ShuttleFlow: Learning the Distribution of
Subsequent Badminton Shots using Normalizing
Flows

Yun-Hsuan Lien'", Chia-Tung Lian' and Yu-Shuen Wang!

"Department of Computer Science, National Yang Ming Chiao Tung
University, 1001 University Road, Hsinchu, 300, Taiwan.

*Corresponding author(s). E-mail(s): sophia.yh.lien@gmail.com;
Contributing authors: doutble@gmail.com; yushuen@cs.nctu.edu.tw;

Abstract

This paper introduces ShuttleFlow, a simple yet effective model designed to fore-
cast badminton shot types and shuttle positions. This tool could be invaluable
for coaches, enabling them to identify opponents’ weaknesses and devise effective
strategies accordingly. Given the inherent unpredictability of player behaviors,
our model leverages conditional normalizing flow to generate the distributions of
shot types and shuttle positions. This is achieved by considering the players and
their preceding shots on the court. To augment the performance of our model,
especially in predicting outcomes for players who have not previously competed
against each other, we incorporate a novel regularization term. Additionally, we
utilize Poisson disk sampling to reduce sample redundancy when generating the
distributions. Compared to state-of-the-art techniques, our results underscore
ShuttleFlow’s effectiveness in forecasting shot types and shuttle positions.

Keywords: Uncertainty, Shot Types, Shuttle Positions, Distribution Modeling

1 Introduction

Badminton is a sport where two competitors aim to strike a shuttle over a net, attempt-
ing to land it within the opponent’s court to gain points. Esteemed international
events, such as the Thomas Cup, Sudirman Cup, and the Olympics, are orchestrated
annually by the Badminton World Federation. The ability to accurately anticipate the

ShuttleFlow

n e
U oy, s
Y ,(pb to) ‘ ‘ ‘

¢ NORORGNONOE s
* -+ *
N(0,1)

(Pa|St,)” Invertible layers

Fig. 1: We introduce ShuttleFlow, an invertible network capable of transforming a
normal distribution into the distribution of shot types and shuttle positions, condi-
tioned on the players and their previous shots. Specifically, the blue circles and arrow
on the court denote the positions of shots at times ¢y, and t¢1, respectively, and the
orange dots represent potential shuttle positions at shot t5. In this example, player p,
executes shot t1, while player p, performs shots ¢ty and ts.

shuttle’s trajectory and shot type is pivotal. Such foresight aids players in position-
ing themselves optimally and offers coaches critical data for refining game strategies.
While predicting exact shot types and shuttle positions remains a significant challenge
— owing to players’ strategic objectives of making the shuttle descend where their
opponent might struggle to reach — it’s not insurmountable. Factors like the shut-
tle’s inherent design, the restrictive presence of a net, and the game’s swift pace often
result in players exhibiting certain patterns. For instance, a player transitioning from
the rear to the front of the court is typically more inclined towards defensive plays
such as drops or clears, rather than aggressive smashes. Thus, while predicting the
exact next move is arduous, calculating its likelihood based on these patterns becomes
considerably more manageable.

Our objective is to forecast the distribution of shot types and shuttle locations
under specific conditions. The recent ShuttleNet approach (Wang et al, 2021b) uses a
transformer network to model shuttle distribution as a bivariate normal distribution,
taking data in previous shots as input and generating a mean, variance, and correlation
coefficient. Chang et al (2022) expanded on this by incorporating dynamic graphs
where each node symbolizes the player’s position at a shot. However, the bivariate
normal distribution assumption is not consistently valid, as shuttles can land in any
position that is challenging for opponents to return (see Figures 1 and 3). Furthermore,
both methods predict shot types by minimizing cross-entropy loss, a process that
overlooks uncertainty and results in suboptimal generalization (Li et al, 2020). As
a result, despite using advanced network architectures and training strategies, these
approaches fall short in accurately forecasting shot types and shuttle positions.

The core innovation of our work is that the prediction of shot types and shuttle
positions can be significantly simplified when approached as a distribution modeling
problem. To support this perspective, we present a simple yet effective forecasting
method that surpasses earlier techniques reliant on complex network architectures and
training schemes. Our approach utilizes a generative network known as conditional
normalizing flows (NF) (Kingma and Dhariwal, 2018; Grathwohl et al, 2018), designed
to optimize the distribution of both shot types and shuttle locations. Specifically, an
NF takes a random vector z as input and produces a sample x in a target distribution.
Compared to generative adversarial networks (GANs) (Goodfellow et al, 2014), NF
is free of mode collapse (Winkler et al, 2019), which is a phenomenon where the
model fails to generate data as diverse as the actual data distribution. For example,
in Figure 1, the shuttle distribution consists of three clusters, and the model may only
produce samples belonging to one of these clusters if mode collapse occurs. To mitigate
forecasting inaccuracies, we propose a regularization term within the conditional NF to
improve its generalization, particularly when predicting matches involving players who
have not previously competed against each other. Furthermore, we utilize the Poisson
disk sampling (Wei, 2008), a technique known to yield more uniformly distributed
samples compared to random sampling, to increase the sampling quality.

Our conditional NF effectively models possible shot types and shuttle locations,
leveraging data regarding players and their previous shots. The efficacy of our
approach was assessed by comparing it to several baseline models. Experimental results
demonstrated the effectiveness of our methodology.

2 Related Work

Normalizing flows

Normalizing flows (NFs) are neural networks that can generate data by transforming
a noise vector from a standard normal distribution into more complex samples such
as images. They have the benefits of being easy to sample from, stable to train, and
accurate at estimating probability densities. However, to be tractable and invertible,
normalizing flow layers have certain conditions which may limit their expressiveness
compared to feedforward networks. Despite this, several methods have been developed
to mitigate these limitations. Discrete normalizing flow methods (Dinh et al, 2014,
2016; Kingma and Dhariwal, 2018; Ho et al, 2019) utilize the change-of-variable the-
ory and involve transforming the data between layers. Continuous normalizing flow
methods (Chen et al, 2018; Grathwohl et al, 2018) model data dynamics over time
and are formulated as ordinary differential equations. Furthermore, both discrete and
continuous normalizing flows can model distributions that are conditioned on given
attributes (Lugmayr et al, 2020; Abdal et al, 2021; Yang et al, 2019).

NF is a versatile tool with applications beyond creating content. For instance, they
have been utilized to predict uncertain pedestrian trajectories (Zigba et al, 2020) and
to capture complex distributions (Sendera et al, 2021). Louizos and Welling (2017) also
proposed multiplicative NF for approximating the posterior in a variational setting
for Bayesian neural networks. In this work, we use NF to model the distributions of

shot types and shuttle positions, and implement Poisson disk sampling (Wei, 2008)
and regularization strategies to enhance forecasting accuracy.

Sports Analytics

Machine learning has been widely used in analyzing sports such as basketball, soccer,
and football. These techniques can be employed to discover new tactics (Decroos et al,
2018; Beal et al, 2020), evaluate player actions (Decroos et al, 2019), and predict the
outcome of games (Sharma et al, 2021). In addition to team sports, specific methods
have also been developed for racket sports like badminton. Since data is crucial in
sports analysis, researchers have applied computer vision techniques to identify stroke
types, court lines (Chu and Situmeang, 2017), player positions (Ghosh et al, 2018),
and reconstruct 3D shuttle trajectories (Shen et al, 2018; Liu and Wang, 2022). While
video footage may not always provide sufficient detail about players’ fine motor skills
(e.g., due to low resolution or occlusion), Song et al (2020) equipped sensors on a
smart glove for players to wear and recorded their hand movements during badminton
games. Hsu et al (2019) and Wang et al (2020) used both videos and sensors to collect
badminton data for tactical analysis.

Sports analytic systems typically depend on visualization to navigate complex
tactics and player behaviors (Wu et al, 2021; Chen et al, 2023). To our knowledge,
there are few methods for automatically analyzing badminton game data. One of
them is ShuttleNet (Wang et al, 2021b), which uses a transformer network to model
the shuttle distribution using a bivariate normal distribution. Chang et al (2022)
introduced DyMF, which further refines ShuttleNet by incorporating dynamic graphs
where each node signifies a player’s position at a shot. However, as depicted in Figure 1,
the assumption of a bivariate normal distribution may not always hold. Furthermore,
the aforementioned methods approach shot type forecasting as a classification task and
optimize the network using cross-entropy loss. Considering the inherent uncertainty in
subsequent shot types, expecting precise forecast types from the training data could
lead to memorization and impaired generalization (Li et al, 2020). In contrast, our
method is grounded on generative models and reframes forecasting as a distribution
modeling problem, substantially simplifying the task of predicting shot types and
shuttle positions.

3 Backgrounds

A normalizing flow (NF) is a type of neural network that can transform data in both
the forward and backward directions. Let f : R — R? represent an NF, and let x and
z be samples drawn from the distributions p, (x) and p.(z), respectively. We express
the relationship between x and z as: z = f~!(x),x = f(z). In practice, p,(x) can
represent an unknown complex data distribution, while p,(z) is a standard normal
distribution that is easy to sample from and estimate density for. It is also possible to
extend an NF to a conditional NF by replacing the distribution p,(x) with p,, (x[y),
where y is a set of attributes that can describe x. Although an NF can be implemented
using discrete or continuous methods, we choose the latter due to its proven efficiency
(Chen et al, 2018; Grathwohl et al, 2018). In this context, the evolution of data over

time can be expressed as an ordinary differential equation (ODE):

dZt
— = f(t,y,2¢), 1
= f(ty.m) 1)
where z; is the state of z at time ¢, zg ~ M (0,Z) is a random vector, and y is the
condition. The function f satisfies uniform Lipschitz continuity at each z;, which allows
for the invertibility of f. It also parameterizes how a data point z;, (= z) evolves to
zi, (= x) at each time t. The relationship between x and z is therefore expressed as

follows:
ty

X =74, + f(t,y,z)dt. (2)
to
Since the backward function of NF transforms py, (x|y) to p.(z), we train the network
f~! by minimizing the negative log-likelihood (NLL)

t1 a
L = —logp,y(x]y) = —logp.(z4,) —|—/ tr <6f> dt. (3)
to Z

Given that the conditional NF is formulated as an ODE, we employ the adjoint method
(Pontryagin et al, 1962), an ODE solver, to optimize the network parameters. For the
details of these equations and the optimization algorithm, we direct readers to (Chen
et al, 2018; Grathwohl et al, 2018).

4 Modeling Shot and Shuttle Location Distributions

The dataset employed in this study contains the shuttle trajectories of professional
badminton players during tournament matches. Each trajectory is characterized as a
sequence of player positions and shot types, (so,S1,S2,...Sn—1), where s; = (24, Yt, ht)
represents a shot at time ¢, (x,y) indicates a shuttle position, h is a one-hot vector
signifying the shot type', and n is the total count of shots in a rally.

Since players’ decisions on shots are mostly influenced by the recent game condi-
tions, we concentrate on the relationships between consecutive shots tg, t1, and ts.
This approach allows us to segment long shuttle trajectories into overlapping sections,
each consisting of three shots. Specifically, we extract tuples (pq, Pb, Sty St , St,) from
the dataset, where p, and p, are one-hot vectors representing the players. In this con-
text, player p, executes shot s, , while player p;, performs shots s;, and s;,, as depicted
in Figure 1. Hence, given a condition ¢ = (pg, Py, St,, St,), the goal is to regress this
condition to the subsequent shot s, .

4.1 Distribution Mapping

Given that player behaviors are inherently unpredictable, even under similar condi-
tions ¢; and c;, the following shot types and shuttle positions (i.e., s¢,(c;) and sy, (c;))
may vary. Training a neural network to regress similar data to distinct outcomes can

1The 10 shot types are net shot, lob, defensive shot, smash, drop, push/rush, short service, clear, drive,
and long service.

|

(8i458i4) Pa Py BatchNorm
o TLI Input Shape:
¢ ; } (#points, 2) el
| Shot Embedder | | Player Embedder | ! ConcatSquashLinear
l 1 l Output Shape: : 1
M (#points, 512) TG
E@™m@ED « : !
l E ConcatSquashLinear
. . Output Shape:
- < (#points, 512) : Tavh
> >
- <
. > ' ConcatSquashLinear
< < '
f Output Shape:
” » 0 = » (#points, 512) ok
: ° ConcatSquashLinear
. . Output Shape: |
< < (#points, 512) 1
H Tanh
S={s}M N={w}M
{ ’}‘:l { l}‘:l H Concat SquashLinear
Output Shape: *~. 1 ___________ L
L. (#points, 2)
Training —> Inference —> Both —— BatchNorm

|

Fig. 2: The diagram on the left illustrates the architecture of our ShuttleFlow. The
arrows in different colors depict the direction of data flow during training and inference.
The layers and specific functions of f are depicted on the right side.

lead to overfitting (Li et al, 2020). Hence, we choose to model the distribution of possi-
ble outcomes rather than the precise shot type and shuttle position. The objective thus
becomes to generate the distribution of the subsequent shot S;|c;, where S; includes
the shots that meet the condition ¢;. To achieve this, we train an NF to map a normal
distribution to the distribution of shot types and shuttle positions conditioned on the
players and their previous shots. The NF is defined as follows:

t1

S; = Uy, + fe(ta Civut)dt' (4)
to

where uy, ~ N(0,7), 6 is the parameter of f, and s; is a shot in S; that satisfies c;.
Since an NF is a bi-directional neural network, we train the backward function f, !
using the negative log-likelihood:

11 3
Lot = — logpsic(sjlei) = — log pu(u,) + / tr (f) d. (5)
to ouy

Upon completion of training, the forward function fy is employed to predict upcoming
shots §;, utilizing information about the players and their preceding shots c;. As
NFs are bidirectional neural networks, their ability to transform a data distribution
into a normal distribution implies a reciprocal capacity to recreate the complete data
distribution when reverting from the normal distribution. This guarantees an accurate
modeling of shot type and shuttle position distributions.

4.2 Positional embedding

The NF maps the distribution from N to S;|c;, which is conditioned on player positions
and shot types. Since S;|c; can vary significantly in terms of ¢;, we apply positional
embedding (Mildenhall et al, 2020) to s before inputting it into the network. Let
p € {z,y} be a coordinate of s. We expand s to pos(s) by increasing the dimensionality
of each p to 2L using: (sin(2°7p), cos(2°7p), ..., sin(2X~17p), cos(2L~17p)). Namely, the
condition ¢; = (pqa, Db, POS(Si 1,), POs(S;i ¢,) is obtained.

4.3 Regularization

Coaches may require predictions for matches between specific player pairs without
available training data, which could lead to unexpected outcomes. To address this,
we introduce a regularization term, assuming a player would exhibit typical behavior
when facing a new opponent. Specifically, we define S,_p, (Si.¢,,Si,t,) t0 represent the
distribution played by players p, against p, when they are in conditions s; 4, and s; 4, .
We also define S, (Si.t9,8i,t;) = Up, Spaps (SitosSi,ty), where p, can be an arbitrary
player in the dataset. In other words, S, represents the behavior of player p, in gen-
eral, regardless of the opposing player. For simplicity, we will use S as an abbreviation
for S(sit,,8i,t,), and assume identical conditions when comparing these terms.

The regularization term is based on the assumption that player p, would respond
in a standard manner when competing against a new opponent p.. Let D(-,-) denote
the distance between two distributions. The regularization term can be expressed as:

E'reg<pa7pc) = |D(Spapu? Spa)| . (6)

Since S, can be pre-computed as the union of S, ,, over all p, using training data,
minimizing Equation 6 is equivalent to transforming the distribution of S, to a stan-
dard normal distribution N subject to c,, ., in which the two players in the condition
are p, and p.. Therefore, we rewrite the term as follows:

Ereg(pavpc) = - 10gp$|C(sj|cpapc)

t1 af
= —logpy () + tr| =—) dt. Vs; €8,,. (7)
to ouy

In our implementation, we minimize the regularization term Lyeq(pq, pc) solely to pairs
of players p, and p. who have not previously competed against each other.

4.4 Poisson Disk Sampling

To effectively plan tactics, coaches and players need to analyze the distributions of
shot types and shuttle positions by their opponents. To do this, they can plot dots on a
tactical board that depicts the distribution. One method to achieve this is by randomly
drawing samples from a standard normal distribution and feeding them into an NF.
However, this approach may result in clumped samples and empty spaces, providing
redundant or missing information. To resolve this problem, we utilize Poisson disk

sampling (Wei, 2008) to create more evenly distributed samples. Our method includes
drawing samples from a uniform distribution using Poisson disk sampling, converting
them to a normal distribution through a cumulative distribution function, and then
using the NF to map the samples to the distribution of shot types and shuttle positions.

4.5 Implementation Details

Network architecture

Our network consists of three components: a player encoder, a shot encoder, and an
NF. The player encoder converts one-hot vectors p, and p;, into player embeddings M,
and M,, respectively, while the shot encoder takes shots (i.e., 12D, including player
positions and shot types) sy, and s;, as inputs and generates a shot embedding M,,.
The three embeddings are then concatenated and used as a condition for the NF. The
architecture of the network is shown in the left part of Figure 2. The NF is constructed
using a moving batch normalizing layer (Yang et al, 2019), four concatsquash layers
(Grathwohl et al, 2018), and another batch normalization layer, as shown in the right
part of Figure 2. Additionally, the concatsquash layer is defined as follows:

CCS(t,c,u) = o1 ((Wyu+by,) x gate + bias),
where gate = 09(Wit + Wicc + by), bias = (Wit + Wpee + bpt), (8)

Wy Wi, Wie, Wi, We, by, by, by are learnable parameters, and oy and o5 are tanh and
sigmoid activation functions, respectively.

Parameter Setting

We used the Adam optimizer to train the network, with a batch size of 64, a learning
rate of 0.002, and B; and (B2 values of 0.9 and 0.999, respectively. The tolerance for
the ODE solver was set to 107°, and the expanded dimensionality 2L for positional
embedding was set to 6.

5 Results and Evaluations

We evaluate the efficacy of our algorithm by comparing it against several baselines
under two distinct experimental setups. These methods employ the same input as
ShuttleFlow to predict shot types and shuttle positions.

5.1 Data and Experiments

We tested our method using the dataset released by ShuttleNet (Wang et al, 2021b),
which consists of 78 games played by 28 professional players. The games were divided
into 4031 rallies, each with an average of 10 shots. Since each prediction is based on its
previous two shots, we excluded rallies with fewer than three shots when evaluating
the performance. This resulted in 3553 rallies being used for evaluation. We conducted
two experiments to assess the performance of our method.

. Position (RMSE) | Shot type (CE) |

Method Setting | 1 _16 k:32(k:64) %=96 | k=16 k=32 k(:&Z k=96
ShuttleNet 093 T 086 [081 [0.79 | 227 [2.27 [2.27 | 2.27
DyMF 077 | 075 | 074 | 072 | 1.98 | 1.08 | 1.98 | 1.98
REG Expl: | 038 | 033 | 030 | 028 | 1.83 | 1.70 | 1.68 | 1.65
CVAE | by rallies | 038 | 033 | 031 | 030 | 1.82 | 1.74 | 1.70 | 1.68
PGGAN 031 | 027 | 026 | 025 | 1.75 | 1.68 | 1.64 | 1.63
ShuttleFlow 027 | 0.21 | 0.16 | 0.13 | 1.47 | 1.35 | 1.32 | 1.29
ShuttloNet 0.86 [079 [072 [0.60 [220 [2.29 [2.20 | 2.29
DyMF 1.05 | 1.04 | 1.02 | 1.01 | 1.99 | 1.99 | 1.99 | 1.99
REG Exp2 | 050 | 044 | 040 | 039 | 212 | 2.03 | 1.98 | 1.96
CVAE | by players | 0.51 | 046 | 0.43 | 042 | 224 | 2.14 | 2.11 | 210
PGGAN 038 | 034 | 033 | 031 | 221 | 209 | 204 | 2.01
ShuttleFlow 028 | 0.21 | 0.16 | 0.13 | 1.52 | 1.33 | 1.32 | 1.29

Table 1: We compared our ShuttleFlow with state-of-the-art methods and several
generative models under two experimental settings, with the numbers indicating the
forecasting errors associated with different sampling numbers k. It’s worth noting that
the CE values for both ShuttleNet (Wang et al, 2021b) and DyMF (Chang et al,
2022) remain consistent irrespective of k, as they treat shot type forecasting as a
classification problem. In contrast, for the generative models, the CE values exhibit a
minor decrease as k increases, attributable to the enhanced accuracy of the estimated
categorical distribution. The best results are highlighted in bold fonts.

Experiment 1: data partition by rallies

This experiment, which was conducted according to ShuttleNet’s protocol, aimed to
forecast games featuring players that the network had learned to recognize. Let p,
and p, be two players in a testing sample. In this experiment, the rallies played by
players (pq, pp) must appear in the training set. We randomly partitioned the data into
2728 rallies for training and 725 rallies for testing, while ensuring that the condition
mentioned above was met.

Ezxperiment 2: data partition by pairs of players

Due to the limited number of games held in tournaments, there may not be enough
rallies played by a specific pair of players for training. Therefore, we evaluated the
forecasting results in a scenario where two players compete in a game for the first
time. Let p, and p, be two players in a testing sample. We assumed that the training
set includes rallies played by p, and pp, but not by these two players together. To
evaluate this scenario, we first grouped the rallies according to the pairs of players
and then moved a group to the testing set for evaluation. The remaining groups were
used for training. Due to the imbalanced sizes of the data, we chose to evaluate five
pairs of players with the most samples.

In both experiments, we trained the NF for 30 epochs. Besides, we randomly
selected 10% of the training data and moved it to the validation set for model selection.

5.2 Evaluation Metrics

Our evaluation strategy was consistent with the methodologies employed in ShuttleNet
(Wang et al, 2021b) and DyMF (Chang et al, 2022). Although the future shots are

uncertain, the ground truth for each prediction is restricted to one shot type and
one court coordinate. To assess prediction accuracy, we drew k random samples from
the forecast distribution. For the shuttle’s position, the accuracy was evaluated by
taking the smallest distance between these samples and the actual result as the error
in prediction. In contrast, the shot type’s accuracy was determined by creating a
categorical distribution from the samples, followed by the computation of the cross-
entropy (CE) error. Recall that the CE error is defined by:

Lop == p(z)logg(z), (9)

with p(z) and ¢(z) symbolizing the actual and predicted probabilities for each category
z. Given that the CE function aggregates the weighted prediction errors across all
classes, the average error across the testing set offers insights into the accuracy of
predicted probabilities, even in the face of uncertain future shot types.

Due to the probabilistic nature of the evaluation, we tested several values of k£ and
repeated the experiments 10 times. The root mean square errors (RMSE) and CE
errors are reported in Table 1. Intuitively, a higher value of k& would lead to a lower
distance error because more samples are drawn from the forecast distribution. On the
other hand, the CE values are less irrelevant to k since the drawn samples are used to
determine the categorical distribution of shot types.

5.3 Comparison to State-of-the-art Methods

We evaluated the performance of ShuttleFlow through a comparative study against
two baseline methods: ShuttleNet (Wang et al, 2021b) and DyMF (Chang et al, 2022).

Experiment Results

Table 1 provides the forecasting errors for Experiments 1 and 2 in relation to the num-
ber of drawn samples, k. ShuttleFlow outperformed the baseline methods - ShuttleNet
(Wang et al, 2021b) and DyMF (Chang et al, 2022) - in both experiments. For shuttle
positions, our forecasting errors were approximately three times lower than those of
the baselines. These outcomes are consistent with expectations given that ShuttleFlow
is adept at modeling complex shuttle positions. The scatter plots showcased in Figure
3 shed light on ShuttleFlow’s performance. These plots also highlight the inaccuracy
of assuming the shuttle distribution to be a bivariate normal distribution.

Although ShuttleNet and DyMF can be extended by generating multiple Gaus-
sians to fit the shuttle distribution, training such networks is challenging for two main
reasons. Firstly, it’s not immediately clear which Gaussian is responsible for which
part of the data distribution. Secondly, it requires considering not only the distribu-
tion of each Gaussian component but also their corresponding weights. By contrast,
normalizing flow offers a more straightforward approach, as it directly transforms the
data distribution through an invertible function without needing to manage multiple
component distributions and their corresponding weights.

In addition to shuttle positions, ShuttleFlow reduced the CE errors in shot type
forecasting to about three-quarters of those made by ShuttleNet and DyMF. While

10

Ground truth ShuttleNet DyMF ShuttleFlow

Fig. 3: The predicted shuttle distributions, as derived from ShuttleNet (Wang et al,
2021b), DyMF (Chang et al, 2022), and ShuttleFlow, are presented. The player’s
positions at shots tg and ¢; are denoted by red circles, with the orange dots signifying
probable shuttle locations at shot t5. Both shots ty and ¢; are drop shots. The ground
truth result is established by collecting shuttle positions from the training data where
their conditions closely resemble the one used in this example.

Cross Entropy

—— ShuttleNet_Train
————— ShuttleNet_Test
——— DyMF_Train
————— DyMF_Test

—— ShuttleFlow_Train
————— ShuttleFlow_Test

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Fig. 4: The CE curves indicate that only ShuttleFlow can model the uncertainty
associated with shot types. The experiment was conducted in Experiment 1.

the CE loss function can be used to assess the accuracy of shot type forecasting, it
is less ideal for steering network training due to inherent uncertainties. This arises
because networks, in their bid to minimize CE loss, often resort to producing sharper
class probability vectors during forecasting (Wei et al, 2022; Nguyen et al, 2015). This
strategy, however, can result in overfitting and subsequent poor generalization (Li
et al, 2020). As illustrated in Figure 4, while ShuttleNet’s training loss consistently
decreased over time, its testing loss remained high. DyMF, conversely, demonstrated
signs of underfitting, with both its training and testing loss no longer decreasing after
just 5 training epochs. This may stem from DyMF’s robust training strategy that

11

treats conflicting examples equally (Ma et al, 2020; Wang et al, 2021a). In contrast,
our method utilizes a generative network to simultaneously model shot types and
shuttle positions, which enhances forecasting accuracy. It’s worth noting that while
ShuttleFlow’s loss values displayed some variations, this is primarily a result of its
optimization strategy using the NLL loss instead of the CE loss, along with its method
of using sampling to establish the categorical distribution.

5.4 Comparison to Generative Networks

As we have reformulated the forecasting of shot types and shuttle positions as a
distribution modeling problem, we also compared ShuttleFlow to several generative
networks that can generate a distribution of data points. Detailed descriptions of these
methods can be found in Figure 5 and the following paragraphs.

Regression (REG)

We train a regression network that takes a 128D random vector and a specific condition
as inputs. It outputs a 256 x 12 D vector, representing 256 2D positions, and 256 10D
vectors, signifying the distribution of upcoming shot types. To train the network, we
utilize the earth mover’s distance (EMD) (Rubner et al, 2000) to measure the disparity
between predicted and true distributions, anticipating similarities between them. Note
that training this regression network, as well as the conditional variational autoencoder
discussed in the subsequent paragraph, necessitates a specific data collection process
since the condition aligns with a particular output distribution. In contrast, training
the ShuttleFlow does not require this process because its loss evaluates the likelihood
of the transformed distribution being a standard normal distribution. In other words,
subsequent shots with different conditions can be optimized simultaneously in the
same batch. Further details on the data collection process are provided in appendix.

Conditional Variational Autoencoder (CVAE) (Sohn et al, 2015)

Similar to conditional normalizing flows, CVAEs are frequently employed for data
generation based on specific attributes. In our evaluation, the CVAE encodes the
upcoming shuttle distributions and shot types (i.e., a 256 x 12 D vector) into 128D
vectors, then decodes these vectors to reconstruct the original data. The given con-
dition serves as an input for both encoding and decoding processes. The network is
optimized using Kullback-Leibler divergence and the EMD. After training, the encoder
is eliminated, and the decoder processes a 128D random vector and the condition to
generate the predicted distribution of shot types and shuttle positions. We utilize the
EMD as opposed to Euclidean distance for reconstruction, as it isn’t obligatory for
each reconstructed point to align closely with its initial position. In fact, employing
L1 or L2 reconstruction loss to train this CVAE would lead to failure.

Point Cloud Generative Adversarial Network (PCGAN) (Li et al, 2018)

Since shuttle distributions can be interpreted as 2D point clouds, we employed the
PCGAN to predict the distribution of shot types and shuttle positions. The generator
accepts 10D random vectors and the condition, subsequently outputting 12D vectors

12

S=> -+ T/F
z - N=> —_ S’ N = —-> S’
Reg PCGAN
(Siter Sit,) DPa Do
L 1 ¥ \ A
I ShotEmbedder II PlayerEmbedder I
, Yy 3
S = - S C J(J()
4
CVAE context

Fig. 5: The network structure of the baseline generative models. The context module,
depicted in the bottom right, is identical to our condition embedding network.

that represent shuttle positions and shot types. Following this, the discriminator eval-
uates whether a shuttle position and its corresponding shot type are authentic or
generated by the generator. Both generator and discriminator undergo iterative and
alternating training using adversarial loss. To enhance PCGAN’s training efficiency,
we also incorporated the EMD loss.

Experiment Results

In Table 1, we present the forecasting errors for both shuttle position and shot type.
As can be seen, the generative models, including REG, CVAE, PCGAN, surpassed
ShuttleNet and DyMF when forecasting shuttle positions. They also outperformed
ShuttleNet and DyMF when forecasting shot types in Experiment 1. This advantage
can be attributed to the generative models’ ability to generate complex data distri-
butions. PGGAN, in particular, displayed remarkable forecasting precision. However,
a notable exception was its performance in shot type forecasting during Experiment
2, where PCGAN’s performance aligned more closely with that of REG and CVAE
because of their comparable CE loss values. This deviation is rooted in insufficient
training data. The training approach for these generative models leverages the EMD
distance, seeking to narrow the gap between real and generated distributions. Given
that there might only be limited upcoming shots that fit a specific condition (i.e., play-
ers, positions and shot types in previous shots), the real distributions they’re based
on might not be representative. Consequently, when training on these distributions,
the models struggle to accurately predict shot types in more challenging scenarios.

13

Expl: by rallies | Exp2: by players
Method Position Type | Position Type
-Reg, -PD 0.38 1.70 0.41 1.79
-PD 0.38 1.68 0.41 1.72
-Reg 0.34 1.58 0.36 1.65
ShttleFlow 0.34 1.58 0.34 1.63

Table 2: We evaluated the effectiveness of the regularization term and the Poisson disk
sampling by comparing the forecasting errors of shot types (CE) and shuttle positions
(RMSE). For this experiment, we set the number of drawn samples, k, to be 10.

Random sampling Q Q

@ @

Random sampling Poisson disk sampling

Poisson disk sampling

Fig. 6: The left side of the diagram depicts the samples drawn from a normal distri-
bution, with random sampling at the top and Poisson disk sampling at the bottom.
The shuttle distributions transformed from the samples drawn by different methods
are shown in the middle and on the right. The samples drawn using Poisson disk sam-
pling are clearly less clumped and can represent the distribution better.

This limitation also sheds light on why REG, CVAE, and PCGAN lagged behind our
ShuttleFlow in performance.

5.5 Ablation Study

To evaluate the impact of the regularization and sampling strategies, we compared the
performance of the methods with and without these features. These variants, which
remove regularization and Poisson disk sampling, are referred to as -Reg and -PD,
respectively. Table 2 shows that the regularization term is effective for Experiment

14

Exp2: by players Plvs. P2 | Plvs.P3 | Plvs. P4 | P5vs. P6 | P5vs. P7
Position Reg 0.39 0.34 0.36 0.35 0.36
ShuttleFlow 0.36 0.31 0.36 0.35 0.33
T Reg 1.59 1.58 157 1.55 1.60
YPe 1 ShuttleFlow 1.59 1.55 1.54 1.54 1.56

Table 3: We examined the outcomes of -Reg and ShuttleFlow in five pairs of players
during the evaluation. The CE and RMSE errors suggest that the regularization term
was advantageous for specific player pairs.

2, where the term was specifically designed to enhance the network’s generalization
performance when the training data does not include any matches between certain
pairs of players. Additionally, we provided forecasting details in Table 3. The results
show that the regularization term is not detrimental, and it provides advantages for
certain pairs of players. We suspect that the pairs without considerable improvement
are due to substantial changes in tactics. Note that under such circumstances, no
strategies are guaranteed to be effective.

The Poisson disk sampling is surprisingly beneficial in both settings, although its
initial goal was to depict shuttle distributions to coaches and players in a better way.
However, its effectiveness was reasonable, as redundant samples were prevented, so
the errors could be further reduced. Figure 6 visually illustrates this phenomenon.
In the comparison, the distribution forecasted using Poisson disk sampling, shown on
the right, is noticeably more uniform and spans a broader area compared to the one
generated through random sampling. This visual distinction underscores the reduced
forecasting error attributed to the Poisson disk sampling method.

5.6 Sampling Efficiency

ShuttleFlow efficiently forecasts upcoming shot types and shuttle positions by generat-
ing k examples. Each generated sample is a concise 12D vector indicating a coordinate
and a shot type. Moreover, all k samples can be computed simultaneously. In real-world
applications, ShuttleFlow takes approximately 0.5 seconds to produce a distribution
consisting of 96 samples on an RTX 4090 GPU, demonstrating interactive perfor-
mance. [t’s important to note that we chose not to use diffusion models for predicting
shuttle distributions due to sampling efficiency. Unlike normalizing flows, which only
need one forward pass to map noises to data, diffusion models (Yang et al, 2022)
require many sequential steps involving stochastic differential equations to gradually
remove noise. Since a distribution needs to have enough samples to be representative,
this sequential process can significantly increase computational cost.

5.7 Limitations and Future Works

Despite the promising performance of ShuttleFlow in forecasting shot types and shut-
tle positions in badminton games, there remains significant room for enhancement.
While the regularization term can enhance the network’s generalization when certain
pairs of players are not present in the training data, this improvement appears to be
somewhat limited due to the differences in tactics between players. Furthermore, our

15

evaluations of ShuttleFlow have been limited to badminton games. Though it holds
promise for forecasting shots in other racquet sports like tennis and table tennis, the
lack of publicly available datasets impedes such evaluations. Lastly, our prediction
approach leans on NF instead of a recently popular generative model — diffusion model
(Yang et al, 2022), primarily due to its inference efficiency. Given recent advancements
that have reduced the training and inference times of diffusion models, exploring them
further is a compelling avenue for future work.

6 Conclusion

We have introduced ShuttleFlow, an innovative and effective method for predicting
shot types and shuttle positions in badminton games, taking into account the players
and their conditions at previous shots. Unlike existing state-of-the-art methodologies,
such as ShuttleNet (Wang et al, 2021b) and DyMF (Chang et al, 2022), which assume
Gaussian patterns in shuttle distributions and neglect the inherent uncertainty in shot
types, ShuttleFlow breaks this convention when forecasting. By modeling the distribu-
tion of shuttle positions and shot types, ShuttleFlow significantly improves forecasting
accuracy despite its relatively simple architecture and straightforward network train-
ing process. As demonstrated in experimental results, ShuttleFlow has the potential
to substantially contribute to the domain of sports analytics by accurately predicting
player behaviors in badminton games.

Acknowledgements. We thank the reviewers for their constructive comments. This
study is based upon work partially supported by the National Science and Technology
Council (NSTC), Taiwan, under Contract No. 111-2221-E-A49 -129 -MY3, Contract
No. 113-2425-H-A49 -001 - and Contract No. 113-2221-E-A49 -149 -MY3.

Appendix A

A1. Data Collection for Training Generative Models

Training generative models to forecast future shots necessitates a specific data col-
lection process since the condition aligns with a particular output distribution. To
achieve this goal, we divided the badminton court into 2m x m grids, with m = 8 in
our implementation. This resulted in each grid corresponding to a real-world area of
approximately 0.84 x 0.76 square meters, which is roughly the space a player occupies
on the court. We collect the distribution S; for each condition c¢; if the previous two
shots locate at the same quad and with the same shot types. Due to badminton tactics
and data collection issues, the size of the distribution, S;, varies and may contain only
a few samples. To ensure data reliability, we removed the distribution S;|c; if the size
of §; was smaller than a threshold of v = 16. For sets containing more than v sam-
ples, we randomly duplicated or discarded samples to make the set size equal to 256
and added a small noise vector to each duplicated sample to increase data diversity.

16

REG CVAE | PCGAN | ShuttleNet | DyMF | ShuttleFlow
Time (s) 28,630 28,760 30,703 8,418 2,307 36,575
Param | 655,870 | 755,198 418,427 108,000 | 15,694 467,486
Table A1l: We compare the training time, measured in seconds, and the number of
parameters between the baselines and ShuttleFlow.

RMSE; k=96 No Condition | +Player | +Position | ShuttleFlow
Expl: by rallies 1.98 0.64 0.18 0.13
Exp 2: by players 1.96 0.44 0.19 0.13
Table A2: We evaluate the forecast errors of shuttle positions when not taking into
account the players and their positions in the previous two shots.

E=16 Expl: by rallies Exp2: by players

RMSE CE RMSE CE
ShuttleNet 0.93 £ 0.06 | 2.27 £ 0.07 | 0.86 & 0.04 | 2.29 £ 0.06
DyMF 0.77 £0.02 | 1.98 £ 0.04 | 1.05 £ 0.03 | 1.99 £ 0.03
REG 0.38 £0.04 | 1.83 £0.09 | 0.50 &£ 0.03 | 2.12 £ 0.07
CVAE 0.38 £ 0.03 | 1.82 £ 0.06 | 0.51 £ 0.02 | 2.24 £ 0.06
PCGAN 0.31 £0.03 | 1.75 £ 0.05 | 0.38 £ 0.04 | 2.21 £ 0.08
ShuttleFlow | 0.27 £ 0.05 | 1.47 + 0.07 | 0.28 £ 0.02 | 1.52 £ 0.09

Table A3: The average and standard deviation of the forecast results are presented.

A2. Comparison of Computational and Memory Costs

Table A1 compares the training time and network size of different baseline models and
ShuttleFlow. Despite the generative models being larger than ShuttleNet (Wang et al,
2021b) and DyMF (Chang et al, 2022), their forecasting accuracies are indeed higher
than these two non-generative models, as shown in Table 1. Note that even though
ShuttleNet and DyMF used larger networks, they could only generate bivariate normal
distributions when forecasting shuttle distributions, which is not advantageous.

A3. More Evaluations

The performance of ShuttleFlow depends significantly on player indices and their posi-
tions from the previous two shots. Player indices are helpful in separating player data
during training because player behaviors can differ. The positions from the previous
two shots provide context for the player’s next move. We assess the forecasting results
when these two conditions are not taken into account in Table A2. Additionally, to
assess performance stability, we included standard deviation values from five differ-
ent runs for Experiments 1 and 2 (Table A3). We specifically focus on the results of
k = 16 because both the prediction errors and variations decrease as we draw more
samples (i.e., larger k) from the generated distribution. It’s important to note that
the standard deviations are low when using randomly selected seeds.

17

References

Abdal R, Zhu P, Mitra NJ, et al (2021) Styleflow: Attribute-conditioned exploration
of stylegan-generated images using conditional continuous normalizing flows. ACM
Transactions on Graphics 40(3):1-21

Beal R, Chalkiadakis G, Norman TJ, et al (2020) Optimising game tactics for football.
arXiv preprint arXiv:200310294

Chang KS, Wang WY, Peng WC (2022) Where will players move next? dynamic
graphs and hierarchical fusion for movement forecasting in badminton. arXiv
preprint arXiv:221112217

Chen RT, Rubanova Y, Bettencourt J, et al (2018) Neural ordinary differential
equations. arXiv preprint arXiv:180607366

Chen WT, Wu HY, Shih YA, et al (2023) Exploration of player behaviours from
broadcast badminton videos. In: Computer Graphics Forum, Wiley Online Library

Chu WT, Situmeang S (2017) Badminton video analysis based on spatiotemporal and
stroke features. In: ACM on International Conference on Multimedia Retrieval, p
448-451, https://doi.org/10.1145/3078971.3079032

Decroos T, Van Haaren J, Davis J (2018) Automatic discovery of tactics in spatio-
temporal soccer match data. In: ACM SIGKDD international conference on
knowledge discovery & data mining, pp 223-232

Decroos T, Bransen L, Van Haaren J, et al (2019) Actions speak louder than goals:
Valuing player actions in soccer. In: ACM SIGKDD international conference on
knowledge discovery & data mining, pp 1851-1861

Dinh L, Krueger D, Bengio Y (2014) Nice: Non-linear independent components
estimation. arXiv preprint arXiv:14108516

Dinh L, Sohl-Dickstein J, Bengio S (2016) Density estimation using real nvp. arXiv
preprint arXiv:160508803

Ghosh A, Singh S, Jawahar CV (2018) Towards structured analysis of broadcast bad-
minton videos. In: IEEE Winter Conference on Applications of Computer Vision,
pp 296-304

Goodfellow I, Pouget-Abadie J, Mirza M, et al (2014) Generative adversarial nets.
Advances in neural information processing systems 27

Grathwohl W, Chen RT, Bettencourt J, et al (2018) Ffjord: Free-form continuous
dynamics for scalable reversible generative models. arXiv preprint arXiv:181001367

18

https://doi.org/10.1145/3078971.3079032

Ho J, Chen X, Srinivas A, et al (2019) Flow++: Improving flow-based generative
models with variational dequantization and architecture design. In: International
Conference on Machine Learning, pp 2722-2730

Hsu T, Chen C, Jut NP, et al (2019) Coachai: A project for microscopic badminton
match data collection and tactical analysis. In: Asia-Pacific Network Operations
and Management Symposium, pp 1-4, https://doi.org/10.23919/APNOMS.2019.
8893039

Kingma DP, Dhariwal P (2018) Glow: Generative flow with invertible 1x1 convolu-
tions. arXiv preprint arXiv:180703039

Li CL, Zaheer M, Zhang Y, et al (2018) Point cloud gan. arXiv preprint
arXiv:181005795

Li M, Soltanolkotabi M, Oymak S (2020) Gradient descent with early stopping is prov-
ably robust to label noise for overparameterized neural networks. In: International
conference on artificial intelligence and statistics, pp 4313-4324

Liu P, Wang JH (2022) Monotrack: Shuttle trajectory reconstruction from monocu-
lar badminton video. In: IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp 3513-3522

Louizos C, Welling M (2017) Multiplicative normalizing flows for variational bayesian
neural networks. In: International Conference on Machine Learning, pp 2218-2227

Lugmayr A, Danelljan M, Van Gool L, et al (2020) Srflow: Learning the super-
resolution space with normalizing flow. In: European Conference on Computer
Vision, pp 715-732

Ma X, Huang H, Wang Y, et al (2020) Normalized loss functions for deep learning with
noisy labels. In: International conference on machine learning, PMLR, pp 6543-6553

Mildenhall B, Srinivasan PP, Tancik M, et al (2020) Nerf: Representing scenes as neu-
ral radiance fields for view synthesis. In: European conference on computer vision,
pp 405-421

Nguyen A, Yosinski J, Clune J (2015) Deep neural networks are easily fooled: High
confidence predictions for unrecognizable images. In: Proceedings of the IEEE
conference on computer vision and pattern recognition, pp 427-436

Pontryagin LS, Mishchenko E, Boltyanskii V, et al (1962) The mathematical theory
of optimal processes

Rubner Y, Tomasi C, Guibas LJ (2000) The earth mover’s distance as a metric for
image retrieval. International journal of computer vision 40(2):99-121

19

https://doi.org/10.23919/APNOMS.2019.8893039
https://doi.org/10.23919/APNOMS.2019.8893039

Sendera M, Tabor J, Nowak A, et al (2021) Non-gaussian gaussian processes for few-
shot regression. Advances in Neural Information Processing Systems 34:10285-10298

Sharma M, Lamba M, Kumar N, et al (2021) Badminton match outcome predic-
tion model using naive bayes and feature weighting technique. Journal of Ambient
Intelligence and Humanized Computing 12(8):8441-8455

Shen L, Liu Q, Li L, et al (2018) Reconstruction of 3d ball/shuttle position by
two image points from a single view. In: Lames M, Saupe D, Wiemeyer J (eds)
International Symposium on Computer Science in Sport, pp 89-96

Sohn K, Lee H, Yan X (2015) Learning structured output representation using deep
conditional generative models. Advances in neural information processing systems
28

Song X, Peng Y, Hu B, et al (2020) Characterization of the fine hand movement in
badminton by a smart glove. Instrumentation Science & Technology 48(4):443-458.
https://doi.org/10.1080/10739149.2020.1737814

Wang DB, Wen Y, Pan L, et al (2021a) Learning from noisy labels with complementary
loss functions. In: Proceedings of the AAAT Conference on Artificial Intelligence, pp
10111-10119

Wang W, Chang K, Chen T, et al (2020) Badminton coach ai: A badminton match data
analysis platform based on deep learning. Physical Education Journal 53(2):201-213

Wang WY, Shuai HH, Chang KS, et al (2021b) Shuttlenet: Position-aware fusion of
rally progress and player styles for stroke forecasting in badminton. arXiv preprint
arXiv:211201044

Wei H, Xie R, Cheng H, et al (2022) Mitigating neural network overconfidence with
logit normalization. In: International Conference on Machine Learning, PMLR, pp
2363123644

Wei LY (2008) Parallel poisson disk sampling. Acm Transactions On Graphics (tog)
27(3):1-9

Winkler C, Worrall D, Hoogeboom E, et al (2019) Learning likelihoods with
conditional normalizing flows. arXiv preprint arXiv:191200042

Wu J, Liu D, Guo Z, et al (2021) Tacticflow: Visual analytics of ever-changing tactics in
racket sports. IEEE transactions on visualization and computer graphics 28(1):835—
845

Yang G, Huang X, Hao Z, et al (2019) Pointflow: 3d point cloud generation with
continuous normalizing flows. In: IEEE/CVF International Conference on Computer
Vision, pp 4541-4550

20

https://doi.org/10.1080/10739149.2020.1737814

Yang L, Zhang Z, Song Y, et al (2022) Diffusion models: A comprehensive survey of
methods and applications. arXiv preprint arXiv:220900796

Zieba M, Przewiezlikowski M, Smieja M, et al (2020) Regflow: Probabilistic flow-based
regression for future prediction. arXiv preprint arXiv:201114620

21

	Introduction
	Related Work
	Normalizing flows
	Sports Analytics

	Backgrounds
	Modeling Shot and Shuttle Location Distributions
	Distribution Mapping
	Positional embedding
	Regularization
	Poisson Disk Sampling
	Implementation Details
	Network architecture
	Parameter Setting

	Results and Evaluations
	Data and Experiments
	Experiment 1: data partition by rallies
	Experiment 2: data partition by pairs of players

	Evaluation Metrics
	Comparison to State-of-the-art Methods
	Experiment Results

	Comparison to Generative Networks
	Regression (REG)
	Conditional Variational Autoencoder (CVAE) sohn2015learning
	Point Cloud Generative Adversarial Network (PCGAN) li2018point
	Experiment Results

	Ablation Study
	Sampling Efficiency
	Limitations and Future Works

	Conclusion
	Acknowledgements

	
	A1. Data Collection for Training Generative Models
	A2. Comparison of Computational and Memory Costs
	A3. More Evaluations

