
Content Aware Texture Compression

Yu-Cheng Chiu
Department of Computer Science
National Chiao Tung University

HsinChu, Taiwan
22kinds@gmail.com

Yu-Shuen Wang
Department of Computer Science
National Chiao Tung University

HsinChu Taiwan
yushuen@cs.nctu.edu.tw

Abstract—Efficient and high quality texture compression is
important because computational powers are always limited,
especially for embedded systems such as mobile phones. To
access random texels instantly, down sampling and S3TC are
the most commonly used methods due to the fixed compres-
sion ratio at every local region. However, the methods are
content oblivious, which uniformly discard texel information.
Therefore, we present content aware warp to reduce a texture
resolution, where homogeneous regions are squeezed more to
retain more structural information. We then relocate texture
coordinates of the 3D model as the way of relocating texels, such
that rendering the model with our compressed texture requires
no additional decompression cost. Our texture compression
technique can cooperate with existing methods such as S3TC
since the compression strategies are independent. By reducing
texture resolution in a content aware manner, followed by
texture compression using S3TC, as the experiments show,
we achieve higher compression ratios without degrading visual
quality significantly.

Keywords-Texture compression, Atlas, Content aware warp

I. INTRODUCTION

Texture compression long has been used in computer
graphics to offer low cost but high quality rendering results.
Although computational powers are rapidly increasing nowa-
days, reducing graphics memory and bandwidth consump-
tion without degrading texture quality significantly is always
important. Particularly, this technique is commonly seen in
embedded systems such as mobile phones because their
electronic powers are limited. While texture decompression
is required by each texture access, general image compres-
sion methods such as JPEG and H.264 are not adequate in
this scenario because their decompression processes are not
simple and efficient, even though the methods achieves both
high quality and high compression ratio simultaneously.

We present a content aware texture compression approach
that requires no decompression when rendering a model with
our compressed textures. It can work along or cooperate with
existing S3TC methods. The idea is to warp the texture,
where homogeneous regions are squeezed, to reduce the
texture resolution. Since texels in homogeneous regions are
similar, storing them using fewer samples and followed by
up sampling does not introduce noticeable visual artifacts
(Figure 1). Thus, we strive to take advantages from them in

order to save memory and bandwidth consumption of texture
access. To implement this idea, we partition each texture
chart using a triangular mesh and warp the mesh to relocate
texels. Specifically, an importance value of each triangle
is first computed by averaging the gradient magnitudes
of interior texels. Each triangle is then prevented from
squeezing according to its importance value when the texture
resolution is reduced. Since regions with high gradient texels
are less squeezed, more samples will be stored in the reduced
texture and more details will be retained. In contrast, texels
in homogeneous regions are discarded to reduce memory
consumption.

Given that homogeneous regions may be small or sur-
rounded by high-gradient texels, squeezing only homoge-
neous regions is not able to effectively reduce the tex-
ture resolution. Fortunately, we observed that interpolation
along the direction that has the minimal color variation
introduces the least blurring artifacts because the texels
used for interpolation have similar colors. We thus compute
an optimal scaling direction of each triangle based on its
interior texel gradients and encourage the triangle to be
squeezed along this direction in order to avoid visual blurs in
case homogeneous regions are run out. To implement this
idea, we compress the area of each texture chart belong
to a 3D model and pack them to a 2D texture as tight
as possible. Considering the texture charts are compressed
and placed at different positions, we update the mapping
between texels and primitives so that each primitive can
fetch the right content when rendering models. That is,
each texture coordinate is embedded in the triangular mesh
and it can be trilinearly interpolated using the surrounding
vertex positions. Given that the mapping between texels
and primitives is still retained, our method requires no
decompression process when rendering texture models.

We demonstrate the effectiveness of our technique by
comparing it to down sampling, S3TC, and signal spe-
cialized parameterization [1]. Experiments show that our
compressed textures suffer from less stretching artifacts due
to flexible compression ratios and content aware strategy.
Note that our algorithm is not introduced to replace ex-
isting bit-encoding methods such as S3TC, but to provide
a strategy that can cooperate with them. We show that a

original compressed

Figure 1. We apply content aware warp to compress a texture to 40% of the original size, in which homogeneous regions are squeezed while structural
regions are retained (left). Texture coordinates of the 3D model are then relocated to match the texel relocations so that each primitive can be correctly
rendered. We compare the 3D model rendered with the original and the compressed textures (right). As can be seen, blurring artifacts are not noticeable
although the texture is compressed.

texture can be warped to a smaller resolution, followed by
applying S3TC compression, to further reduce memory and
bandwidth consumption.

II. RELATED WORK

Texture compression long has been studied for several
decades. Different from traditional image compression tech-
niques, rendering a compressed texture requires fast decod-
ing and random access of texels because the decompression
is frequently preceded and how a renderer will access a
texture is unknown in advance. Therefore, the compression
methods such as JPEG and H.264 are not adequate even
though they can achieve both high quality and high com-
pression ratios simultaneously.

Indexed color is the first presented texture compression
method [2], which also is the first method considered for
hardware implementation [3]. This method compresses the
texture into a color table containing a number of colors
and an index for each texel that maps to the stored color.
Vector quantization extends the indexed color approach from
each texel to 2 × 2 or 4 × 4 texel blocks in order to
minimize the error. Although these methods are good at
compressing textures that have few colors, they are no longer
used because they require an indirection table lookup.

S3TC [4], [5] was introduced and became the most
common texture compression system and available on all
consumer-level hardwares. S3TC contains five formats (i.e.,
DXT1 to DXT5) that are different in the handing of alpha
channel. S3TC partitions a texture into 4 × 4 texel blocks.

Each block has two 16 bit RGB565 colors and a control code
per texel used for linear interpolation. The fixed compression
ratio enables S3TC to randomly access texels and its linear
interpolation also prevents discontinuity artifacts that are
commonly seen in the indexed color method. Later, Nvidia
extended S3TC to VTC [6] that allows the width and the
height of a texture other than multiples of 4. ETC [7], [8],
[9] was presented to extend S3TC based on the idea that
humans are more sensitive to changes in luminance than
in chrominance. Hence, in their system, several texels may
share one chrominance but each of them has its own lu-
minance. There are also some texture compression methods
optimized for two-channel textures [10], [11] and normal
maps [12] extended from S3TC. We refer the readers to
[13] for more details. Although the above methods are fast
and enjoy simple implementation in hardware, they are of a
fixed compression ratio and are oblivious to texture content.
Hence, complex textures may be over-compressed while
homogeneous textures are potentially under-compressed.

There have been methods presented to parameterize a
3D mesh onto a 2D plane while allocating more texture
space in regions with greater signal detail [14], [1]. Both
the previous works and our method have the same goal but
handle the meshes in different conditions. Specifically, the
previous methods require the signals obtained from the 3D
mesh such as scanned color data or normal maps. Although
signals in 3D could be projected from a 2D texture, the
demanded texture mapping results in resampling distortion.

Besides, their stretch parameterization assumes signals to
be piecewise linear interpolant of vertex attributes and the
metric tensor to be constant or linear over the triangle.
Although the authors applied 1-to-4 subdivisions to triangles
to increase the mesh resolution, the strategy may still neglect
small features and blur the texture again. Overall, we believe
the signal specialized parameterization is good at allocating
texture samples for 3D signals but the additional resampling
distortion is inevitable if signals are projected from 2D
textures. In contrast, our texture compression focuses on 2D
throughout the process. It is faithful to the original texture
samples when reducing the texture size.

Our idea comes from the image compression based on
selected data pruning [15]. The method first reduces the
resolution of an image by removing rows and columns that
have low color gradients. Then, it applies H.264 to compress
and decompress the reduced image. The final reconstruction
is based on high-order edge-directed interpolation. Although
effective, the interpolation demands heavy computational
cost and can be used only at image compression. Both
this and our methods take advantages from homogeneous
regions, which are similar to image retargeting [16], [17],
[18], [19], [20], [21] but have different objectives.

III. SYSTEM OVERVIEW

Most 3D meshes are partitioned into several planner-
approximated charts when they are parameterized to 2D
space for texture mapping. Therefore, our system com-
presses each 2D chart individually and repacks them to
compress the texture. Specifically, we partition the chart
using a triangular mesh and warp the mesh to a smaller size
(Figure 2). Our goal is to reduce the texture resolution while
retaining as many high-gradient texels as possible. Namely,
triangles covering homogeneous texels are squeezed more
while the others are retained during our content aware warp.
To implement this idea, we formulate the requirements into
a number of energy terms and solve an optimization problem
to obtain the warped chart. Next, we pack the warped charts
into a smaller rectangular space and compute the texel colors
in the reduced texture using trilinear interpolation. Finally,
by relocating texture coordinate of each vertex as the way of
relocating texels, the mappings between texels and primitives
are retained so that the texture model can be rendered
correctly. We emphasize that rendering a model with this
reduced texture requires no additional cost, although the
compression may take some time.

We warp the texture of each chart by reducing either
the width or the height iteratively to achieve compression.
In each step, the texture is decompressed by inverse warp
and then compared to its original version to measure the
compression quality. Namely, root mean square error (RMS)
is applied to measure the difference of texel colors caused by
the compression. In our implementation, we set the reduction
amount to be five texel size in each iteration and apply the

Figure 2. (left) The texture chart of a complex 3D model. (right)
Our triangular mesh. We determine a coarser triangular mesh, where the
boundary edges and vertices are retained, to speed up the compression
procedure.

greedy algorithm to reduce the texture size in the dimension
that has a smaller increasing RMS error. This process repeats
until the reconstruction error is larger than a threshold or
the desired resolution is reached. Although the strategy takes
many iterations, the overall computational cost is acceptable
because our warping technique is fast and the computation
of RMS value can be sped up by parallel computing.

Once all the texture charts are compressed, we adopt a
heuristic method to pack them into a 2D texture as tight as
possible so as to save the space. Given that the final texture
resolution is unknown in advance, we first set the texture to
have zero space and iteratively grow its size as the charts
are sequentially packed.

IV. CONTENT AWARE TEXTURE WARP

We apply Delaunay triangulation to partition the chart,
with each triangle covering less than 500 texels and each
angle larger than 20 degrees. To warp the chart, we compute
the bounding box of the chart and set the four corners as
constrained vertices when triangulation (Figure 2). Besides,
the boundary vertices and edges of the chart are also
constrained in this step so that the texture coordinates in
the chart can be enclosed after the content aware warp. Our
system guarantees that all triangles cover valid texels after
the compression if the warp does not introduce edge flipping.

Let M = (V,F) be the triangular mesh used for the
content aware warp, where V = {v0,v1, ...,vm}, v ∈ R2

is the vertex position and F is the set of triangles. Also let
U = {u0,u1, ...,un}, u ∈ R2 be the texture coordinates of
a chart that are updated after M is warped. For clarity, we
call the triangles formed by texture coordinates as primitives.
Below we show only the warping of a chart and this
approach is applied to all charts individually.

A. Importance value

We compute an importance value of each triangle f ∈ F
by averaging the gradient magnitudes of interior texels.
This value is then normalized to among 0.05 and 1.0, and

Figure 3. Since some texels are unused when rendering 3D models
(top), they are neglected when computing gradient magnitudes (bottom
left). Importance value of each triangle (bottom right) is then determined
by averaging the interior gradient magnitudes. In these two maps, regions
from homogeneous to structural are visualized from blue to green, yellow
and red.

used to weight the energy terms described later. We set
the smallest importance value to 0.05 in order to avoid
numerical instability. As a texture may contain high level
information such as faces, the face detection technique [22]
is also applied to determine the importance of a triangle.
Apparently, triangles with high importance values usually
contain features and will retain more texels in the reduced
texture to achieve high quality rendering result. Note that
we set the texels that are not mapped to any primitive of
the texture model to have zero gradient magnitudes because
they are unused, as illustrated in Figure 3.

B. Optimal scaling direction

In addition to preserving triangles with larger importance
values from squeezing, we encourage each triangle to com-
press in the direction that has the least color variation. The
linear upsampling along this direction results in smaller
blurring artifacts because the colors of the sampled texels
are similar (Figure 4). To achieve this, for each texel i
that is covered by triangle f , we consider its eight adjacent
neighbors j ∈ N{i} and compute a set of color variation
vectors using hij = dij×eij , where dij is the norm of RGB
color difference between neighboring texels, and eij denotes
the normalized direction from texel i to texel j. As illustrated
in Figure 5, the length of each variation vector implies how
much blur that scaling along it would introduce. We thus
compute the optimal scaling direction of each triangle by

Figure 4. (top left) The original texture. The horizontally scaled texture
(bottom). Blurring artifacts occur at vertical edges (top right) due to the
large color variations in the horizontal direction.

i

hij

j

Figure 5. (left) The center texel i and its eight adjacent neighbors j.
(right) The set of variation vectors hij are determined based on the color
variations between texel i and j. We compute the optimal scaling direction
that has the least color contrast so that the up sampling along this direction
results in the minimal blurring artifacts.

searching a vector Af that can minimize∑
i4f

∑
j∈N(i)

|Af · hij |2, (1)

where i4f denotes that pixel i is covered by f . Intuitively,
by considering each vector hij as a 2D point, this opti-
mization problem can be solved using principal component
analysis. While the major axis approximates the positions of
these 2D points, which implies the largest color variation,
we set our optimal scaling direction Af to the minor axis
to minimize upsampling blurring artifacts.

C. Constrained optimization

Our system scales down the texture while retaining as
many high-gradient texels as possible by solving a con-
strained optimization problem. The objective function con-
tains the energy terms that measure triangle squeeze, devia-
tion of vertex collinearity, triangle fold over, and boundary
straightness. Below we show the details of the presented
energy terms.

Squeezing. We retain each triangle according to its
importance value when the texture resolution is reduced.
Considering homogeneous regions may be small, we also
allow each triangle to be scaled along its optimal scaling
direction. Considering that the triangle is scaled under an
arbitrary axis, we first rotate the triangle to align this axis
with a vertical or a horizontal line, then scale the triangle,
and then rotate it back to its original orientation. Therefore,
let θf be the angle between the horizontal axis and the
optimal scaling direction of triangle f , we constrain triangle
edges by minimizing the energy term

Ω =
∑
f∈F

∑
{i,j}∈f

ωf |(v̂i − v̂j)− Sf (vi − vj)|2 ,

where Sf = Rθf

[
sf 0
0 1

]
R−1θf ,

Rθf =

[
cos θf − sin θf
sin θf cos θf

]
, (2)

ωf is the importance value of f , v̂i ∈ V̂ is the warped
vertex position and sf denotes the unknown scaling factor.
Note that scaling each triangle along our determined optimal
direction does not guarantee to be free from distortions. The
larger |Af · hij | implies the more noticeable artifacts even
though the triangle is squeezed along Af . We thus enforce
each scaling factor sf to satisfy

sf ≥ min(
1

η
max |Af · hij |, 1), (3)

where hij is a color variation vector. We set η = 100 in all
our experimental results. Note that the largest |Af · hij | is√

3× 2552 in the definition of RGB color space.
Collinear constraint. We observed that a long edge of a

texture primitive may be partitioned into several segments
in order to prevent large triangles when computing Delau-
nay triangulation. Therefore, the segments should remain
collinear after our content aware warp. Otherwise, the large
primitive will cover invalid texels, as illustrated in Figure
6, because the deformation of a coarse primitive is not able
to capture our non-linear texel relocations. Let E` be the
segments partitioned from the edge of a texture primitive `
and n` be the edge normal. To achieve the aim, we maintain
their collinearity by constraining

(v̂i − v̂j) · n` = 0, ∀{i, j} ∈ E`. (4)

Rectangular and fold-over constraints. We reduce the
chart size by compressing its bounding rectangle. Hence,
during the width or the height reduction of mesh M,
its regular shape should be retained and the vertices are
prevented from moving across the four straight boundaries.
To achieve a rectangular shape, we enforce the boundary
vertices moving only along their respective boundary lines

Figure 6. (left) Primitives of a texture chart. (middle) Our generated mesh
may be denser than the original chart due to the constraints of size and
angle. (right) Invalid texels may be mapped to the texture primitives if the
black vertices do not remain collinear after our content aware warp.

during the warp. That is, we introduce the boundary con-
straint

v̂i,x = 0 if v̂i,x is on the left boundary
v̂i,x = Dw if v̂i,x on the right boundary
v̂i,y = 0 if v̂i,y is on the top boundary
v̂i,y = Dh if v̂i,y on the bottom boundary,

(5)

where Dw and Dh are the reduced width and height of
the bounding space, respectively. In addition, considering
least squares optimization only approximates the given con-
straints, triangles may flip when they are squeezed, which
results in vertices crossing the bounding space and triangles
fetching wrong texels after compression. We thus enforce the
distance between each vertex and its opposite edge of the
triangle to be longer than a threshold to prevent triangles
from squeezing into zero sizes or even flip. Formally, we
expect each deformed vertex v̂i to satisfy

|v̂i − p̂jk| ≥ ε, (6)

where i, j, k are the three vertex indexes of a triangle, pjk =
δv̂j + (1 − δ)v̂k is the closest point to v̂i and δ is the
combination weight computed from point-line theory. We
set ε = 3 in all our experimental results. Under this setting,
our system can guarantee at least some texels in each triangle
are stored in the reduced texture even the interior content is
homogeneous.

Optimization. We minimize the energy term Ω subject
to the constraints described in Equations 2 - 6 to achieve a
content aware texture warp. By setting the first derivative of
the objective function to zero, we solve for the warped vertex
positions V̂ and the correlated scaling factor of each triangle
sf using a linear system. Given that V̂ and sf are unknown
and correlated, the optimization can only be achieved by
iterative updating. Specifically, we first set sf = 1 as an
initial guess and solve for V̂. To update sf , we then rotate
both the warped and the original triangles f using Rθf ,
followed by determining an affine transformation Tf that
can transform the original triangle to the warped triangle,
and set sf to the top-left element of Tf . Note that we set
sf = min(1

η max |Af ·hij |, 1) if the computed scaling factor
is too small in order to prevent over squeezing. We repeat
this iterative procedure until the system converges.

We point out that Equation 6 is an inequality constraint,
which is inactive in the beginning of our texture warp.

Figure 7. (left) We partition the texture chart using a uniform grid mesh
with each grid containing 4×4 texels before the chart packing. (right) The
encoded right-shift value indicates the number of skipped grids horizontally
that is free of overlapping.

During the iterative procedure, we check if there is any
vertex being too close to its opposite edge whenever V̂ is
updated. If |v̂i − p̂jk| < ε, we add an additional constraint

v̂i − δv̂j − (1− δ)v̂k =
ε

|p̂jk|
p̂jk, (7)

to the system and solve for the new vertex positions V̂,
where p̂jk is obtained from the previous iteration.

V. CHART PACKING

Once all the texture charts are compressed, they are
packed onto a 2D texture as tight as possible to save the
texture resolution. Given that each chart could have various
positions and orientations, this problem has been proof as
NP-complete [23]. Fortunately, it has been well studied in
industrial applications. We thus borrow the idea and simply
modify the method to fit our requirements.

Considering a texture is consisted of discrete texels, we
adopt a heuristic algorithm presented by Babu and Babu
[24] to determine the chart position. Specifically, this method
partitions the packing texture to 2D uniform grids, with each
grid containing n × n pixels (n = 4 in our experimental
results). It aims to place the chart possibly close to the
bottom left point while iteratively updating the chart position
rightward and upward until the collision is free. To speedup
the process, the method encodes the right-shift value at each
grid to indicate the horizontal movement of the new chart
that is free of collision. The wide step prevents the frequent
collision checks when the chart has to move in the horizontal
direction. As for the update in the vertical direction, only a
grid size is taken. Figure 7 shows the illustration. We also
refer the readers to the encoding of right-shift value to [24]
for more details.

Note that our packing requirement is different to that of
[24]. In an industry application, the packing space is limited
and clearly defined, and the number of charts is assumed
infinite. However, our goal is to pack all the compressed
charts within a smallest rectangular. We thus assume the
size of the packing texture is unknown and iteratively grow

it as the charts are packed sequentially. That is, let w and
h be the width and the height of a packing space, where
their initial values are both 0. Given a chart, our system
checks whether or not the chart can be packed using the
method of [24]. We also allow each chart to rotate by π

2 , π,
and 3π

2 degrees to fit the empty area of the texture space.
This discrete rotation does not require texel resampling and
prevents quality reduction. If the packing space is too small
to pack a chart, we extend either the width or the height of
the space, which introduces the smallest additional space, to
pack the chart. This process packs the charts in the order
of chart area (i.e., from the largest to the smallest) and
repeats until all the charts are packed. Although this greedy
algorithm does not guarantee the packing space is minimum,
we experientially found the strategy works well.

VI. RESULTS AND DISCUSSIONS

We have implemented and tested our algorithm on a
desktop PC with core i7 3.0 GHz CPU. We use the Cholesky
solver to minimize Ω subject to a number of hard and in-
equality constraints (Equations 2 - 6) when warping meshes.
After that, trilinear interpolation is applied to compute each
texel color in the reduced texture based on the original
and the warped meshes. Although our texture compression
requires solving an optimization problem, the texture can
be compressed once and then stored in the disk, where the
re-compression whenever loading a texture to the GPU is
not necessary. More importantly, rendering 3D models with
our compressed textures requires no additional cost because
texture coordinates are coherently relocated as well.

The computational cost of our system depends on the
compression ratio and the density of the triangular mesh.
The larger compression ratio results in more iterations. The
denser triangular mesh indicates the more unknown variables
are solved in each warp. Generally, compressing a texture
with 1024 × 1024 resolution to about 30% of the original
size takes around 3 minutes using our unoptimized code.
We believe the performance could be greatly enhanced when
RMS errors are computed in parallel.

We compared our method to down sampling and show the
results in Figures 1 and 8 to demonstrate the effectiveness
of our technique. Given that down sampling is oblivious
to texture content, rendering 3D models with these reduced
textures suffers from noticeable stretching artifacts. We also
compared our method to [1] using D3DXUVAtlas functions
implemented in Direct3D and show the results in Figure 9.
Both methods retain important texels to compress textures
and achieve high quality. We point out that our result
contains less stretching artifacts when the model is close
to the camera.

Our algorithm is flexible to not only the compression ratio
but also the quality of a texture. Because texture charts are
compressed individually, the system allows users to specify
the importance of each chart so that meaningful regions such

Figure 8. From left to right are the cat model, the cat’s head rendered with the original, down sampled, and our compressed textures. Both the compressed
textures have 57% of the original size. Compared to the down sampled texture, our result suffers from less aliasing artifacts when the camera is very close
to the cat’s face.

Figure 9. We render the Buddha model with the compressed textures
that are obtained from [1] (left) and our method (right). Both textures are
compressed to 24% of the original size. The Buddha’s eyes are zoomed in
and shown in top. As can be seen in the highlighted square regions, our
result suffers from less stretching artifacts.

as faces could remain the original quality after compression.
Figure 10 shows the result with and without user specified
chart importance. In addition, our system can cooperate with
existing methods such as S3TC to further compress the
texture to a smaller size (Figure 11). That is, our method
shrinks homogeneous regions and DXT1 removes redundant
codes of each texel block. The two compression methods are
independent and can perfectly collaborate together. Figure
11 also shows that DXT1 over compresses the structural
region due to its fixed compression ratio. In contrast, our
method allows the user to adjust the compression ratio so
as to preserve salient features.

(a) (b)

(c) (d)

(e) (f)
Figure 10. By using our system, users are allowed to control the quality of
each texture chart during compression. (a) Feline model. (b)-(d) The feline
heads are rendered with the original texture, the compressed texture where
texels covered by the head chart are untouched, and the compressed texture
that is determined automatically. (e) and (f) show the compressed textures
with and without well preservation of head charts.

original DTX1 our method DTX1 + our method

Figure 11. We render the model with the original texture and the textures compressed by DXT1, our method and DXT1 + our method. In this example,
the texture is compressed to have 16.67% and 50% of the original size using DXT1 and our method, respectively. Note that the compression ratio of DXT1
is uncontrollable so that some features are distorted after the compression. We also show that a texture can be compressed by DXT1 and our method
simultaneously to achieve a better compression ratio (8.33% of the original size).

A. Limitations

Our system squeezes homogeneous regions to reduce tex-
ture resolutions, which implies that distortions will increase
rapidly if all texels are structural and their gradients are
highly disordered. The compression ratio becomes small in
this scenario. In addition, we compute each texel color of the
compressed texture using trilinear interpolation and suffers
from sampling artifacts although the compression ratio is
small. Therefore, our system determines texel colors using
nearest sampling if the regions are less squeezed to prevent
the artifacts.

VII. CONCLUSIONS

We have presented a texture compression method based on
the importance of each local region. Less structural contents
are stored with fewer samples in order to reduce memory
and bandwidth consumption. Since the relocation of texture
coordinates matches our content aware warp, rendering 3D
models using our compressed textures requires no additional
decompression cost. Besides, our system compresses each
chart individually so as to exactly control the texture quality
of different local regions. Semantic features such as human
faces also can remain undistorted if necessary. Finally, the
compressed charts are packed as tight as possible into a 2D
texture to save the space.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their constructive
comments. This work was supported in part by the Ministry
of Science and Technology, Taiwan (102-2221-E-009 -083
-MY3 and 101-2628-E-009 -020 -MY3).

REFERENCES

[1] Geetika Tewari, John Snyder, Pedro V. Sander, Steven J.
Gortler, and Hugues Hoppe. Signal-specialized parameteri-
zation for piecewise linear reconstruction. In Symposium on
Geometry Processing, volume 71, pages 55–64, 2004.

[2] Graham Campbell, Thomas A. DeFanti, Jeff Frederiksen,
Stephen A. Joyce, and Lawrence A. Leske. Two bit/pixel full
color encoding. SIGGRAPH Comput. Graph., 20(4):215–223,
August 1986.

[3] Günter Knittel, Andreas Schilling, Anders Kugler, and Wolf-
gang Straser. Hardware for superior texture performance.
Computers and Graphics, 20(4):475–481, 1996.

[4] Pat Brown. Ext texture compression s3tc. http://
www.opengl.org/registry/specs/EXT/texture compression s3tc.txt.

[5] Pat Brown and Mathias Agopian. Ext texture compression
dxt1. http://www.opengl.org/registry/specs/EXT/

texture compression dxt1.txt.

[6] Matt Craighead. Nv texture compression vtc. http://
www.opengl.org/registry/specs/NV/texture compression vtc.txt.

[7] Jacob Strom and Tomas Akenine-Moller. Packman: Texture
compression for mobile phones. In In Sketches program at
SIGGRAPH, 2004.

[8] Jacob Ström and Tomas Akenine-Möller. ipackman: high-
quality, low-complexity texture compression for mobile
phones. In Proceedings of the ACM SIGGRAPH/ EURO-
GRAPHICS conference on Graphics hardware, HWWS ’05,
pages 63–70, New York, NY, USA, 2005. ACM.

[9] Jacob Ström and Martin Pettersson. Etc2: texture compression
using invalid combinations. In Proceedings of the 22nd
ACM SIGGRAPH/EUROGRAPHICS symposium on Graphics
hardware, GH ’07, pages 49–54, Aire-la-Ville, Switzerland,
Switzerland, 2007. Eurographics Association.

[10] Mark J. Kilgard, Pat Brown, and Yanjun Zhang.
Ext texture compression latc. http://www.opengl.org/
registry/specs/EXT/texture compression latc.txt.

[11] Mark J. Kilgard, Pat Brown, and Yanjun Zhang.
Ext texture compression rgtc. http://www.opengl.org/
registry/specs/EXT/texture compression rgtc.txt.

[12] ATI Technologies. Ati radeon x800 3dc white paper.
http://www.ati.com/products/radeonx800/3DcWhitePaper.pdf.

[13] Philipp Klaus Krause. Texture compression. http://
www.colecovision.eu/graphics/texture compression.pdf,
2007.

[14] Pedro V. Sander, Steven J. Gortler, John Snyder, and Hugues
Hoppe. Signal-specialized parameterization. pages 87–98.
The Eurographics Association, 2002.

[15] Duñg T. Võ, Joel Solé, Peng Yin, Cristina Gomila, and
Truong Q. Nguyen. Selective data pruning-based compression
using high-order edge-directed interpolation. Trans. Img.
Proc., 19(2):399–409, February 2010.

[16] Shai Avidan and Ariel Shamir. Seam carving for content-
aware image resizing. ACM Trans. Graph., 26(3), 2007.

[17] Ariel Shamir and Olga Sorkine. Visual media retargeting. In
ACM SIGGRAPH Asia Courses, 2009.

[18] Ran Gal, Olga Sorkine, and Daniel Cohen-Or. Feature-aware
texturing. In Proc. EGSR ’06, pages 297–303, 2006.

[19] Lior Wolf, Moshe Guttmann, and Daniel Cohen-Or. Non-
homogeneous content-driven video-retargeting. In ICCV ’07,
2007.

[20] Yu-Shuen Wang, Chiew-Lan Tai, Olga Sorkine, and Tong-Yee
Lee. Optimized scale-and-stretch for image resizing. ACM
Trans. Graph., 27(5):118, 2008.

[21] Michael Rubinstein, Ariel Shamir, and Shai Avidan. Improved
seam carving for video retargeting. ACM Trans. Graph.,
27(3), 2008.

[22] Paul Viola and Michael J. Jones. Robust real-time face
detection. Int. J. Comput. Vision, 57(2):137–154, May 2004.

[23] Julia A. Bennell and Jose F. Oliveira. The geometry of nesting
problems: A tutorial. European Journal of Operational
Research, 184(2):397 – 415, 2008.

[24] A. Ramesh Babu and N. Ramesh Babu. A generic approach
for nesting of 2-d parts in 2-d sheets using genetic and
heuristic algorithms. Computer-Aided Design, 33(12):879–
891, 2001.

