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Abstract. Predicting stock price movements is challenging because fi-
nancial markets are noisy — signals and patterns in different periods are
dissimilar and often conflict with each other. Consequently, irrespective
of whether the price rises or falls, none of the previous methods achieve
high prediction accuracy in this binary classification task. In this study,
we consider aleatoric uncertainty and model uncertainty when training
neural networks to forecast stock price movements. Specifically, aleatoric
uncertainty is known as statistical uncertainty. It indicates that similar
historical price trajectories may not lead to similar future price move-
ments. On the other hand, model uncertainty is caused by the model’s
mathematical structures and parameter values, which can be used to
estimate whether the models are familiar with the testing sample. Con-
sidering that most of the existing uncertainty estimation methods focus
on model uncertainty, we transform the aleatoric uncertainty in financial
markets to model uncertainty by removing samples with similar historical
price trajectories and different future movements. The Bayesian neural
network is then adopted to estimate the model uncertainty during infer-
ence. Experiment results demonstrated that the networks achieved high
accuracy when they were certain about their predictions.

Keywords: Stock price movement prediction, aleatoric uncertainty, model
uncertainty, uncertainty quantification

1 Introduction

Stock price movement prediction has attracted intense attention in the research
field and the financial industry because investors can manage their portfolios to
earn substantial profits from price fluctuations. The prediction can be considered
as a binary classification problem, in which the inputs are historical prices, news,
and company statistics, and the output is a rise or a fall in price at the next period
(e.g., tomorrow). Theoretically, although price movements could exhibit a trend,
in practice, a high level of uncertainty remains. The trend also changes over time
so that knowledge learned from the past could be insufficient to predict future
price movements. In fact, even the state-of-the-art method [8] achieved accuracy
that was only slightly higher than a random guess in this binary classification
task when taking historical prices as inputs.

In this study, we aim to quantify the uncertainty of stock price movement pre-
diction, which is helpful for later investment strategies. On the one hand, stocks
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that have similar price trajectories in the past may not result in similar move-
ments in the future, and we refer to the phenomenon as aleatoric uncertainty
[30]. Aleatoric uncertainty is known as statistical uncertainty, which indicates
that the outcomes of an experiment in different runs can be different because
of unknown or inherently random effects. A typical example is coin-flipping. In
other words, the price movement cannot be accurately predicted due to cur-
rently unavailable information. On the other hand, mathematical structures and
parameter values of a model that are used to map inputs to outputs result in
model uncertainty. It is known that neural networks are composed of tremendous
parameters, and the networks can be considerably dissimilar if they are trained
from different initializations, although on the same dataset and using the same
loss. In other words, given an input, particularly an input that is dissimilar to
all samples in the training set, networks trained from different initializations are
likely to output different results. This model uncertainty should also be consid-
ered when predicting stock price movements.

We transform the aleatoric uncertainty of stock price movements to model
uncertainty for quantification. Specifically, since similar historical price trajec-
tories do not necessarily lead to similar future movements, we treat rises and
falls in price in the next period as noisy labels. The noisy label training is then
applied to remove such samples from the training set. It deserves noting that,
when removing the samples with noisy labels, the aleatoric uncertainty becomes
model uncertainty because the network does not learn from these samples. We
then apply the Bayesian neural network to quantify model uncertainty — whether
the networks are familiar with a testing sample or they just guess the solution.
Unlike general neural networks, a Bayesian neural network takes a single sam-
ple as input but outputs a label distribution. The variance of the distribution
implies the level of uncertainty. We exploit the depth structure of neural net-
works to quantify uncertainty [2]. Our network contains multiple branches of
different depths and outputs multiple labels to forecast future price movements.
Since different branches imply different prediction functions, the predictions are
likely diverse if inputs are dissimilar to any training sample. For this reason, we
measure prediction entropy and variance to elucidate how certain the network
is about its output.

We estimate the uncertainty of stock price movement prediction. We argue
that our network is uncertainty-aware because it not only outputs the predic-
tion but also reveals the level of uncertainty. For evaluation, we trained neural
networks to predict stock price movements on the next day and after ten days
on the KDD17 and ACL18 benchmark datasets. We also evaluated the predic-
tion accuracy in terms of the network’s prediction uncertainty on our collected
dataset that contains bull, flat, and bear markets. Experiment results showed
that high certainty of our network’s prediction indeed leads to high accuracy.
Below, we summarize our contributions:

— We estimate each prediction’s level of uncertainty, which can assist investors
to develop flexible investment strategies.
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— We transform the aleatoric uncertainty of stock price movements to model
uncertainty by removing samples with noisy labels. Then, we apply the
Bayesian neural network to quantify model uncertainty.

— Our experiment results verified that high certainty of a network prediction
indeed leads to high accuracy.

2 Related Work

Financial Forecasting. Recently, neural networks gained considerable atten-
tion in financial forecasting [13]. They are trained to predict stock prices [1], stock
movements [27,24, 5], and currency exchange rates [32]. Most of the networks
considered historical prices and technical analysis [6] when making predictions
because of “the market discounts everything theory”, i.e., the price reflects all
information in the market. Considering that financial markets are noisy and non-
stationary, Feng et al. [7] applied adversarial training [16] to help networks learn
robust representations and facilitate generalization. In addition to prices, sev-
eral methods additionally considered limit order books [31, 28, 38], news events
[4], and texts from social media [26, 34| for prediction. Their experiment results
confirmed the benefits of these metadata. Rather than predicting future trends,
Feng et al. [8] temporally captured stock relations and ranked the stocks accord-
ing to their return ratios. The back-test results demonstrated that trading based
on stock ranking were more effective than that based on future trends.

Uncertainty Estimation. In time series forecasting applications, training
and testing data are from different periods and are likely to contain varied prop-
erties. Since standard networks are trained by maximum likelihood estimation
(MLE), they are frequently over-confident with unfamiliar samples [25]. Due to
the non-stationarity of financial markets, it is essential to extend a standard
network to a Bayesian network with posterior inference from a probabilistic per-
spective. Under this formulation, the output becomes a distribution rather than
a single point. When the network takes a novel observation as input, its output’s
distribution will have a large variance. Generally, the posterior inference can be
approximated by dropout [10, 9], model ensembles [17], subspace inference [14],
and depth [2]. The high variance of the outputs implies high uncertainty.

Noisy Labels. Since neural networks can fit even random variables [36], their
robustness easily degenerates when training data contain noisy labels. To ease
the problem, one of the directions taken was sample selection. These methods
train two networks with the same architecture and select samples according to
output disagreement [22], smaller loss values [12], and their combinations [35],
to update network parameters. Besides sample selection, Wei et al. [33] pointed
out that networks are likely to have the same outputs if the labels are correct.
Hence, they updated the network by label loss and distance loss, and expected
the two networks to become the same.
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3 Method

Price movement prediction can be considered to be a binary classification prob-
lem, which takes historical price movements as inputs and forecasts price rises
or price falls at the next period. Specifically, let the stock market data be D =
{( Xy ye1) 1Y, where Xy = [24—711, ., 7] € REXT*W with F-dimensional
features (e.g., high and low prices of a period, and the corresponding technical
analysis) in the lag of the past T time-steps, W is the number of moving aver-
ages, and y;41 denotes the actual price movement at the next period. The goal is
to build a network f(-) with D. Specifically, f(Xy) forecasts the price movement
yt+1 based on the currently available features X.

3.1 Transforming Aleatoric Uncertainty to Model Uncertainty

Financial market prices constitute non-stationary time series data. The price
movements are drifting, and their distributions change over time. In addition,
when the market does not have a clear direction, the price moves up and down in
a small range, bringing many meaningless labels. In other words, although price
movements could exhibit a trend, they contain aleatoric uncertainty. Considering
that most existing methods focus on quantifying model uncertainty, we attempt
to transform aleatoric uncertainty into model uncertainty by removing samples
with noisy labels for quantification. Specifically, samples with noisy labels are
those with similar X; but different y; 1. Since the network does not learn from
the samples with aleatoric uncertainty, it can only guess the results when such
samples appear during inference, and the uncertainty can thus be quantified.

Consistent and Inconsistent Labels. Differentiating correct and incor-
rect labels in a traditional classification problem is simple. However, in financial
markets, there is no clear definition between them. All labels can be consid-
ered correct because the stock price movements indeed happen. Since prediction
implies choosing the price movement that likely occurs, financial data can be
partitioned into two groups: samples with consistent and inconsistent labels.
Consistent labels are those that appear more frequently than others under the
condition of similar historical patterns. This new definition fulfills the assump-
tion in the noisy label training that correct labels are the majority, and networks
can learn these labels at the early stage of training.

Let X;, X, be the price features in consecutive days with [|X; — X,|2 < ¢,
and y;, y; be the corresponding ground truth labels. Li et al. [19] defined that
the labels of X; and X; are inconsistent if ||y; — y;|| > J. They also proved that
the network f(-) with randomly initialized parameters has to traverse a long dis-
tance to fulfill inconsistent labels. In other words, in the early iterations, models
updated by the gradient descent method only fit samples with consistent labels,
essentially ignoring the inconsistent ones. This motivates us to remove samples
with inconsistent labels when training since they contain aleatoric uncertainty.

Sample selection. Previous experiment results show that deep neural net-
works tend to learn correct labels at the early stage of training and then memo-
rize the incorrect ones [3]. In other words, at the early stage of training, the loss
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of correct labels decreases quickly, whereas the loss of incorrect labels remains
high. Therefore, removing inconsistent labels is equivalent to removing samples
that have a large training loss [15,29]. In our implementation, we adopt the
co-teaching strategy in [12] and train two neural networks simultaneously. Each
network selects samples with a small loss to train the other. Let f and g be the
two networks with parameters w; and wg, respectively. Each mini-batch B will
be reduced to

B; = argmin ((B,i), (1)

|Bi|=r|B|

where i € {f, g}, ¢ is the loss function and r is the ratio of data that we want to
keep. To avoid accumulated error from the sample-selection bias, we train the
network f using samples in Bg and the network ¢ using samples in B -

Deep neural networks tend to learn easy patterns first and gradually memo-
rize hard samples as the number of training epoch increases. Therefore, we keep
more samples at the early stage of training and gradually increase the filter out
ratio. Let R(n) € [1 —7,1] be the proportion of the mini-batch samples that will
be kept at the n'” training iteration. We formulate the proportion as

R(n) =1 —min{n7,7}7 (2)
Ny
where n € [1,N], n < N, N is the total number of epochs, and 7 and n;, are
hyperparameters. Therefore, we select samples

B; = argmin {(i,B) (3)
|Bi|=R(n)|B|

at every iteration for network training.

3.2 Model Uncertainty Estimation

Experiments have shown that deep neural networks frequently suffer from er-
roneous predictions with high confidence [11,25]. To remedy this problem in
practice, methods were presented to estimate whether networks have learned
how to handle a testing sample or they just guess the solution. The idea is based
on the theory of Bayesian neural networks, and the output distribution can be
used to quantify model uncertainty.

While a standard network considers the input sample and determines one
predictive value, the Bayesian network computes a prediction distribution by

p(y|X, D) = / p(y|X, 0)p(61D)do, (4)

where X and y are the input sample and the corresponding label, respectively,
6 indicates the network parameters, and D is the data set. Specifically, p(y|X, )
tells us how well the network parameters 0 explain the observation. The predic-
tion p(y|X, D) considers all possible parameter configurations weighted by the
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their posterior probabilities p(8|D). Apparently, computing the exact posterior
distribution p(0|D) is difficult due to the complexity of deep neural networks. In
practice, the distribution can be approximated by training multiple models, and
the disagreement of the models yields the uncertainty [17].

Bayesian Approximation. We adopt the method in [2] and exploit the
network’s depth to quantify uncertainty because of its accurate approximation
and computational efficiency. The main idea is to add an auxiliary output layer
at the back of each intermediate block. Then, we view each output as a sub-
network’s prediction result. This enables us to estimate uncertainty by checking
the consistency of the predictions. An intuitive explanation to this Bayesian
approximation is that the sub-networks’ outputs would be consistent if they
have learned the sample. Otherwise, the outputs would be diverse. To perform a
Bayesian inference on the depth of a neural network, we consider the network’s
depth to be a random variable. Let a categorical prior over network’s depth d be
pa(d =1i) = 8; = 1/D, where i is the layer index and D is the number of network
layers. The marginal log likelihood of the model can be written as follows:

log p(D; 0) logz (pﬁ th(ytIXu = iﬁ)) ) (5)

where 6 indicates the network parameters and p(y|X,d = ¢,0) is the output
of the i layer. The posterior over depth, p(d|D;0) = p(D|d;0)ps(d)/p(D;0),
represents how well each layer explains the data.

Training. An intuitive approach to train the network is to maximize the
marginal log likelihood through stochastic gradient descent. However, the ap-
proach does not work because each layer is weighted by the depth posterior.
It leads gradients to vanish when the posterior collapses to a delta function.
Therefore, we adopt the strategy in [2] and optimize the network by stochastic
gradient variational inference. Let g, (d = i) = «; be an approximate posterior.
The evidence lower bound (ELBO) is written as

N
logp(D;0) =Y Eq, (o [log p(ye|Xs, d; )] — KL(ga(d)|[ps(d))-

t=1

Let B and N be the batch size and the dataset size, respectively. We maximize
the ELBO of each mini-batch by using

N S S ogpluefXond = 56) o) - Z(azlog 2. 6)

t=1 =1 —

Inference. After network training, we marginalize depth with the variational
posterior to predict price movements. For each new sample X*, the prediction
is computed using Bayesian model averaging [21]:

D
p(y*|X*,D;0) = Zp(yﬂX*,d:z';e)qa(d: i). (7)
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Regarding the uncertainty of the network’s output, we implement predictive
entropy and variance because they are common measures of the uncertainty
inherent in a distribution of possible outcomes. Then, we test their performances
on predicting stock price movements. Specifically, predictive entropy is defined
as
1
H(y" X", D;0) = 3 ply” = ¢|X*, Di6) logp(y” = c|X*, D368)  (8)
c=0

where ¢ € {0,1} is the class label. Moreover, the prediction’s variance is formu-
lated as

o2 (y* = 0|X*,D;0) = Ey_ () (p(y* = O|X*,d;9)2) —
Eqa(d) (p(y* = O‘X*v d; 9))2 . (9)

For a binary classification problem p(y* = 0|X*,d;0) = 1 — p(y* = 1|X*,d;0)
and o?(y* = 0|X*,D;0) = o%(y* = 1|/X*,D;0). Therefore, we only compute
a%(y* = 0|X*, D; 0).

3.3 Implementation Details

Features. Recall that the input of our network is a tensor X; = [zi—741,...,2¢] €
REXTXW “where F is the number of features, T indicates the past period that
the network considers, and W is the number of moving averages. In our im-
plementation, F' = 6, T = 30, and W = 4. The feature x; is composed of six
price attributes, including high, low, open, close, adjust close, and volume. For
each attribute, we computed the moving average according to four window sizes.
Specifically, the attributes of the past 1, 3, 7, and 14 days were averaged. We also
normalized the values in each sample individually to [0, 1] in the pre-processing
stage.

Network architecture. We built a convolutional neural network (CNN) to
forecast stock price movements. The network contained four convolutional layers
and then two fully connected layers. The first three convolutional layers consider
features along the temporal dimension, whereas the fourth layer exchanges infor-
mation at the same period. In addition, we link the output of every convolutional
layer to the shared fully connected layers to implement the depth uncertainty
network. Figure 1 illustrates the detailed network architecture.

Parameters and Network training. We initialized network parameters
using the Xavier initialization and set the batch size and the learning rate to
4096 and 0.003 for the KDD17 dataset, and 1024 and 0.001 for the ACL18 and
our collected datasets, respectively. Since price movement data of an individual
stock are rare, we followed the strategy in previous works and mixed samples of
different stocks for training networks. The AdamW [20] optimizer was adopted
to minimize binary cross-entropy loss. We repeated the training process for 300
epochs in our implementation. Subsequently, we selected the model that per-
formed the best on the validation data and tested it on the testing data for
evaluation.
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Fig. 1. The network architecture used in our study. Each intermediate layer has an
auxiliary output. The adaptive layer is set to adjust the resolution. By exploiting the
network’s depth, we obtain the approximation of a Bayesian inference by one forward.

4 Results and Evaluations

4.1 Comparison to Baselines

We evaluated the performance of our method on five datasets: the first two are
benchmark datasets ACL18 [34] and KDD17 [37], and the last three are our
collected datasets in which the testing periods are bull, flat, and bear markets,
respectively. We selected the stocks from the U.S. stock market that have the
highest trading volumes for evaluation. Specifically, they are GOOG, NVDA,
AMZN, AMD, QCOM, INTC, MSFT, AAPL, and BIDU. Table 1 shows the
description, and the ranges used for training, validation, and testing. Let x;
and ;41 be the closing prices of consecutive days. We computed the movement
percent by pip1 = (x¢41/2¢) — 1. Typically, the label y; 11 = 1 if p;11 > 0 and
yi+1 = 0 otherwise. However, to compare with the state-of-the-art methods,
we followed the setting of [8] and additionally defined the label y;11 = 1 if
pr+1 > 0.55% and y; 41 = 0 if pry1 < —0.5%. In other words, the samples with
flat price movements were ignored in the experiment.

Baselines. We briefly describe the baselines in the following paragraph. Two
of them were traditional technical analysis, and the others were the latest neural
networks.

— Time Series Momentum Strategy (MOM) [23] was based on the belief that
the current market trend will continue by taking the sign of returns over
the last period. We used the trend in the last 10 days as the momentum
indicator.
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Dataset|# stocks| Training Validation Testing
Jan-01-2014- | Aug-01-2015-| Oct-01-2015
ACL1S 88 Aug-01-2015 | Oct-01-2015 | Jan-01-2016
Jan-01-2007- | Jan-01-2015- | Jan-01-2016
KDD17) 50 Jan-01-2015 | Jan-01-2016 | Jan-01-2017
Bull 9 Oct-20-2006 -|{Jun-21-2012 -| Mar-11-2013
u Jun-20-2012 | Mar-10-2013 |- Nov-20-2013
Flat 9 Jun-19-2003- | Jan-04-2010- | Oct-26-2010-
Jan-03-2010 | Oct-25-2010 | Aug-19-2010
Bear 9 Jan-20-2001- | Sep-27-2007- | Jul-24-2008-
Sep-26-2007 | Jul-23-2008 | May-20-2009

Table 1. The number of stocks and the data ranges for training, validation, and testing
in our experiments.

— On-Line Moving Average Reversion (OLMAR) [18] was based on the belief
that prices will revert to the long-term mean by taking the opposite sign of
the difference between the last price and the moving average. We used the
30 days moving average as the mean reversion indicator.

StockNet [34] was a variational autoencoder exploiting text and price signals
to capture the market stochasticity. In the comparison, we discarded the text
signals because they are often unavailable in practice.

ADV-ALSTM [7] applied adversarial training to improve the generalization
of a prediction model. They generated additional samples by adding small
perturbations on input features and trained the model on both the origin
and perturbed samples.

Removing flat | Containing flat
ACL18|KDD17|ACL18|KDD17
MOM 46.61 | 49.12 | 47.92 | 48.84
OLMAR 52.7 | 49.85 | 52.21 | 50.23
StockNet 54.96 | 51.93 - -
ADV-ALSTM 57.2 | 53.05 | 52.03 | 51.95
Ours 54.96 | 53.49 | 53.5 | 52.69
ADV-ALSTM (10%)| 55.37 | 53.58 | 50.54 | 54.26
Ours (10%) 64.98 | 55.81 | 60.8 | 55.37

Table 2. Mean accuracy of the baselines on the ACL18 and KDD17 datasets. All
of the methods performed only slightly better than a random guess. However, the
mean accuracy considerably increases if the top 10% certain samples are evaluated.
We highlight the highest accuracy in boldface.

Experiment Results. Table 2 shows the comparison results on ACLIS8
and KDD17 datasets. The reported statistics were the mean testing accuracy
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Fig. 2. We compared our method to ADV-LSTM-Dropout on our collected datasets.
The testing periods are bull, flat, and bear markets, respectively. We report the predic-
tion accuracy from the cumulative lowest to highest uncertain samples for evaluation.

of five different runs. From the numbers, one can realize that predicting stock
price movements is extremely difficult. Even the state-of-the-art, ADV-LSTM
[7], achieved an accuracy slightly higher than a random guess. Since, to the
best of our knowledge, there are no stock price prediction methods built upon
deep neural networks and consider uncertainty, we extend ADV-LSTM and se-
lected the top 10% certain samples for comparison. Because ADV-LSTM’s net-
work cannot exploit depth structures for uncertainty estimation, we apply the
dropout approach to approximate the posterior inference [9]. The final result is
the average of its five predictions. We named the extended ADV-LSTM as ADV-
LSTM-Dropout. In our implementation, we set the dropout rate to 0.8; we also
repeated the experiments five times to estimate the output’s variance since our
network contains five branches. As indicated in Table 2, our selected top 10%
certain samples have higher prediction accuracy than the remains, whereas the
samples selected by ADV-LSTM do not. We suspect the reasons could be: (1)
dropout reduces the prediction accuracy during inference, and (2) the network
cannot learn effective knowledge from the training data that contain aleatoric
uncertainty. However, without theoretical proofs and thorough experiments, they
may not truly explain the phenomenon.

We additionally compared our method with ADV-LSTM-Dropout regarding
different degrees of uncertainty on our collected datasets. The testing periods are
bull, flat, and bear markets, respectively. We mixed all stocks in the testing data
and ranked the data based on the uncertainty of each sample in ascending order.
The mean accuracy of the cumulative lowest 10% to 100% uncertain samples
was computed. As indicated in Figure 2, the mean accuracy of our results grad-
ually decreased as the uncertainty increased, which implies that our network can
achieve higher accuracy when it is more certain about its prediction. Although
ADV-LSTM-Dropout had a similar trend, it was not as clear as ours.

In the following sections, we evaluated the system on the whole testing set
(i.e., containing flat movements) since removing them is unachievable in practice.
Namely, y;+1 = 1 if py1 > 0 and ;41 = 0 otherwise.
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Fig. 3. The mean prediction accuracy of networks trained on a variety of conditions. We
evaluated the accuracy of predictions from the cumulative lowest to highest uncertain
samples. NL, Var, and PE are the abbreviations of noisy label training, uncertainty
estimated by variance, and uncertainty estimated by predictive entropy, respectively.
The line charts indicate the effectiveness of uncertainty awareness prediction. This
phenomenon appeared both in the predictions of the next day and the next ten days.

4.2 Uncertainty Estimation using Variance and Predictive Entropy

We estimated the prediction uncertainty by computing the output’s variance and
predictive entropy. To evaluate the performance of these two strategies, we com-
pare the accuracy regarding different degrees of uncertainty. In this experiment,
we trained the network to predict the price movement of the next day and the
next 10 days and plotted the results in Figure 3. All stocks in the testing data
are mixed and then ranked for evaluation. As indicated, the mean accuracy of
the stocks gradually decreased as the uncertainty increased. This phenomenon
appeared both in predictions of the next day and the next 10 days, irrespec-
tive of whether variance or predictive entropy was used to represent uncertainty.
Overall, the predictive entropy slightly performs better than the variance on the
ACL18 dataset, yet this advantage is not clear on the KDD17 dataset.

In addition to mixing all stocks together, we evaluated each stock’s mean
prediction accuracy under the ranking of uncertainty. Let h% be the mean accu-
racy of the 7% lowest uncertain samples of stock i, where r = {0.1,0.2, ..., 1.0}.
We compute the Pearson correlation coefficient between 7 and A’ of each stock.
The coefficient ranges from -1 to 1, which indicates negative and positive cor-
relations, respectively. Figure 4 shows the correlation histogram results on the
KDD17[37) and ACL18 [34] datasets. The = and y axes represent the Pearson
correlation coefficient and the number of stocks within each range, respectively.
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Fig. 4. The Pearson correlation coefficient between prediction uncertainty and accu-
racy. The x and y axes represent the range of the coefficient and the frequency, respec-
tively. Clearly, in most stocks, low prediction uncertainty leads to high accuracy.
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As indicated, most of the stocks have negative coefficients, which fulfilled the ex-
pectation, i.e., the lower is the uncertainty, the higher is the accuracy. Different
from the results of mixing all stocks together, the variance in this experiment
performs slightly better than the predictive entropy since samples in the bin of
0.8-1.0 are few.

4.3 The Effectiveness of Removing Aleatoric Uncertainty

We remove samples with aleatoric uncertainty by applying the noisy label train-
ing. In addition to the benefits of uncertainty quantification, this strategy im-
proves network’s generalization because it was not forced to memorize samples
with inconsistent labels. To evaluate the effectiveness, we trained the networks
with and without removing inconsistent samples and compared their predictive
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accuracy on the benchmark datasets. The lines in Figure 3 verify that removing
aleatoric uncertainty was effective. The improvement was about 1% accuracy
if the whole testing set is evaluated. It is worth noting that the testing data
were noisy. Even though the trained network achieved perfect generalization, it
was not guaranteed to predict price movements accurately. In addition, remov-
ing samples that have inconsistent labels could advance uncertainty awareness
of network predictions. The experiment results revealed that networks trained
to fulfill all training data did not learn how to predict price movements. Their
prediction accuracy was still low even though they were certain about the pre-
dictions of the selected samples.

Removing aleatoric uncertainty helps networks learn price trends in a dataset.
Since samples with inconsistent labels have been removed, the network will be
unfamiliar with them during testing. This strategy makes the network be certain
about only the samples similar to those appearing in the training data and having
consistent labels. That is why our system can considerably increase accuracy
when the network is certain about its prediction.

4.4 Confidence v.s. Certainty

Neural networks output the probability of each label to represent their predic-
tion. Since high probability is often interpreted as high confidence, we com-
pare the relationship of these two measures to accuracy. Because the predicted
probability in our implementation was a vector weighted from several outputs
(Equation 7), which was an ensemble, we additionally trained a standard net-
work that has the same depth, but did not contain branches, for the compari-
son. The parameters, such as kernel size, activation functions, and numbers of
channels were unchanged. Let the output of this standard network be a 2D vec-
tor (pe,py), where py and py are the probability of rise and fall, respectively,
0 <pe,pr <1,and p,+ps = 1. We computed the non-confidence of a prediction
by min(1 — pe, 1 — py). Overall, low values indicate high confidence. We then
ranked the testing data based on the non-confidence of each sample in ascend-
ing order, and computed the mean accuracy of the lowest 20%, 50%, and 80%
non-confident, and all samples. The accuracy of samples selected according to
confidence and certainty estimations was compared.

Figure 5 shows the mean test accuracy during network training. As indicated,
the accuracy lines of different uncertainties are clearly separated, while the lines
of different non-confidence are not. Moreover, the high certainty samples enjoy
high accuracy. This means that sample selection based on certainty was markedly
reliable. It is also worth noting that the selected samples in each epoch were
different because the network changed when training.

4.5 Compatibility to Other Network Structures

Our uncertainty framework is compatible with all types of network structures.
In our implementation, we build a CNN with multiple branches to approximate
a Bayesian network because of the balance between accurate approximation and
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computational efficiency. The Bayesian approximation, however, can be achieved
by ensemble models [17] or dropouts [10,9]. Regarding the noisy label training,
we utilize two networks with the same structure to remove samples with incon-
siste nt labels [12]. This training strategy is irrelevant to network structures.
Therefore, new uncertainty measures and noisy label training methods can be
seamlessly integrated into our system to improve prediction accuracy further.

4.6 Limitations and Future Works

Although our experimental results indicate that considering uncertainty when
forecasting stock price movements is effective, there is still a large space for
improvement. After all, financial markets are noisy and uncertain. In addition,
the amounts of daily stock price data are rare. While ancient samples could be
useless for predicting future price movements, removing samples with aleatoric
uncertainty would further reduce the data size. In our implementation, we mixed
samples of different stocks to enlarge the data set. However, since stocks are of
different properties, networks trained on the mixed data could be insufficient to
predict the price movements of a specific stock. Therefore, in the future, we will
consider stock relationships to overcome the problems caused by data mixing.

5 Conclusions

In this study, we consider aleatoric and model uncertainty when predicting stock
price movements. The uncertainty estimation allows the network to know how
certain the prediction is, which provides a high degree of freedom for investment
strategies. While estimating aleatoric uncertainty during inference is challeng-
ing, we transform aleatoric uncertainty to model uncertainty by removing sam-
ples with inconsistent labels. The Bayesian inference is then applied to evaluate
whether networks are familiar with a testing sample for estimating model un-
certainty. In addition, removing samples with aleatoric uncertainty improves the
network’s generalization because networks only learn from samples with con-
sistent labels. They are only certain about samples that have been seen in the
training set and contain consistent labels. Experiment results verified that the
high certainty of our network prediction indeed results in high accuracy.
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