamically gen-
erate heat maps based on the labeled shuttlecock positions. Pixel
values within the radius of the shuttlecock coordinates are set to 1
as our training targets. The values are set to 0 otherwise.
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3.1 Background Estimation

Taking advantage of the fixed viewpoint from broadcast cameras
during matches, we estimate the background by computing the
median frame from a court view shot video. That is, each pixel
value is determined by the median of the values along the temporal
axis. In our dataset, a match is divided into several scoring segments
or “rallies”. Intuitively, estimating the background by computing
the median frame within each rally seems accurate. However, if a
player stays still for an extended period during serve preparation
within a rally, the estimated background might include a residual
image of the player, creating a "ghosting" effect. To address this,
we use a "match median frame" strategy. We calculate the median
frame from each rally within the same match, and then compute the
median of these results, providing a better background estimate.

It is worth noting that there are several strategies for utilizing the
estimated background information. The simplest—and experimen-
tally the most effective—strategy is to concatenate the background
image when feeding video frames into the tracking module. We also
experimented with other strategies, such as replacing the video
frames with the magnitudes of background subtraction frames,
and concatenating these magnitudes. We discuss the experimental
results of these strategies in Section 4.5.

3.2 Mixup Augmentation

Mixup augmentation is a technique that encourages model robust-
ness by creating synthetic training examples. It generates new
samples by taking a convex combination of pairs of inputs and their
corresponding labels. In mathematical terms, for inputs x1, x2 and
their labels y1, y2, mixup creates a new input x” and its label y’ as
follows: x” = Ax1 + (1 = )xz and ¢’ = Ay; + (1 — A)y2. Here, A is a
random number between 0 and 1 drawn from a beta distribution.

In the process of shuttlecock tracking, we randomly trim two
video clips of identical length from court view shot videos. With
mixup augmentation, we generate a new video clip and its cor-
responding heat maps. While this approach may appear counter-
intuitive, we discovered through experimentation that it’s more
effective than creating synthetic frames in a video clip, where the
shuttlecock occupies a "blend" of positions. In essence, the mix-
ing of video frames fails to enhance the model’s resilience to the
blurriness of the shuttlecock position. We will elaborate on the
experiment results in Section 4.5.

3.3 Shuttlecock Trajectory Rectification

In badminton games, there are instances where the shuttlecock may
overlap with sponsor advertisements or be obscured by players or
the net, making it difficult to identify. In such cases, all values on
heat maps would be near zero. Our solution is to interpolate the
missing shuttlecock coordinates based on the currently predicted
trajectory. Borrowing from the concept of image inpainting, we
define an "inpainting mask" to identify potential frames that require
correction. We then train a trajectory rectification module that takes
this mask and the predicted trajectory from the tracking module as
inputs, generating a corrected trajectory as output.

The model’s failure to predict the shuttlecock’s presence can be
ascribed to three scenarios: occlusion by an object, extreme diffi-
culty to discern visually, or the shuttlecock simply flying out of the
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camera’s field of view. As the shuttlecock is only considered exis-
tent when within the field of view, we establish a height threshold
as a determinant to decide whether unseen sequences necessitate
inpainting. Specifically, for a video frame i where the shuttlecock is
undetected, we track frame i forward and backward until we reach
the frames where the shuttlecocks are detected. Let [f + 1,b — 1]
be the interval of video frames where the shuttlecock is missing,
where f < i < b. We generate the inpainting masks according to
the formula provided below:

e if p} < 6 and pb < & ’ @
0 otherwise
where p]; and pz represent the positions of the shuttlecock at frames

f and b, respectively. In our model, we set § to 30 pixels. Note that
M; = 0 if the shuttlecock at frame i is successfully detected.

The rectification module adopts a U-Net architecture with the
inputs and outputs being the predicted and repaired 2D shuttlecock
trajectories, respectively. These predicted trajectories are supple-
mented with a mask that highlights the frames that the rectification
module is tasked with repairing. The architecture is outlined in
Figure 3 (b). To process trajectory data, 1D convolution layers are
employed, with kernels spanning in the temporal coordinate. This
network is trained by minimizing the mean square error. During
training, we generate a random mask where approximately 30% of
the frames (i.e., M;) are set to 1. In the inference phase, the mask
M,; is determined using the formula referenced in Equation 2.

3.4 Implementation Details

Our tracking module considers multiple video frames simultane-
ously (specifically, 8 frames in our implementation, which demon-
strated superior performance in our experiments) to identify the
shuttlecock’s location. By adopting overlapping sampling across
the full sequence of frames, each frame can yield a number of heat
map predictions equivalent to the length of the input. We assemble
these predicted outcomes through a weighted averaging technique.
Given that frames in the middle of the sequence possess a more
comprehensive context, we surmise that the central predictions
are more dependable. Consequently, we attribute weights to these
predictions based on a Gaussian kernel, giving higher weights to
central predictions and lower weights to those on the peripheries
of the sequence. The final prediction is then acquired by calculating
the weighted sum of all heat maps.

We used the Adam optimizer [13] with a learning rate set at 10™3
to train the tracking and rectification networks. The network’s
hyperparameters were initialized using the Xavier method [10].
The batch sizes for the tracking and rectification modules were
set at 10 and 32, respectively. The training process lasted for 30
epochs, and we chose the model instances that yielded the highest
validation accuracies.

4 RESULTS AND EVALUATIONS

The performance of TrackNetV3 was evaluated through both a
comparative and an ablation study. The details are as follows.

Chen and Wang

Method Accuracy | Precision | Recall F1 FPS
YOLOv7 57.82% 78.53% 59.96% 68% 34.77
TrackNetV2 94.98% 99.64% 94.56% | 97.03% | 27.70
TrackNetV3 97.51% 97.79% 99.33% | 98.56% | 25.11

Table 1: Quantitative evaluation and timing statistics for
baseline methods and our proposed TrackNetV3. The highest-
performing results are denoted in bold fonts.

4.1 Dataset

We evaluated our model on the dataset released by TrackNetV2
[25], comprising court view shot videos of badminton games with
a 720 x 1280 resolution. In this dataset, each match is divided into
multiple rallies, with each frame having manually labeled shuttle-
cock positions. The training set includes 23 professional matches,
totaling 172 rallies, and the test set comprises three professional
matches, totaling 29 rallies. For experimental purposes, we carved
out one rally from each match in the training set to formulate a
validation set for model optimization. We also down-sampled the
videos to a resolution of 288 X 512 during evaluation [25].

4.2 Evluation Metrics

We evaluated the performance of our network by calculating the
distance between the predicted and the actual positions of the
shuttlecock. Following the work of TrackNetV2 [25], if the distance
is within 4 pixels, the detection is deemed accurate. Conversely, a
distance greater than 4 pixels or inconsistency in the detection of the
shuttlecock’s presence or absence is deemed inaccurate. In addition
to accuracy, we calculated the precision, recall, and F1 score for
further evaluation. We also recorded the frames per second (FPS) to
assess the efficiency of our system. We opted not to use the widely
adopted mean average precision (mAP) metric due to the small
size of the shuttlecocks. The area intersection over Union (IoU)
employed in this metric tends to be highly unstable. As noted in
the work of [29], a 3 X 3 pixel bounding box would experience a
50% decrease in IoU with just a single pixel offset.

4.3 Comparison to Baseline Methods

We assessed TrackNetV3’s performance by comparing it with two
benchmark methods. Firstly, we chose YOLOv7 (specifically the
YOLOv7-X version!), a representative of single-image detection
models, which was pretrained on the MS COCO Dataset and fine-
tuned on the shuttlecock trajectory dataset. Secondly, we com-
pared it with our implemented TrackNetV2. Although an official
implementation of TrackNetV2 is available?, we chose our imple-
mentation as a benchmark for comparison due to its enhanced
performance (the original study reported an accuracy of 87.72%,
whereas our implementation achieved 94.98%).

Figure 4 and Table 1 show the comparative results. As indicated,
YOLOV7 generally performs less favorably than the TrackNet series,
given the highest miss rate (i.e., 1-recall), whereas TrackNetV3, with
its trajectory repair function, yields the lowest. Both YOLOv7 and
TrackNetV2 struggle with detecting specific challenging samples,

Uhttps://github.com/WongKinYiu/yolov7
Zhttps://nol.cs.nctu.edu.tw:234/open-source/TrackNetv2
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Figure 4: We conducted a comparative analysis of tracking results achieved using YOLOv7, TrackNetV2, and TrackNetV3, both
with and without rectification modules. Each example portrays a video frame with previously tracked shuttlecock positions,
which are represented by white dots surrounded by blue boundaries. As observed, YOLOv7 overlooked numerous shuttlecocks.
Although TrackNetV2 demonstrated superior detection efficacy, it underperformed TrackNetV3.

especially when shuttlecocks overlay players or backgrounds, as
shown in Figure 4. TrackNetV2 achieved the highest precision,
suggesting that despite TrackNetV3’s ability to repair the trajectory
based on the shuttlecock’s motion, the repaired positions may not
always align closely with the shuttlecock’s actual positions. This
trajectory repair process improves recall but slightly compromises
precision. We discuss this aspect in more detail in Section 4.4. Lastly,
YOLOV7 has the highest processing speed, but the TrackNet series
also operate close to real-time, even when they ensemble eight
tracking results in the experiment. Notably, without the ensembling
strategy, they could process over 75 frames per second, with a
marginal decrease in accuracy of approximately 0.2%.

4.4 Ablation Study

We have enhanced TrackNetV2 by utilizing an estimated back-
ground image, implementing mixup data augmentation, and cor-
recting trajectories. We undertook an ablation study to gauge the
individual impact of these strategies. The outcomes of this study
are detailed in Table 2. In this analysis, we report the values of true
positives (TP), true negatives (TN), two types of false positives (FP1
and FP2), and false negatives (FN). FP1 represents instances where
the detected shuttlecock isn’t sufficiently close to the ground truth
position, while FP2 indicates instances where a detected shuttle-
cock is falsely identified, i.e., no actual shuttlecock is present. The
results show a clear, incremental improvement in tracking accuracy

with each strategy incorporated. However, including the inpainting
strategy led to a noticeable increase in FP1 and FP2. As the rectifi-
cation module is designed to predict the positions of nearly unseen
shuttlecocks, the predicted positions may deviate from the shut-
tlecock’s actual positions (leading to FP1). Moreover, it sometimes
predicts the shuttlecock positions even when the shuttlecocks are
occluded, which are unlabeled in the dataset (contributing to FP2).

4.5 Discussions

Background Utilization. We used the estimated background
image to assist the tracking module in distinguishing foreground
objects. Although this background image remains the same through-
out the match, it has proven effective in enhancing tracking perfor-
mance (Table 2). However, we questioned whether there might be
more effective ways to utilize this background information. Specif-
ically, we experimented with two additional strategies. First, we
subtracted the background image from each video frame, resulting
in a map of pixel magnitudes. Second, we concatenated the mag-
nitude maps with the original video frames to form the input. As
shown in Table 3, when not using mixup augmentation, the second
strategy (frame & Sub) yielded the best performance. However, its
effectiveness significantly decreased when mixup augmentation
was applied. This suggests that different strategies for incorporating
background information may have varying interactions with other
methods used in the tracking module, such as data augmentation.
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Method Accuracy | Precision | Recall F1 TP N FP1 FP2 FN
TrackNetV2 94.98% 99.64% 94.56% | 97.03% | 82.07% | 12.91% | 0.26% | 0.04% | 4.72%
+ Background 95.64% 99.37% 95.58% | 97.44% | 82.83% | 12.81% | 0.39% | 0.14% | 3.83%
+ Mixup 96.12% 99.62% 95.90% | 97.73% | 83.25% 12.87% | 0.24% | 0.07% | 3.56%
+ Rectification 97.51% 97.79% 99.33% | 98.56% | 84.99% | 12.51% 1.49% | 0.43% | 0.57%

Chen and Wang

Table 2: We assess the effectiveness of strategies used, including background concatenation, mixup data augmentation, and

trajectory rectification. Note that the final row is representative of TrackNetV3, and FN is equivalent to the miss rate.

Background | Mixup | Accuracy | Precision | Recall F1
Sub 91.89% 99.18% 91.39% | 95.12%
frame ® BG No 95.64% 99.37% 95.58% 97.44%
frame @ Sub 96.04% 99.50% 95.91% | 97.68%
frame & BG Sample 96.12% 99.62% 95.90% | 97.73%
frame @ Sub 95.94% 99.58% 95.72% | 97.61%
frame & BG 95.00% 98.97% 95.21% | 97.06%
Frame
frame & Sub 94.24% 98.39% 94.91% 96.62%

Table 3: We analyze the efficacy of background image uti-
lization and mixup data augmentation. In this analysis, the
rectification module was not utilized. ’Frame’ and 'BG’ denote
the original video frame and the estimated background im-
age, respectively. The symbol @ represents the concatenation
operator, and ’Sub’ signifies the magnitude of subtraction
between ‘Frame’ and ‘BG’. The results reveal that the combi-
nation of video frames with the estimated background image,
along with the employment of sample mixup augmentation,
yields the highest tracking performance.

Frame Mixup vs. Video Mixup. We incorporated mixup aug-
mentation to enhance the robustness of our tracking module. Since
we adapted this method for video frames, intuitively, one might
expect to synthesize intermediate frames by creating a weighted
average of two frames and their corresponding heat maps. This
strategy, which we refer to as frame mixup, can mimic the motion
blur often encountered in broadcast badminton videos. Contrary to
this approach, we experimented with another, less intuitive strat-
egy: randomly selecting two video sequences along with their cor-
responding heat maps and applying the mixup method to them,
referred to as video mixup. When we compared these two strategies,
the results were unexpected (see Table 3). Frame mixup did not
provide a significant improvement to tracking accuracy. However,
video mixup did enhance tracking accuracy, particularly when used
in conjunction with the estimated background image concatenated
to the video frames. This result suggests that more complex ex-
amples for augmentation might be necessary when dealing with
dynamic video sequences as opposed to individual frames.

Trajectory Rectification. We employ inpainting for missed
shuttlecock detections, capitalizing on the shuttlecock’s tempo-
ral dynamics. Although using a simple linear interpolation of the
detected shuttlecock positions from the nearest frames seems plau-
sible, this approach easily fails since shuttlecock trajectories are
not always convex, as illustrated in the first two rows of Figure 4.
Regarding parameter setting when training the rectification mod-
ule, we set the mask ratio at 0.3 and the length of input trajectories

Mask Ratio | Accuracy | Precision | Recall F1

0.2 97.23% 97.47% 99.33% | 98.39%
0.3 97.51% 97.79% 99.33% | 98.56%
0.4 97.48% 97.76% 99.33% | 98.54%

Trajectory length | Accuracy | Precision | Recall F1
8 97.33% 97.59% 99.33% | 98.45%
16 97.51% 97.79% 99.33% | 98.56%
32 96.41% 96.53% 99.32% | 97.91%

Table 4: The rectification module’s performance is robust to
changes in mask ratios and trajectory lengths during training.
We selected a ratio of 0.3 and a length of 16 due to the optimal
performance in shuttlecock tracking.

for rectification at 16 frames. These settings were chosen due to
their superior performance experimentally, as detailed in Table 4.

4.6 Limitations

Despite TrackNetV3 demonstrating superior performance over
baseline methods in tracking shuttlecocks within broadcast bad-
minton videos, there are still areas for improvement. The system
typically encounters failures when shuttlecocks are barely visible,
requiring tracking based solely on temporal dynamics. Additionally,
the tracked shuttlecock positions are within the video coordinate
system and need to be translated into the court coordinate system
for deeper analysis.

5 CONCLUSIONS AND FUTURE WORKS

We have implemented a number of strategies to augment shut-
tlecock tracking accuracy, incorporating estimated background
imagery, mixup data augmentation, and trajectory rectification.
Experimental outcomes indicate the efficacy of these strategies in
enhancing tracking performance. Given that these tracking results
could contribute significantly to downstream tactical analyses, we
plan to make our implementation publicly accessible. Currently,
the shuttlecock position tracking is two-dimensional, which may
lead to a skewed analysis of the shuttlecock’s height and speed
due to perspective projection. Therefore, we plan to explore the
reconstruction of 3D shuttlecock trajectories in the future.
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