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Abstract

We introduce NoiseFlow, a generative network that addresses the issue of noisy
labels in classification problems by modeling the entire label distribution based
on the input data/image. Unlike previous methods, which assign each input to
only one specific class, NoiseFlow generates different labels by considering the
image and a random noise drawn from a standard normal distribution. This
approach improves generalization performance since it does not require extensive
parameter adjustments to fit the unknown data noise. To model the label distri-
bution, we use conditional normalizing flows, which are effective at avoiding mode
collapse and ensuring the presence of the correct label in the distribution for
accurate classification. Moreover, NoiseFlow can be combined with other train-
ing strategies, such as mixup interpolation and contrastive learning, to achieve
even better performance. We compared NoiseFlow with baseline methods on sev-
eral synthetic and real-world datasets, and the experiment results demonstrate
its effectiveness.

Keywords: Noisy Labels, Uncertainty, Generalization, Normalizing Flows

1 Introduction

Classification is the process of assigning input samples to specific labels. However,
if the data used for training contains errors, networks trained on such a dataset will
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Fig. 1: The network architecture of NoiseFlow. (Left) During training, the conditional
normalizing flow (CNF) block seeks to convert the encoded representations and label
vectors into a standard normal distribution. During inference, the block employs noise
vectors to generate the label distribution based on the representation. (Right) The
structure of a ConcatSquash layer.
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attempt to accommodate the incorrect labels, resulting in poor generalization perfor-
mance (Li et al, 2020b). To mitigate this, recent methods correct the labels (Ma et al,
2018; Yi and Wu, 2019; Tanaka et al, 2018) or remove the noisy samples (Malach and
Shalev-Shwartz, 2017; Jiang et al, 2018; Han et al, 2018; Yu et al, 2019; Wei et al,
2020) before the network has a chance to memorize them. There are also methods
that interpolate the samples and their respective labels (Zhang et al, 2018; Ortego
et al, 2021), making it more challenging for the network to memorize and thereby
enhancing its generalization.

Feedforward networks are limited to assigning just one label to each input, and
they require extensive parameter adjustments to learn from data with noise (Li et al,
2020b). To overcome this, we present NoiseFlow, a network that can associate an
input with multiple labels. Our solution involves training conditional normalizing flows
(CNFs) (Chen et al, 2018; Grathwohl et al, 2019) to perform classification tasks. CNFs
are a type of generative model that uses a random noise vector and an input image (i.e.,
condition) to produce a label distribution that corresponds to the image. As illustrated
in Figure 1 left, NoiseFlow consists of an encoder that extracts features from the input
and a CNF block that combines the feature with noise vectors to generate labels.
By allowing the CNF to model the entire label distribution, it reduces the impact
caused by incorrect labels. The generated label distributions will be more precise if
the dataset is clean, and more uncertain if the dataset contains noise. Additionally, if
the dataset does not contain purely noise, the density of the correct label will still be
higher than that of the incorrect labels.

Our NoiseFlow models the entire label distribution to address the noisy label prob-
lem. It can be combined with existing methods to achieve even better performance.
First, we use mixup interpolation (Zhang et al, 2018) to create virtual examples for
the network to train on. This helps to resolve the challenge of training a network to
generate a sharp/discrete distribution of one-hot vectors. Second, we use contrastive
learning (Oord et al, 2018; Chen et al, 2020) to enable the network to learn robust



representations, as this method has been demonstrated to be effective in enhancing
generalization. Third, although the presence of noisy samples in the dataset can harm
network training, simply removing them based on loss or disagreement with ground-
truth labels may overlook clean but difficult examples. Given that samples between
classes may have varying levels of difficulty, we select the same ratios of clean sam-
ples from each class, ensuring that we don’t miss out on any challenging but useful
examples (Karim et al, 2022). Finally, we leverage the estimated noisy samples as
unlabeled data and use semi-supervised learning (Sohn et al, 2020) to train the net-
work with pseudo-labels. One inherent risk is that the network, while generating these
pseudo-labels and subsequently training on them, could end up producing homogenous
pseudo-labels (Sohn et al, 2020). To mitigate this, we incorporate sharpening (Sohn
et al, 2020) and centering (Caron et al, 2021) techniques, ensuring these pseudo-labels
are fine-tuned to truly represent their respective classes.

We tackle the issue of noisy labels using a generative network that models the entire
label distribution for each input, further enhanced with noise vectors to minimize the
effect of these labels. Our evaluations, benchmarked against standard methodologies,
underscore the efficacy of our approach. Specifically, our results suggest that Noise-
Flow is particularly useful for datasets with high noise ratios. NoiseFlow registered an
accuracy of 60.4% on Cifar-100 with a 90% symmetric noise ratio, substantially out-
performing baseline methods that yielded a 44.8% accuracy. On real-world datasets,
NoiseFlow recorded accuracies of 67.45% and 78.44% for ClothinglM and WebVi-
sion, respectively, surpassing the state-of-the-art method, which posted accuracies of
61.01% and 77.6% on these datasets.

2 Related Works

When manually annotating data for network training, it is common to encounter
incorrect labels. Since memorizing corrupted data would negatively impact the net-
work’s generalization performance, several methods have been proposed to address
this issue (Song et al, 2022). Previous techniques can generally be classified into two
categories: (1) label correction and (2) separation of clean samples.

Methods in the first category gradually adjust the training loss (Goldberger and
Ben-Reuven, 2017; Patrini et al, 2017) or the label (Ma et al, 2018; Yi and Wu, 2019;
Tanaka et al, 2018) during training. They estimate the noise rates (Patrini et al, 2017;
Tanaka et al, 2018; Northcutt et al, 2017) and the noise transition matrix (Goldberger
and Ben-Reuven, 2017; Patrini et al, 2017) to correct the labels. Some methods relax
the assumption that a small subset of data is trusted and utilize the trusted data
to improve performance (Hendrycks et al, 2018). However, estimating the noise rate
and transition matrix is challenging, and the performance of these methods can suffer
significantly when the noise rate or the number of classes is high.

In the second category, methods focus on selecting clean samples for network train-
ing. To avoid bias, these methods typically rely on two networks (Nguyen et al, 2020),
with one used to select clean samples for the other. Strategies for sample selection
may vary, including using the variance of prediction during training, disagreement of
the outputs (Malach and Shalev-Shwartz, 2017), and magnitude of loss values (Jiang



et al, 2018; Han et al, 2018). The strategies can also be combined to further enhance
network performance (Yu et al, 2019; Wei et al, 2020). Moreover, recent methods
apply semi-supervised learning to utilize the corrupted data by training the network
on both the estimated clean and noisy (i.e., unlabeled) samples. Specifically, clean
data is trained using the cross-entropy loss, while corrupted data is trained with con-
sistency regularization (Ding et al, 2018; Yao et al, 2021) and contrastive learning.
While separating clean and corrupted samples may require a hyperparameter, Li et al
(2020a) and Nishi et al (2021) leveraged the Gaussian mixture model to estimate the
two distributions based on the predicted confidences. In addition, to address the dif-
ferent difficulties of classes, such as distinguishing between dogs and cats, Karim et al
(2022) assumed that the numbers of clean samples in each class are similar. Although
this assumption could be strong, the applied priors result in significant improvements
in network generalization.

Besides label correction and separation of clean samples, Zhang et al (2018) and
Ortego et al (2021) proposed using sample interpolation to address the noisy label
problem, as learning the interpolations of correct samples is easier than memorizing
the interpolations involving random labels (Zhang et al, 2018). Our proposed method,
which uses normalizing flows, also does not fall into the two mentioned categories, as
it learns the label distribution instead of a single label for each input. By modeling
both correct and incorrect labels, our method can reduce the memorizing effect when
fitting noise, and can work together with existing training strategies to further improve
generalization performance.

3 Background

3.1 Problem Definition

Given a dataset D = {(po,qo0), (P1,4d1); - (Pn;qn)}, where p and q denote the input
sample and its corresponding label, and n is the size of D. By minimizing the cross-
entropy loss, a deep neural network that includes an encoder Ey and a classification
layer G4 learns to map each input p to its corresponding label q. The cross-entropy
loss can be mathematically expressed as follows:

1 n
Lop =—— Tog s, 1
cr=——-> allogq (1)

i=1

where §; = softmax(G,(Eq(p;i))) is the estimated label probability of p,. When deal-
ing with noisy label training, the training set Dy,.q;, contains corrupted labels. For
example, an image with a car may be labeled as a person. On the other hand, the
testing set Diest = D \ Dyrain is considered to be clean and used for evaluation.

3.2 Normalizing Flows

Our approach is based on utilizing normalizing flows (NFs) (Dinh et al, 2017; Kingma
and Dhariwal, 2018; Dinh et al, 2014; Chen et al, 2018; Grathwohl et al, 2019), which
is a type of generative model. The primary idea behind NFs is to use a series of



invertible transformations to map samples from a standard normal distribution p,(z)
to the target distribution p,(x). Let F': Ry — R4 represent an NF, and let = and z
be samples drawn from p,.(z) and p,(z), respectively. The relationship between z and
z can be expressed as z = F, ! (z), © = F,(z), where 5 denotes the parameters of F.

NFs models can be classified into two categories: discrete normalizing flows (Dinh
et al, 2017; Kingma and Dhariwal, 2018; Dinh et al, 2014) and continuous normalizing
flows (Chen et al, 2018; Grathwohl et al, 2019), depending on the specific designs of the
invertible layers. We employ continuous NFs in this paper to model the distributions

of noisy labels because they are more expressive than discrete NFs.

Conditional Continuous Normalizing Flows

A continuous NF uses a continuous-time transformation to map a simple probability
distribution to a complex target distribution. This transformation is determined by
a system of ordinary differential equations (ODEs), which describe how the variables
change over time (Chen et al, 2018; Grathwohl et al, 2019):

day

dt = f(tvyazt)a (2)

where z; is the state of z at time ¢, zg ~ N(0,Z) is a random vector, and y is the
condition. The function f parameterizes how a data point z;, (= z) evolves to z;, (= x)
at each time ¢. It also satisfies uniform Lipschitz continuity at each z;, which allows
for the invertibility of f. The relationship between x and z is therefore expressed as

follows: .

X= F(zto) = Zg, + f(t’ Y, Zt)dt' (3)

to
In this context, one can train the network F~! by minimizing the negative log-
likelihood (NLL) of the conditioned distribution:

t1
£ = ~logpycly) = ~logpetan) + [ 1r (S5 )an ()

to

The ODEs are typically solved using numerical integration methods such as Runge-
Kutta or the adjoint method. We apply the adjoint method (Pontryagin et al, 1962)
to compute the gradients for updating network parameters. We refer readers to (Chen
et al, 2018; Grathwohl et al, 2019) for the equations and optimization details.

4 Noisy Label Training

Typically, classification methods employ an encoder Ey to transform an input sam-
ple/image p into a compact representation, which is then fed into a classification
layer G to estimate the probability of p belonging to a particular class. For samples
that belong to the same class, particularly those that are visually similar, Ey tends to
encode p into similar representations, enabling the classification layer G to classify
them into the same class accurately. However, in cases where visually similar samples



are mislabeled and need to be classified into different classes, the encoder Fy must
amplify the differences between their representations, or the classification layer G
must exhibit high nonlinearity to minimize the cross-entropy loss (Li et al, 2020Db).
Unfortunately, these solutions can lead to poor generalization of the network.

4.1 NoiseFlow: Label Distribution Learning

Our approach involves training a generative network to produce a label distribution
(i.e., a distribution of label probabilities), which includes both correct and incorrect
labels, conditioned on the input. Suppose the majority label is correct, and the genera-
tor can accurately model the label distribution. In that case, the density of the correct
label in the generated distribution will be higher than that of the incorrect label. To
accomplish this, we utilize conditional NFs Fj, to learn the label distribution. Since
NFs have a lower level of expressiveness due to their traceability and invertibility lim-
itations, we first extract representations from input samples using an encoder Fy and
then utilize these representations as a condition of the NF. The network architecture
is shown in Figure 1. Note that an NF is a bidirectional neural network, with train-
ing and inference proceeding in opposite directions. During the training stage, the NF
transforms the label distribution into a standard normal distribution, and its parame-
ters are updated by minimizing the negative log-likelihood, which can be represented
as follows:

t1 8
Lot =~ Togpyi(@lE®) = ~logp-(a) + [ o (FE)ar )
to

In this equation, p is the input, F is the encoder, and q is a one-hot vector that
denotes the label of p. Once training is complete, the NF can be utilized to generate
a label distribution based on the representation F(p) and random noise. Let § be a
generated label. The process is formally written as:

ty

A=z, + | [t Ep(p),ze)dt. (6)

to

As previously mentioned, z, is a random vector drawn from the normal distribution,
which enables an NF to generate multiple labels even when conditioned on the same
input. This characteristic is beneficial in mitigating the impact of incorrect labels. In
practice, when inferring the label of an input, we set z;, = 0 because it represents the
center of the standard normal distribution with the highest probability.

We utilize NFs instead of adversarial generative networks (Goodfellow et al, 2014)
to learn the label distribution since NFs do not suffer from mode collapse (Winkler
et al, 2019), which occurs when the model fails to produce data that is as diverse as
the real-world data distribution. This is problematic for noisy label training since the
label distribution may not include the correct label if mode collapse occurs, resulting in
reduced network performance. Since the NF is a bi-directional network, if the network
can convert the label distribution to a normal distribution during training, it must be
able to replicate the label distribution during inference.
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Fig. 2: We conducted a preliminary experiment on the Cifar-10 dataset. In each line
chart, x and y axes indicate the training epoch and the measured testing accuracy,
respectively. The results suggest that NFs can mitigate the effects of noisy data. In
this experiment, we did not use any training techniques to address the issue of noisy
labels.

Preliminary Experiment

We conducted a preliminary experiment to investigate the notion that learning the
entire label distribution can help mitigate the impact of erroneous labels. In this study,
we adopted the standard configuration used in (Han et al, 2018) and evaluated the
performance of ResNet18 and NoiseFlow on the Cifar-10 dataset. While both networks
used the same encoder, the classification layer of NoiseFlow was replaced with an NF
block. Notably, our experiment was solely focused on assessing the effectiveness of
learning the complete label distribution, and we did not utilize any noisy data training
techniques.

Results from the experiment, as depicted in Figure 2, show that NoiseFlow out-
performed ResNetl8 in terms of testing accuracy when faced with incorrect labels.
Furthermore, when compared with ResNet18, NoiseFlow’s accuracy demonstrated a
more gradual decline in datasets with symmetric noise rates of 0.3 and 0.5 (i.e., 30%
and 50% of labels in the dataset are randomly reassigned). These results imply that
enabling the network to map a single condition to various labels can mitigate the
effects of incorrect labels. The slower degradation also allows the network to recognize
clean samples and rectify the noisy labels when incorporating techniques for training
on noisy data.

4.2 Combining Existing Training Strategies

The presented NoiseFlow can be combined with existing training methods to tackle
the problem of noisy labels because they address noisy label problems from different
perspectives. The conditional normalizing flow enables the model to map an input to
multiple labels, thereby reducing the negative impact of noisy labels. Concurrently, the
existing training strategies focus on selecting clean samples for network training, which
aids in modeling sharper label distributions through conditional normalizing flows.
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Fig. 3: The training of NoiseFlow involves four strategies: (1) mixup interpolation
(Zhang et al, 2018), (2) contrastive learning (Chen et al, 2020), (3) semi-supervised
training (Sohn et al, 2020), and (4) uniform selection (Karim et al, 2022).

Unlabeled

Since a portion of incorrect labels is removed, sharper generated label distributions
result in more confident and accurate predictions. Together, these strategies enhance
network performance. We illustrate the training process in Figure 3 and describe the
details in the following paragraphs.

Mizup Interpolation

During training, NoiseFlow aims to map a label distribution to a standard normal dis-
tribution. As mentioned earlier, labels are represented using one-hot vectors. Although
NoiseFlow can still transform these vectors to fit a normal distribution, the result-
ing transformed vectors would cluster around a few positions, leaving many gaps in
the fitted distribution. This can lead to challenges when estimating labels based on
a noise vector that is randomly drawn from the normal distribution. While adding a
small amount of random noise to each one-hot vector may improve the performance
of NoiseFlow, a more effective approach to addressing the problem is mixup interpo-
lation (Zhang et al, 2018). The method is beneficial because it not only relaxes the
discrete label distribution but also helps to mitigate the impact of noisy labels (Li
et al, 2020a). Specifically, mixup interpolation linearly interpolates a pair of samples
and their corresponding labels to generate virtual examples for the network to learn
from. Let (p;,q;) and (p;,q;) be two arbitrary data pairs, where p and q represent
the input and corresponding label (i.e., a one-hot vector), and « be a random inter-
polation coefficient that is sampled from a Beta distribution. The virtual example
(Pv,qv) can be represented as:

pv=ap;+ (1 —a)p;, qv=oaq;+(1—-a)qg,. (7)



Contrastive Learning

Contrastive learning (Chen et al, 2020) is a widely used strategy that helps neural
networks learn robust representations by exposing them to diverse perspectives that
are distinct from the primary task. In practice, the strategy trains a neural network to
distinguish whether a pair of images is positive or negative. A positive pair (p; 1, Pi,2)
is created by randomly augmenting the same image, and a negative pair is created
by selecting two different images (p;, p;). To integrate contrastive learning with our
NoiseFlow model, we include a projection head h, with parameters 1) to obtain the
projected representations ry = hy (Eg(p;,1)) and ry = hy (Ep(p;,2)). We then minimize
the InfoNCE loss (Oord et al, 2018; Chen et al, 2020) for each positive pair (p; 1, Pi,2),
which is expressed as:

‘CCZ(S7t) — —log = eXp(Slm(I‘S?I‘t)/H) , (8)
2 bm1 Lpsjexp(sim(rs, o) /)

where I, is an indicator function that returns 1 if b # s and 0 otherwise, r is
a user-defined temperature, n is the batch size, and sim(rg,ry) measures the cosine
similarity of ry and ry;. The denominator in this equation is the summation of the
cosine similarity scores of all negative pairs.

Uniform Selection of Clean Samples in each Class

We extract clean samples from the noisy dataset to prevent the networks from over-
fitting to the noisy data. Since different classes within a dataset may present varying
levels of difficulty, we avoid overlooking challenging yet accurate examples by assum-
ing that incorrect labels are evenly distributed across all classes (Karim et al, 2022).
Consequently, an equal number of clean samples is selected from each class for fur-
ther training. To achieve this, we utilize the Jensen-Shannon divergence to measure
the disagreement between the predicted labels and the actual ground-truth labels. A
low level of disagreement between the labels indicates that they are more likely to
be correct, while a high level of disagreement suggests the opposite. In our approach,
we establish a divergence threshold for each class to differentiate between clean and
noisy samples. For more details, please refer to the appendix section and the study in
(Karim et al, 2022).

Semi-Supervised Learning

While noisy samples are unreliable, they can still be leveraged as unlabeled data during
network training (Sohn et al, 2020; Li et al, 2020a). To achieve this, we estimate the
pseudo-label of each noisy sample using previous versions of NoiseFlow, followed by
sharpening the label probability (Sohn et al, 2020; Karim et al, 2022). Specifically,
each label probability §; undergoes the following equation:

~1/T
/ %

%= =F 9)
2= qj/



where T is a hyperparameter that controls the degree of sharpness, and L is the
number of classes. The sample and its corresponding pseudo-label are then utilized
to train the network (Equation 5). However, since the network estimates the pseudo-
labels and employs them to train itself, this approach can lead to the risk of the
network consistently producing the same label, regardless of the input (Caron et al,
2021). To prevent the problem, we adopt the centering strategy to refine the pseudo-
labels, which is based on the assumption that clean labels in a random batch should
be balanced. Specifically, we subtract each label probability by the mean probability
in a batch:

B

1
"n__ 0 = — — ’
q'=q —q, where q(—mq+(1—m)§;q, (10)

is iteratively updated, m is a hyperparameter and B is the batch size. The probability
of each label in q” is then added by 1/n, where n is the number of classes, and then
normalized to maintain the sum of probabilities equal to 1.

During training, we also refine the labels of clean samples as data separation may
not be perfect. We use linear interpolation to reduce the memorization effect when
there is a mismatch between the given and estimated labels. The interpolated label is
then sharpened and normalized.

4.3 Network architectur

The NoiseFlow architecture consists of an encoder and an NF block. The encoder
can be any type of backbone that transforms an input into a compact representation.
Meanwhile, the NF block is constructed using four concatsquash layers (Grathwohl
et al, 2019; Yang et al, 2019; Abdal et al, 2021) and two batch normalizing layers
(Yang et al, 2019), as depicted on the right-hand side of Figure 1. The concatsquash
layer is defined as:

CCS(t,c,u) = o1 ((Wyu+by,) x gate + bias),
where gate = go(Wiit + Wice + by), bias = (Wit + Wiee + bpt), (11)

W, Wi, Wie, Wee, Wae, by, be, and by, are learnable parameters, and o and o2 denote
the tanh and sigmoid activation functions, respectively.

5 Evaluations and Experiments

To evaluate the effectiveness of NoiseFlow, we compared it with several baseline meth-
ods. Detailed information about the experiment settings, training procedures, and
results are provided below. We also provide pseudo-codes, training parameters, and
all implementation details in the appendix for readers to replicate our experiment
results.
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Cifar-10 Cifar-100
Method Symmetry Asymmetry Symmetry Asymmetry
0% |[20% 50% 80% 90% | 10% 30% 40% | 0% |20% 50% 80% 90% |10% 30% 40%
CE 93.986.8 79.4 62.9 42.7[88.8 81.7 76.1|74.3|62.0 46.7 19.9 10.1 |68.1 53.3 44.5
LDMI - 88.3 81.2 43.7 36.9(91.1 91.2 84.0 - 58.8 51.8 27.9 13.7|68.1 54.1 46.2
M-Up 96.0 | 95.6 87.1 71.6 52.2|93.3 83.3 77.7|77.9|67.8 57.3 30.8 14.6 |72.4 57.6 48.1
PCIL 93.992.4 89.1 77.5 589|94.2 925 90.7|77.8|69.4 57.5 31.1 15.3|72.0 68.1 59.5
JPL - 1935 90.2 35.7 23.4|93.1 929 91.6| - |709 67.7 17.8 12.8|76.0 59.3 48.3
MOIT |95.7]94.1 91.1 75.8 70.1|93.8 92.5 91.7|77.1|759 70.1 51.4 24.5|71.6 69.5 55.1
DMix 94.396.1 94.6 92.9 76.0|95.4 94.7 93.0|67.4|77.3 74.6 60.2 31.5|77.3 T4.6 T73.2
ELR 95.5|95.8 94.8 93.3 78.7(94.2 94.1 93.2|78.0|77.6 73.6 60.8 33.4|77.4 751 T74.0
AUG - 196.3 95.4 93.8 91.9| - - 946| - |795 772 664 41.2| - - -
ILL - 96.8 96.6 94.3 - - - 94.8| - 77.5 T75.5 66.5 - - -
UNICON [ 93.4]96.0 95.6 93.9 90.8|95.3 94.8 94.1|77.5|78.9 77.6 65.2 44.8|78.2 756 74.8
NoiseFlow |96.3|96.8 96.1 95.1 92.9(/96.7 95.1 93.8(79.1|79.1 77.9 72.9 60.4|79.2 77.9 75.5

Table 1: The comparison of NoiseFlow with the baseline methods, LDMI (Xu et al,
2019), M-Up (Zhang et al, 2018), PCIL (Yi and Wu, 2019), JPL (Kim et al, 2021),
MOIT (Ortego et al, 2021), DMix (Li et al, 2020a), ELR (Liu et al, 2020), AUG (Nishi
et al, 2021), ILL (Chen et al, 2023), and UNICON (Karim et al, 2022), on the Cifar-10
and Cifar-100 datasets. We consider both symmetric and asymmetric label noise and
various noise ratios. For the baseline methods, we obtained the results from UNICON
and MOIT papers. The numbers showed that our NoiseFlow model outperformed the
methods in most experimental conditions.

5.1 Experiment Settings and Results

FEvaluation on Synthetic datasets

We compared NoiseFlow with baseline methods on synthetic datasets because it
allowed us to precisely control the noise ratios. The backbone architecture used in the
experiments was ResNet18. Specifically, we randomly reassigned the labels in Cifar-
10, Cifar-100, and TinylmageNet to generate the synthetic datasets. Note that the
labels in the testing set were not modified during evaluation. We followed the exper-
imental settings in prior studies (Li et al, 2020a; Liu et al, 2020; Karim et al, 2022)
and applied both symmetric and asymmetric noise to the datasets. In the symmetric
setting, we randomly selected a subset of the images and reassigned their labels to
other classes in an evenly distributed manner. In the asymmetric setting, we aimed to
simulate structural errors by reassigning the sample to the next class. For instance, an
airplane would be reassigned to an automobile, and an automobile would be reassigned
to a bird, and so on.

Initially, we trained the network using all training samples for the warmup phase.
The warmup process took 10, 30, and 15 epochs on Cifar-10, Cifar-100, and TinyIm-
ageNet, respectively. Following the warmup phase, we trained the networks for 350
epochs on Cifar-10 and Cifar-100, and 200 epochs on TinylmageNet. We reported the
highest accuracy values on the testing set. For TinylmageNet, we additionally cal-
culated the average results of the last 10 epochs to determine whether the methods
overfit the noise.

Table 1 presents the experimental results for Cifar-10 and Cifar-100, showing that
NoiseFlow performed better than the baseline methods in most settings, with the
exception of Cifar-10 with a 40% asymmetric noise ratio. Remarkably, NoiseFlow was
particularly robust to symmetric noise, achieving an accuracy of 60.4% on Cifar-100

11



0 % 20 % 50 %
Method Best Avg. | Best Avg. | Best Avg.
CE 57.4 56.7 | 35.8 35.6 | 19.8 19.6
Decoupling (Malach and Shalev-Shwartz, 2017) - - 37.0 36.3|22.8 22.6
F-correction (Patrini et al, 2017) - - 44.5 44.4 | 33.1 32.8
MentorNet (Jiang et al, 2018) - - 45.7 45.5 | 35.8 35.5
Co-teaching4+ (Yu et al, 2019) 52.4 52.1|48.2 47.7 | 41.8 41.2
M-correction (Arazo et al, 2019) 57.7 57.2|57.2 56.6 |51.6 51.3
NCT (sarfraz et al, 2021) 62.4 61.5 | 58.0 57.2 |47.8 474
UNICON (Karim et al, 2022) 63.1 62.7 | 59.2 58.4 | 52.7 52.4
NoiseFlow 63.9 63.7[63.3 63.0|59.2 58.9
Method Clothing | WebVision
NoiseFlow Best | 67.45 78.44
Last | 67.45 77.68
. Best 61.01 77.60
UniCON ot | 60.44 -

Table 2: (Top) NoiseFlow outperformed baseline methods on TinyImage under simu-
lated symmetric noise ratios (i.e., 0%, 20%, and 50%). Both the highest accuracy and
the average accuracy of the last 10 epochs on the testing set are reported. (Down)
We compared NoiseFlow with the state-of-the-art, UNICON (Karim et al, 2022), on
real-world datasets.

Clean sym 80%

Arch. Best Last Best Last

UNICON 77.49 75.61 65.19 64.33
UNICON+ | 77.08 75.16 | 65.48 64.61
NoiseFlow | 79.09 | 79.06 | 72.91 | 72.74
Table 3: Since a CNF block is typically larger than a classification layer, we compared
our NoiseFlow to an extended version of UNICON, called UNICON+, by adding an
extra non-linear projection. Our evaluations were carried out on the Cifar-100 dataset
under conditions of 0% and 80% symmetric noise rates. As can be seen, UNICON and
UNICON+ performed similarly and revealed that a larger network does not inherently
guarantee superior results.

with a 90% noise ratio, which is a significant improvement over the current state-of-
the-art method that achieved only 44.8% accuracy. Table 2 left displays the results for
TinyImageNet, which also demonstrates the effectiveness of NoiseFlow, as it outper-
formed baseline methods by a substantial margin on the dataset with zero, small, and
medium noise ratios. For instance, under the 50% noise ratio, NoiseFlow increased the
best accuracy from 52.7% to 59.2% and the average accuracy of the last 10 epochs
from 52.4% to 58.9%. It’s worth noting that NoiseFlow and most of the baseline meth-
ods serve as a superior classifier in general, as evidenced by the results on Cifar-10,
Cifar-100, and TinyImageNet with 0% noise. This outcome is expected since the labels
of these datasets are manually annotated and are not entirely noise-free. We refer
readers to the work of (Northcutt et al, 2021) for further discussions on label errors.
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sym 20% | sym 90% | asym 40%
NoiseFlow 79.13 60.37 75.50
w/o contrastive 78.95 58.51 73.95
w/o centering 77.44 36.99 72.27
w/o sharpening 78.55 42.82 75.10
w/o Mixup 76.43 47.04 70.90

Table 4: We conducted ablation experiments to compare the performance of Noise-
Flow without contrastive learning, centering, sharpening, and mixup.

FEvaluation on real-world datasets

We compared NoiseFlow and UNICON (Karim et al, 2022) on the WebVision and
Clothing1M datasets. Results from UNICON on the WebVision dataset were directly
obtained from their original paper. For the ClothinglM dataset, we replicated the
experiment by initializing both networks with random parameters and training them
for 200 epochs, as UNICON’s results relied on a pre-trained network. We set UNI-
CON’s hyperparameters based on their official Github page’s recommendations. The
best and final test set accuracies are documented in Table 2 right, which clearly
highlight NoiseFlow’s superior performance on both datasets.

Discussions on Network Size and Effeciency

Studies (Zagoruyko and Komodakis, 2016; He et al, 2016) have demonstrated that
increasing the depth and width of the network can enhance learning performance.
While a CNF block is larger than a classification layer, which contains 391457 and
51200 parameters, respectively, when classifying the Cifar-100 dataset, we added
an extra layer to ResNetl8 (i.e., the backbone of UNICON) and compared its
performance with NoiseFlow. Specifically, we utilized two fully-connected layers in
UNICON+ (i.e., 512 x 512 and 512 x 100) to map the extracted representations to
their corresponding classes. In the comparison, the encoders of UNICON, UNICON+,
and NoiseFlow were the same, and all strategies for noisy label training were applied.
The results in Table 3 indicated that UNICON and UNICON+ performed similarly
in the datasets with zero and high noise ratios. The results suggest that the reason
why NoiseFlow outperformed UNICON is due to the modeling of the entire label
distribution rather than a large network.

In addition to network size, the use of CNF block leads to higher computational
costs. Since we replaced the fully connected layer in ResNet18 with a CNF block,
we mainly compared the training and inference time of NoiseFlow and UNICON.
When training networks for 250 epochs on the Cifarl0 dataset using a RTX 4090
GPU, NoiseFlow took 13 hours, while UNICON required 8 hours. Both methods
consume approximately 10GB of memory during training. The training duration of
NoiseFlow is longer because the CNF block is optimized using numerical integration
(i.e., adjoint method (Pontryagin et al, 1962)). During inference, NoiseFlow takes
approximately 0.03 seconds on average to classify an image. Although NoiseFlow’s
runtime performance is slower than UNICON, which solves an ODE in the CNF block,
it can be used to correct labels in a dataset for the second pass training. In this pass,
the CNF block can be changed back to the traditional fully connected layers.
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Ablation study

We conducted an ablation study focused on training strategies using the CIFAR-
100 dataset. The findings, as shown in Table 4, suggest that every strategy offers
benefits, especially when dealing with datasets subjected to high noise levels. Notably,
in the absence of centering and sharpening, the performance drop was evident under
conditions of 90% symmetrical noise.

Pseudo-label determination

While NoiseFlow can generate different label probabilities for an input by incorpo-
rating noise vectors, in practice, we use only the mean of the normal distribution
to estimate the label as the mean has the highest density. We have experimented
with averaging the label probabilities generated using noise vectors sampled from
the normal distribution A(0,0.2). However, this approach resulted in slightly worse
performance, and the performance deteriorated further as the variance increased.

5.2 Limitations

While NoiseFlow can mitigate the impact of noisy labels, our experiments indicate it
is less robust against asymmetric noise. This could be due to the concentrated nature
of such noise. We aim to address this challenge in future research. Additionally, even
though NoiseFlow exhibits superior performance, it is larger than the baseline models
due to our replacement of the fully connected layer with an NF block. Although
experiments presented in Table 3 show that NoiseFlow’s improved performance is not
due to increased parameters, it does require more computational power.

6 Conclusion

We have developed a framework to tackle the issue of noisy samples when train-
ing neural networks. Our approach involves modeling the complete label distribution
in the dataset, which includes both clean and noisy samples, conditioned on the
inputs. By utilizing noise vectors to generate different labels for a specific sample,
the network avoids the need to separate the representations of similar data or define
highly nonlinear boundaries for classifying data with incorrect labels. This results in
improved generalization performance. Furthermore, our framework can be combined
with existing methods such as clean label separation, sample interpolation, contrastive
learning, and semi-supervised learning to further enhance the network’s performance.
The experimental results verify the effectiveness of our method.
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Appendix A
A.1 Training Details

We simultaneously train two NoiseFlow models to avoid the selection bias issue when
separating clean samples. The training process is outlined in Figure 3 of the main
manuscript and Algorithm 1. Initially, we warm up the two models by training them
using the NLL loss (Equation 5, Lines 5-7). Subsequently, the two models separate the
dataset into clean/labeled and noisy/unlabeled sets, utilizing the uniform selection
strategy (Karim et al, 2022). For the clean samples, we refine their labels by consider-
ing the given and estimated labels (Lines 14-16). For the noisy samples, we determine
their labels using the outcomes generated by the two NoiseFlow models (Lines 17-19).
As one-hot label vectors collapse at only a few points, we employ mixup interpolation
to relax the distribution fitting (Line 20). Finally, we adopt contrastive learning and
integrate the NLL and InfoNCE losses to iteratively update the two models (Lines
21-22).

Algorithm 1 Pseudo Codes for Training NoiseFlow

Require: D: dataset
1: Ey, Fy, Hy: encoder, flow, and projector of network 1
2: Fo, Fy, Hy: encoder, flow, and projector of network 2
3: A: weight of the contrastive loss
Ensure:
4: for epoch i=1 to m do
5: SGD-update(Lye, (E1, F1, E1, F»)) > Warm up
6: end for
7. for epoch i=1 to n do
8: for j=1 to 2 do

9: Dlabeleda Dunlabeled

10: = Select(D, (El, Fl)» (EQ, Fg))

11: for (Pla Ql) ~ Diabeled; (PU7 Qu) ~ Dunlabeled

12: do

13: Q.; = NF(E;, Fj, P) > Eq. 6
14: Qrf =wXx Q;+ (1 - U)) X Qrf

15: . = Sharp(Q,f) > Eq. 9
16: Qpsew = NF(E4, Fy, By, F>, P,) > Eq. 6
17: bsen = Sharp(Qpseu) > Eq. 9
18: ;)/SE’U, = ;)seu - _;)SE’U, > Eq 10
19: Pmia:» szw = MiX(Pl; Q;-f? Pu) ;;lseu)

20: L= ACcl(:Pl) + A £n€Z(Ej7 Fj7 Pmiwa sza:)

21: SGD-update(L, (E;, F}, H;))

22: end for

23: end for

24: end for
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A.2 Parameters

The hyperparameters used for NoiseFlow in the experiments are presented in Table
Al. As can be seen, most of the parameters are consistent across the datasets, which
demonstrates the widespread applicability of our NoiseFlow model.

Cifar-10 Cifar-100 TinyImageNet
7## Classes 10 100 200
# samples 50,000 50,000 100,000
Flow modules 8-8-8-8 | 64-64-64-64 | 160-160-160-160
# Warm Up Epochs 10 10 15
7 Training Epochs 350 350 200
Learning Rate (Ep) 2E-02 2E-02 4E-02
Learning Rate (Fy) 4E-05 5E-05 4E-05
Batch Size 256 256 256
Weight Decay 5E-04 5E-04 5E-04
Dimension of Ey(p) 512 512 512
a, f (Beta Dist, Eq. 6) 4,4 4,4 0.5,0.5
x (Eq. 7) 0.025 0.025 0.025
T (Eq. 9) 0.5 05 0.2
m (Eq. 10) 0.8 0.8 0.8

Table A1l: This table displays the hyperparameters employed in the experimen-
tal setups. The majority of these parameters remain consistent across the datasets,
demonstrating the broad adaptability of our NoiseFlow model.

A.3 Single vs. Twin Networks

To prevent bias in the separation of clean samples, all noisy label training methods
employ a dual network training strategy. In this approach, one network selects clean
samples for the other network to learn in the next iteration. NoiseFlow, which is
capable of generating multiple labels for a single input, prompted us to explore its
adaptability and sustained performance amidst noise exposure. In contrast to the dual
network setup, we experimented with a variant called Single, which uses only one
network. This network estimates the label probability of an input using noise vectors
from a standard normal distribution A(0,0.2).

Our experiments (Table A2) demonstrated that Single performed effectively when
the noise ratio was low, but its performance deteriorated as the ratio increased, partic-
ularly on the Cifar-100 dataset. We noticed that the network consistently predicted the
same label in the later stages of training since it relied on the generated pseudo-labels.
Consequently, the mixup interpolation failed to alleviate the sharp label distribution,
and the NFs struggled to map an identical label vector to fit the normal distribution.
The significant gradient prevented the minimization of NLL loss.

To address this problem, we trained a second version of NoiseFlow called EMA.
EMA had a teacher and a student network, and the teacher network was updated by
the exponential moving average of the student network’s parameters. Moreover, the
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Symmetry Asymmetry

Method Cifar-10 Cifar-100 Cifar-10 Cifar-100
20% 50% 80% 90% | 20% 50% 80% 90% | 10% 30% 40% | 10% 30% 40%

Single 96.0 95.1 939 91.0 | 71.1 UNF UNF UNF | 958 950 929 | 76.5 75.2 71.3

EMA 96.3 95.7 946 91.6 | 77.1 75 67.5 51.3 | 96.5 95.0 933 | 77.3 759 70.5

NoiseFlow | 96.8 96.1 95.1 92.9|79.1 77.9 72.9 60.4|96.7 95.1 93.8|79.2 77.9 75.5

Table A2: NoiseFlow comprises two networks that can identify clean samples, allow-
ing the peer network to learn more accurately. To assess if generating different labels
can avoid selection bias, we analyzed two versions of NoiseFlow: Single and EMA. The
Single employs only one network, while the EMA adopts a teacher-student framework,
wherein the teacher network is updated by iteratively averaging the student network’s
parameters. In this table, UNF is the abbreviation of underflow, which appears when
NFs fail to minimize the NLL loss.

teacher network selected clean samples and assigned pseudo-labels for the student net-
work to learn. The results presented in Table A2 demonstrated that EMA improved
the performance of NoiseFlow and prevented the label collapse issue. However, the
results also suggested that training two networks simultaneously is the most effective
approach since personal bias in sample selection cannot correct errors when the net-
work does not learn effectively (Han et al, 2018). This phenomenon is particularly
noticeable when the dataset contains a high level of noise.
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