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Interactive Metro Map Editing
Yu-Shuen Wang and Wan-Yu Peng

Abstract—Manual editing of a metro map is essential because many aesthetic and readability demands in map generation
cannot be achieved by using a fully automatic method. In addition, a metro map should be updated when new metro lines are
developed in a city. Considering that manually designing a metro map is time-consuming and requires expert skills, we present an
interactive editing system that considers human knowledge and adjusts the layout to make it consistent with user expectations.
In other words, only a few stations are controlled and the remaining stations are relocated by our system. Our system supports
both curvilinear and octilinear layouts when creating metro maps. It solves an optimization problem, in which even spaces, route
straightness, and maximum included angles at junctions are considered to obtain a curvilinear result. The system then rotates
each edge to extend either vertically, horizontally, or diagonally while approximating the station positions provided by users to
generate an octilinear layout. Experimental results, quantitative and qualitative evaluations, and user studies show that our editing
system is easy to use and allows even non-professionals to design a metro map.

Index Terms—Metro Map, Interactive editing, octilinear, least squares optimization
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1 INTRODUCTION

Metro maps have become important tools as the
number of metro lines in cities increases. These maps
are typically used by passengers to orient themselves
in a complex traffic network. Unlike general maps,
metro maps display network topology rather than
exact geography. Such information is helpful to pas-
sengers, who instantly need to know which station
to get on or off a train. Therefore, most metro maps
worldwide have octilinear layouts, which have been
used at least since 1931, when Beck [1] introduced his
famous map of London. Typically, an octilinear layout
has: 1) evenly spaced nodes, 2) straight routes, and
3) octilinear edge directions (i.e., vertical, horizontal,
or diagonal). Distorted station positions, which are
only for the purpose of locality recognition, provide
freedom to achieve clear navigation.

When a metro network is developed in a city, car-
tographers have to redesign the map for passengers.
However, designing a metro map is time-consuming
and requires expert skills. Although several automatic
layout algorithms have been presented to reduce the
burden of cartographers, these algorithms may not
satisfy aesthetic and readability requirements. Given
that fully automatic methods are difficult to control,
cartographers who attempt to modify a metro map
still have to manipulate most station positions. Con-
sequently, an interactive interface that allows cartog-
raphers or even non-professionals to easily design a
metro map is essential (Figure 1).
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One of the main challenges of editing an octilinear
metro map is performance. The layout of a metro map
can be considered to be a graph drawing problem
in which connecting edges are provided and only
node positions are unknown. However, the involved
octilinear constraint results in high computational
cost. On the one hand, discrete edge directions cause
the system to search for the optimal solution in a
highly concave feasible region if the objective function
is defined in a continuous domain [2]. On the other
hand, preventing edge intersections is NP-hard if the
constraints have a discrete formulation [3], [4]. The
aforementioned techniques are not interactive neither
consider all layout aspects and thus, they are inca-
pable of adapting to metro map editing. A recent work
[5] achieved real-time performance by first computing
a curvilinear layout and then simply rotating each
edge to the closest octilinear direction. However, this
method does not consider node positions. In Figure
2.a, the pink edges highlighted by a dashed rectangle
can only become horizontal because their angles are
close to zero. Given that the edges do not have a
vertical component, expecting the terminal station of
this route to be located at the required position is
impossible. Because satisfying positional constraints is
essential in a map editing system, adapting their ap-
proach by a simple extension is inadequate, as demon-
strated in Figure 2 and the accompanying video.

We present an interactive editing system for users
to manipulate a metro map by controlling a small
number of nodes. We call these nodes handles. That
is, given a set of handle positions, our system opti-
mizes an objective function to satisfy metro map re-
quirements and positional constraints simultaneously.
Considering different style and aesthetic concerns, our
system supports both curvilinear and octilinear lay-
outs when creating metro maps. However, we focus
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Fig. 1. From left to right are the geographic, curvilinear and octilinear metro maps of Singapore. We provide
users with an intuitive interface to edit the map. The criteria for a visually pleasing result, such as evenly spaced
stations, smooth/straight transportation routes, and maximal included angles at junctions, are satisfied.

on the octilinear layout because this layout is widely
used. To achieve interactive performance, the solver
neglects the octilinear constraints initially and then
rotates each edge to extend either vertically, hori-
zontally, or diagonally. To produce a visually pleas-
ing result, edge lengths and edge directions should
match well. However, we solve for these variables
independently and alternatively to achieve interactive
performance. That is, we rotate each edge to the
optimal direction while conserving the net rotation to
retain the vertical and horizontal components of each
curvilinear line. Afterward, we solve for edge lengths
to approximate the required handle positions while
maintaining map topology and preventing unwanted
line intersections. The interactive performance and
the approximation of handle positions provide an
intuitive editing interface.

To the best of our knowledge, this paper presents
the first metro map editing system. Users can control
a small number of nodes to manipulate a metro
map. The remaining nodes are then automatically
relocated. The presented interface allows users to edit
a region of the map, including translations, rotations,
and scaling. This feature is particularly useful when
the region demands an identical transformation. Our
system can dynamically consider the human knowl-
edge and adjust the layout to make it consistent with
user expectations. The experimental results shown in
Figures 1, 8, and 10, the accompanying video, the
quantitative and qualitative evaluations, and the user
studies demonstrate the feasibility of our technique.

2 RELATED WORK

Metro map design. Octilinear layouts have been
widely used in metro network navigation since Beck
introduced the London underground map in 1931
[1]. The map aims to provide a graph topology to
help users travel by themselves when transferring
from one train to another [6]. Designing metro maps
is time consuming and requires professionals; thus,

many algorithms have been presented to compute
map layout automatically. Avelar and Müller [7] pre-
sented a transformation method to place stations.
They applied simple geometric operations and tests
to preserve topology. Merrick and Gudmundsson [8]
simplified a polygonal path while constraining edges
that are parallel to certain orientations. However, such
simplification may change route topology and lead to
misunderstandings.

Several methods define geometric and aesthetic re-
quirements by energy terms and apply an optimiza-
tion technique to solve for the layout. Hong et al. [9]
applied the magnetic spring algorithm to iteratively
update node positions with a cooling schedule until
the system converges. Stott et al. [2] presented a
hill climbing optimizer that combines node cluster-
ing and movement to improve fitness and achieve
fast convergence. Nöllenburg and Wolff [3] applied
mixed-integer programming to address map layout
and station names, and produce appealing results.
Wang and Chi [5] solved a quadratic optimization
to obtain a curvilinear map layout, and then they
rotated each edge to the closest octilinear direction
to achieve interactive performance. However, all the
aforementioned techniques fail to achieve metro map
editing because they either cannot achieve interactive
performance or ignore the handle positions.

In addition to octilinear layouts, some techniques
promote the use of a curvilinear drawing style. Fink
et al. [10] represented metro lines by using Bézier
curves. The force-directed method was applied to
prevent visually disruptive bending of metro lines
when control points are determined. Roberts et al.
[11] measured the usability of curvilinear and octi-
linear layouts both objectively and subjectively. The
conducted user studies showed that no rule set can
be regarded as a gold standard and that design rules
should match the properties of a network.

Metro tourist map. Recent methods were presented
to combine metro maps with points of interest (POI).
These maps highlight parks, museums, and shopping
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(a) (b) (c)

Fig. 2. The edited metro map layouts of Lisbon. In this example, the handles are highlighted by large red circles.
(a) The curvilinear layout is initially computed without considering octilinear constraints. (b) Given that the closest
octilinear direction and the length of each edge in the curvilinear layout are independent of handle positions [5],
adapting this method does not satisfy the objective of editing. (c) By contrast, our optimized edge directions and
edge lengths match well with each other. The handles are located at user-specified positions.

malls that tourists may want to visit. Wu et al. [12]
represented each POI by a photo and elongated the
travel route along the centerline of a map. When
linking stations and photos, their method minimizes
the number of intersections between metro lines and
connecting lines to enhance visual clarity. These re-
searchers also ensured the placement of large anno-
tation labels close to the corresponding stations to
prevent occluding metro lines [13]. Given that many
POI can exist in a city, the visualization easily results
in visual clutter. To address this issue, Claudio and
Yoon [14] applied hierarchical clustering to display a
portion of the POI collection at different levels. The
holistic visualization allows users to plan their trip
easily. Although our system is developed for inter-
active metro map editing, the presented layout opti-
mization can potentially benefit these applications.

Constrained optimization. The presented method
is mainly based on least squares optimization with
constraints, the details of which can be obtained
in [15], [16]. Some geographic network visualization
methods [17], [18] also applied this technique to edit
the layout of a map.

3 INTERACTIVE METRO MAP EDITING
We provide a graphical interface that allows users to
edit a metro map by manipulating handle positions.
Given a geographic metro map, wherein the position
of a station is specified by longitude and latitude,
our objective is to achieve a visually pleasing layout
while enforcing each handle to be located at a user-
specified position. That is, 1) nodes are evenly spaced,
2) included angles formed by neighboring edges are
maximized, and 3) lines that do not allow users to
switch trains are intersection free. In addition to pro-
viding an appealing metro map layout, manipulation
should be intuitive. Therefore, the design guidelines
are as follows:

• Interactive: The system must perform in realtime.
• Intelligent: The determined layouts are consistent

with user expectations.
• Stable: Irrelevant routes should remain constant

when a part of the map is being edited.
• Effective: Few interaction steps and short manip-

ulation time are required to create a metro map.
To fulfill the guidelines, we formulate the require-

ments into energy terms and minimize the objec-
tive function to obtain the result. In the following,
we denote by G = (V,E) the map layout, where
V = {v0,v1, ...vn−1}, vi ∈ R2 is the geographic node
position, n is the total number of nodes, and E is
the set of graph edges. Users can control the handle
positions h ∈ H and then our system determines
the node positions v′ ∈ V′ in the octilinear map
layout. Given that edges are expected to only extend
vertically, horizontally, or diagonally, we limit the
angle of edge {i, j} to be φij = π

4x, where x ∈ Z.
In addition, to prevent irrelevant edges from crossing,
we keep the distance between an arbitrary node k and
an arbitrary edge {i, j} larger than the threshold ε.
That is, we minimize

D = Dd +Da, subject to
v′i = hi, hi ∈ H,

φij =
π

4
x, |v′k − pij(k)| > ε, {i, j} ∈ E, (1)

where

Dd =
∑
{i,j}∈E

∣∣(v′i − v′j)− sijRij(vi − vj)
∣∣2,

Da =
∑

v′∈V′

∑
{j,k}∈N(i)

∣∣∣∣v′i − (v′j + u′jk + tan(
π − θi

2
)u′jk)

∣∣∣∣2 ,
and pij(k) is the point on edge {i, j} closest to node
k. The energy term Dd constrains edge lengths, where
sij and Rij are the unknown scale factor and rotation
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matrix of edge {i, j}, respectively. The term Da max-
imizes the included angles of neighboring edges to
enforce metro lines to extend in different directions
and to achieve straightness, where N(i) denotes the
neighbors of node i, θi = 2π

|N(i)| , and u′jk = 1
2 (v′k−v′j).

We refer readers to [5] for additional details because
the formulations used are similar.

Considering that octilinear constraints are highly
non-linear, minimizing such an objective function
typically entails expensive cost. An effective method
to achieve interactive performance is to compute a
curvilinear layout by minimizing D without consid-
ering φij = π

4x (Figure 2.a), and then to rotate each
edge to an octilinear direction. This strategy separates
the constraints defined by discrete and continuous
variables, and solves for the map layout in two steps.
However, as demonstrated in Figure 2.b, simply rotat-
ing each edge to the closest octilinear direction cannot
approximate handle positions. This problem results in
a highly unstable layout when handles are manipu-
lated, which makes metro map editing challenging.
Readers can refer to the accompanying video for the
example of such an editing problem because unstable
layouts are difficult to visualize in still images.

The main improvement of the presented work to
[5] is the optimization technique used to minimize the
objective function (Equation 1). The goal is to create
an octilinear metro map that can approximate the
demanded handle positions (Figure 2.c). Considering
that a curvilinear layout is close to the optimal so-
lution, our system also neglects octilinear constraints
at the beginning. However, it does not simply rotate
each edge to the closest octilinear direction afterward
because this local property is unrelated to handle
positions. Instead, we adopt a graduate solution that
can also satisfy constraints such as line straightness
and rotation conservation (Section 3.2.1). The former
reduces the number of bends in a layout. The latter
maintains the overall shape of each curvilinear line
when the edges on it are rotated. Once the edge
directions are obtained, our system solves for the edge
lengths while preserving map topology and approx-
imating the required handle positions (Section 3.2.2).
Compared with naı̈ve rotation, this strategy considers
user inputs and enables an intuitive editing interface.

3.1 Curvilinear layout optimization

Our system solves for a curvilinear layout by mini-
mizing Equation 1 without limiting each edge angle
to have a π

4x degree. To gain additional freedom,
we allow edges to be lengthened or shortened when
handles are manipulated. Specifically, let a line be a
map structure, where nodes on it have one or two
neighbors. Our system expects only the edges on the
same line to have identical lengths. That is, sij is
considered to be an unknown variable and will be it-
eratively updated during optimization. This unknown

𝜙𝜙𝑖𝑖𝑖𝑖𝑠𝑠 = 1.9𝜋𝜋 

𝜙𝜙𝑖𝑖𝑖𝑖𝑠𝑠 + Δ𝜙𝜙𝑖𝑖𝑖𝑖 = 2.3𝜋𝜋 

𝜙𝜙𝑖𝑖𝑖𝑖𝑜𝑜 = 0.25𝜋𝜋 

Δ𝜙𝜙𝑗𝑗𝑖𝑖 

Δ𝜙𝜙𝑖𝑖𝑘𝑘  𝑖𝑖 

𝑗𝑗 𝑘𝑘 

Fig. 3. (Left) We update the octilinear angle φoij from
0.25π to 2.25π if φoij−φsij < −π to obtain a small rotation
angle |∆φij |. (Right) Similarly, given that the two edges
have similar directions, the rotation angles ∆φji and
∆φik should be small. We add 2π to φsji − φsik and set
this updated value in our optimization system.

variable is initially set to ρm
|vi−vj | and becomes ρb

|vi−vj |
whenever the layout is updated, where ρm and ρb are
the average edge lengths of the map and the line,
respectively.

3.2 Octilinear layout optimization
3.2.1 Edge direction
We rotate each edge to satisfy positional constraints
while achieving straightness and octilinear edge di-
rections. That is, 1) edge angles are equal to the π

4x
degree, 2) neighboring edges have similar angles, and
3) the layout of each route is similar to its curvilinear
version. We solve the problem by using an iterative
procedure because the aforementioned constraints are
non-linear. Denote by φsij and φoij the angles of edge
{i, j} on the curvilinear and octilinear layouts, respec-
tively; and by B the set of lines, wherein each node
on a line has only one or two neighbors. We formulate
the criteria into energy terms.

Octilinear direction. The essential requirement of
an octilinear layout is maintaining edges to extend
in the vertical, horizontal, or diagonal directions.
This property provides simple and orderly topological
representations to enable passengers to navigate by
themselves. To achieve this requirement, we rotate
each edge {i, j} by the angle ∆φij to an octilinear
direction. Specifically, we minimize

Φo =
∑
{i,j}∈E

αij
∣∣(φsij + ∆φij)− φoij

∣∣2 , (2)

where φoij is the closest octilinear angle to φsij + ∆φij ,
and αij is a weight that controls the proximity of the
angle to φoij . We will explain how αij is determined
in a later section. Note that the edge can rotate either
clockwise or counterclockwise to satisfy the octilinear
constraint. We choose the direction wherein |∆φij | <
π. For the example shown in Figure 3 (left), φoij can
be either 0.25π or 2.25π. We set φoij = 2.25π in our
system.

Straightness. Each metro line should be straight
to allow users to trace stations without frequently
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Fig. 4. From left to right are the curvilinear layout and the updated octilinear layouts after 3, 5, and 15 iterations.
We highlight the handles with large red nodes to indicate user specification. As shown in the figure, the edges
close to junction nodes become octilinear first. The remaining edges are then rotated inversely by our rotation
conservation to retain the vertical and horizontal components. The octilinear constraint becomes increasingly
hard as the iteration number increases, and an octilinear layout is obtained. In this example, we compute edge
lengths whenever edge directions are updated. However, edge lengths are optimized when all edge directions
become octilinear in our actual implementation.

switching attention when reading the map. Conse-
quently, our system ensures that neighboring edges
will have similar directions. This constraint is not
added to the edges adjacent to a junction because
the intersecting metro routes are expected to extend
in different directions. Recall that N(i) denotes the
neighbors of node i and let {j, k} ∈ N(i). We obtain
straight lines by minimizing

Φs =
∑

|N(i)|=2

∣∣(φsji + ∆φji)− (φsik + ∆φik)
∣∣2

=
∑

|N(i)|=2

∣∣(φsji − φsik) + (∆φji −∆φik)
∣∣2. (3)

Similarly, Figure 3 (right) illustrates that the numerical
value of φsji − φsik is not close to 0, although the two
edges have similar directions. We set φsji − φsik to
min(|φsji − φsik|, |φsji − φsik ± 2π|) to prevent the angle
discontinuity at 2π.

Rotation conservation. In addition to octilinear di-
rections and straight lines, the vertical and horizontal
components of a curvilinear line should be main-
tained when edges on the line are rotated. Otherwise,
positional constraints will never be achieved regard-
less of edge lengths, as illustrated in Figure 2. Given
that our objective is to approximate the octilinear
layout to its curvilinear version, our system attempts
to conserve rotation when computing for octilinear
edge angles. That is, when some edges on a line rotate
clockwise, others will rotate counterclockwise, and the
sum of edge rotation is expected to approximate zero.
This strategy prevents the global shape of an octilinear
layout from deviating from that of its curvilinear
version. Let Bk be the set of edges on the kth line,
we introduce the term

Φp =
∑
Bk

∣∣∣∑{i,j}∈Bk ∆φij

∣∣∣2 . (4)

Optimization details. We minimize the integrated
energy terms Φ = αoΦo + αsΦs + αpΦp to solve for

the edge angles. We set αo = 1, αs = 1, and αp = 10
in our system. Given that ∆φij and φoij in Equation
2 are unknown and correlated, the objective function
is non-linear and may contain many local minimums.
Accordingly, we can only iteratively update these two
variables to prevent the solution from quickly falling
into a local minimum. Specifically, we assume ∆φij =
0 in the first step and determine the closest octilinear
edge angle φoij . Afterward, φoij is considered to be a
known variable and ∆φij is solved by a linear system.
We then apply this new ∆φij to update φoij in the
next iteration. Our system computes the two variables
alternatively until the system converges.

Intuitively, αo should be large to ensure an oc-
tilinear layout. However, because ∆φij and φoij are
unknown, the solution will immediately fall into a
local minimum if the initial guess of φoij is imper-
fect. To prevent this problem, we first approach the
octilinear edge directions gently and allow the other
constraints to be satisfied. Then, the force of this
octilinear constraint strengthens gradually to fulfill
the requirements. Considering that edges close to a
junction mainly determine the layout of a map, we
control the optimization by updating the local weight
αij (Equation 2) instead of the global one αo. That is,
we set a large initial value for αij if the number of
hops dij ≥ 0 from edge {i, j} to the closest junction
is small. All weights αij increase as the number of
iteration increases. Under this setting, the edges close
to a junction will become octilinear first and those
far from a junction will be rotated in the opposite
direction to conserve rotation and thus, the shape
of each route can be retained (Figure 4). In other
words, the closer the edges are to a junction, the
fewer iterations are required for the edge to become
octilinear. Let r > 0 be the iteration number, we set
αij = r + 5×max(r − dij , 0.1) during optimization.

We transform the criteria for an octilinear layout
into energy terms and compute for the solution by
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minimizing the objective function in a least square
sense. Although αij increases and will become large
eventually, the obtained edge angles are very close but
not exactly equal to π

4x. To ensure that the layout is
octilinear, we simply set the edge angles to φoij after
optimization.

3.2.2 Edge length optimization
When edge directions are optimized, we compute for
edge lengths to approximate handle positions. During
this step, edge directions are considered to be known
variables and only edge lengths are determined. Let
c be the center node. A handle position can then
be represented by using the center node position vc
and a set of vectors on the path from node c to the
handle. To reduce the complexity of this represen-
tation and improve performance, we determine the
center node c with the smallest number of hops to the
other nodes. To achieve evenly spaced nodes, we also
expect equal neighboring edge lengths. Considering
that metro maps typically have loops, wherein nodes
have more than one path connected to center node c,
we constrain the paths to reach an identical position
to prevent disrupting the map topology.

Positional constraints. Our system expects each
handle to be located at the specified position hk to
achieve intuitive manipulation. Let Ec→k be the set
of edges on the path from node c to node k, ω be the
unknown edge length, and x be the unit length vector
with the direction obtained from Section 3.2.1. We
approximate the handle position hk by minimizing

Ωp =
∑

hk∈H

∣∣∣(vc +
∑
{i,j}∈Ec→k

ωijxij

)
− hk

∣∣∣2 . (5)

We also expect non-handle nodes to be located close to
their original positions because the curvilinear layout
provides a good reference for achieving a high quality
metro map. The applied constraint is similar to Ωp but
the handles are replaced by non-handles. That is,

Ωg =
∑

vk∈V\H

∣∣∣(vc +
∑
{i,j}∈Ec→k

ωijxij

)
− vk

∣∣∣2 . (6)

Equal edge lengths. A metro map with evenly spaced
nodes has an orderly and aesthetic appearance. This
kind of map also allows users to trace stations without
frequently switching attention. Hence, let {j, k} ∈
N(i), we present the term

Ωe =
∑

|N(i)|=2∧φo
ji
=φo

ik

∣∣ωji − ωik∣∣2 (7)

to achieve similar lengths among neighboring edges.
Topology preservation. Most metro maps have

loops with nodes that have more than one path
connected to the center node. To maintain topology
during metro map editing, our system enforces two
incident paths to arrive at the same position. That is,
by limiting each node to have only one shortest path

p 

c 

q 

p c 

q 

Fig. 5. Let c be the center node of a metro map.
Suppose that each node toward center node c has only
one shortest path. Then, an edge {p, q} must exist on
the loop, wherein both the shortest paths from node c
to node p and those from node c to node q do not pass
the edge. The left and right images illustrate the two
possible cases. Both cases are managed well using
our framework.

departing from center node c, an edge {p, q} must
exist on the loop, wherein both the shortest paths
from node c to node p and those from node c to node
q do not pass the edge. Our system constrains the
former path plus vector vq − vp to arrive at the end
position of the latter path, as illustrated in Figure 5.
Let L denote the set of edges {p, q} that do not belong
to the shortest path tree of c, and Ep and Eq be the
sets of edges on the paths to p and q, respectively.
To maintain graph topology, for each {p, q} ∈ L, we
constrain∑
{i,j}∈Ec→p

ωijxij + (vq − vp) =
∑

{i,j}∈Ec→q

ωijxij . (8)

Intersection prevention. Similar to curvilinear layout
optimization, nodes and edges in an octilinear layout
should also be sufficiently far to prevent unwanted
intersections. Otherwise, users may be misled and
may attempt to switch trains at a wrong station. Let k
and {i, j} be an arbitrary node and an arbitrary edge,
respectively. To prevent unwanted intersections, we
maintain ∣∣yk − (δyi + (1− δ)yj)

∣∣ > ε, (9)

where yη = vc+
∑
{a,b}∈Ec→η

ωabxab, η is a node index,
ε is a threshold that indicates the minimum distance
between a node and an edge, and δ is the interpolation
coefficient obtained from point line theory.

Optimization details. We minimize the integrated
energy term Ω = βpΩp + βgΩg + βeΩe subject to
topology preservation and intersection prevention
constraints. We set βp = 10, βg = 1, and βe = 1
in our system. Obviously, Ωp is given by a large
weight because handle positions should be satisfied
to achieve an intuitive manipulation. We optimize
this constrained objective function by using the La-
grangian method [15]. The edge lengths obtained from
the previous iteration are assigned to the initial guess
to achieve fast convergence. Node positions are then
determined whenever edge lengths are updated. Note
that we assume that the metro map initially has no un-
wanted intersections and all intersection prevention
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𝑘𝑘
𝑖𝑖 𝑗𝑗 𝑖𝑖 𝑗𝑗

𝑘𝑘

Fig. 6. (Left) An intersection may occur during editing.
(Right) If the edges intersect, we iteratively transform
the layout back to that of the previous step. An inter-
section prevention constraint is then added to maintain
minimal distance between edges.

1

0

Fig. 7. We manipulate the right handle in this Vienna
metro map. The transfer function of the obtained stiff-
ness value is shown at the right. The nodes shaded
in black indicate freedom of movement, whereas the
white nodes in white should be kept stable during
manipulation.

constraints are inactive. When an intersection occurs
during editing, we iteratively transform the layout
back to that of the previous step until the intersection
is free (Figure 6). Afterward, we find a node k and an
edge {i, j} from the intersection and add

Ωi =
∣∣(yk − (δyi + (1− δ)yj))− gij(k)

∣∣2 (10)

to the system, where gij(k) is an ε-length vector from
node k to edge {i, j}, which is applied to maintain
the distance between the node and the edge, as well
as to prevent intersection occurrence.

3.3 Stability constraints for an octilinear layout
Our system solves for the positions of all nodes
whenever handles are manipulated. This framework
ensures a visually pleasing result at each step. How-
ever, it does not consider temporal stability when con-
secutive layouts are determined. Given that different
octilinear layouts may have similar energies, unex-
pected changes in irrelevant routes may occur during
editing. This problem is visually salient because edges
can only extend in discrete directions.

We consider handle positions and determine the
influence region during manipulation to prevent

changes in irrelevant routes. Let the manipulated han-
dles be active and those fixed at the original positions
be inactive. Our system expects the nodes influenced
by active handles to move and the others to remain
stable. To achieve the aim, we determine a smooth
distribution based on the map topology to indicate
the stiffness of each node. That is, we minimize the
objective function∑

i∈H

|fi − di|2 +
∑
{i,j}∈E

|fi − fj |2 , (11)

where H is the set of handles, and di = {1, 0}, which
depends on whether node i is active or inactive.
The former part of the objective function indicates
the stiffness of active and inactive handles and the
latter part enforces neighboring nodes to have similar
values. The obtained fi will be a fractional number
because the sum of the L2 norm of fi − fj is the
minimum. Figure 7 shows the distribution of the
Vienna metro map. The nodes shaded in black and in
white are movable and stable, respectively, because
the handle at the right is manipulated. Therefore,
to achieve stable manipulation, we constrain each
node to stay at its previous position according to its
stiffness when computing for the curvilinear layout.
Namely, we prevent edges in irrelevant routes from
being rotated when an octilinear layout is computed.
Therefore, in Equation 2, we retain the angle φoij and
simply set αij with a large value (αij = 10 in our
system) if both stiffness fi and fj are larger than
0.95. This strategy stabilizes the map layout when it is
manipulated. Our system applies the stable constraint
only to edge directions because the change of edge
lengths does not induce popping artifacts.

We apply animation to transit consecutive layouts.
Nodes are moved with small steps in space each time
to reduce popping effects. We refer the readers to our
accompanying video for the results.

3.4 Labeling station names
Our system computes for the position of each station
name once the octilinear layout is obtained. The name
is placed around the station and can extend in one of
the octilinear directions. Three requirements should
be satisfied when placing these labels: 1) extending
neighboring station names in the same direction, 2)
preferentially positioning its name on either side of a
station, and 3) preventing occlusion of station names.
The first requirement allows users to read station
names without frequently switching attention. The
latter two constraints ensure that all characters can
be recognized easily. We also allow users to specify
the direction of a station name for particular needs
such as aesthetic concerns and personal preferences
if necessary. These requirements are formulated into
energy terms, and the positions of station names can
be obtained by solving a labeling problem. We refer
readers to [5] for additional details.
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Fig. 8. Stockholm (left), Montreal (middle), and Taipei (right) metro maps generated using our system.

4 RESULTS AND DISCUSSIONS

We have implemented the presented algorithm and
run the code on a desktop PC with a Core i7 3.0
GHz CPU. Although generating an octilinear layout
while approximating the demanded handle positions
is challenging, our system still achieves interactive
performance. For the Berlin metro map, which con-
tains 170 nodes and 182 edges, our system takes
approximately 0.08, 0.02, and 0.05 seconds to solve
for the curvilinear layout, edge directions and edge
lengths, respectively. Our system is fast because the
objective function is solved indirectly. Some hard con-
straints are relaxed at the beginning and then added
back to the system. We first determine the curvilinear
layout by solving a quadratic optimization problem,
which has been proven to be efficient [15], [16]. This
layout is then considered to be a reference. When ro-
tating edges to become octilinear, edge directions that
significantly deviate from their curvilinear versions
will be pruned. In addition, we formulate the require-
ments into soft constraints and minimize the objective
function in a least squares sense. The obtained edge
directions are very close to but not exactly octilinear.
Finally, our system solves for unknown variables with
different natures in separate passes. It prevents the
solution from quickly falling into a local optimum but
does not guarantee that the solution will be the global
optimum.

We show the metro maps generated by using our
system in Figures 1, 8, and 10, as well as in the
accompanying video. In these results, edges extend
either vertically, horizontally, or diagonally. Although
the metro maps are solved in a least squares sense,
the force of the octilinear constraint is large when
the system converges. Therefore, the deviation of each
edge from its octilinear direction is experimentally
less than 1◦ when a layout is optimized. Afterward,
we simply set the angle of edge {i, j} to φoij and
ensure that the layout is octilinear. We found that this
strategy does not introduce visual difference.

Some metro systems such as those in Sydney and
Singapore are built in 3D. These lines intersect ge-
ographically without letting passengers switch trains

Fig. 9. We visualize target handle positions by circles
and dashed lines to inform users that positional and
octilinear constraints cannot be exactly achieved in
some extreme cases. (Left) Keeping the center handle
unmovable while pulling the right handle upward within
a short distance. (Right) Rotating the five handles
simultaneously with a small angle.

and introduce unwanted intersections that are defined
in our algorithm. Given that such intersections are
unavoidable when rendering 3D metro lines on a 2D
plane, our optimization may continue regardless of
the number of iterations. Thus, we create a dummy
node at each geographic intersection, which does not
represent a station, before computing for the layout
to prevent this problem.

User interface. Our system allows users to manip-
ulate not only a single node but also a portion of
the map. Users can select the region of interest, and
then translate, rotate, and scale it. All nodes within
this region will be transformed identically and then
constrained at the new positions. This interface is
particularly useful in regions where nodes require an
identical transformation. For example, to enlarge a
region where nodes are close to one another, the scal-
ing operator can simultaneously change all relative
distances between them. Hence, repeatedly moving
the node is not necessary.

In some extreme cases, a layout that perfectly sat-
isfies both positional and octilinear constraints does
not exist. For example, expecting two nodes of an
edge to be located at (0, 0) and (1, 0.5), respectively,
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Fig. 10. Berlin (left) and Sydney (right) metro maps generated using our system. Both metro systems have over
170 stations.

while ensuring the edge direction to be octilinear
is impossible. This problem occurs when the free
nodes between handles are few and edges are rotated
with an arbitrary angle, as illustrated in Figure 9.
Hence, we can only fulfill octilinear constraints while
minimizing the deviation of each handle from the
demanded position. Considering that user inputs are
not fully satisfied, we inform users that our system
trades handle positions for an octilinear layout by
visualization. That is, the target positions of the ma-
nipulated handles are rendered in black circles. The
deviations between solved and expected positions are
indicated in dashed black lines.

Comparisons. We introduce an editing system that
allows metro maps to be manipulated interactively.
Although adopting existing methods may achieve this
objective, the optimization techniques based on hill
climbing [2] and mixed integer programming [3] are
expensive. The performance of [2] is slow because
it solves edge lengths and edge directions simul-
taneously during optimization. These two variables
have significantly different natures and should not
be optimized together. Otherwise, the search region
will be highly nonlinear. Nöllenburg et al. [3] for-
mulated the requirements into discrete constraints.
However, the optimization problem is NP-hard and
entails expensive computational cost. Improving the
performance of these two methods to achieve inter-
active manipulation is difficult unless the whole opti-
mization is reformulated. Instead, we add positional
constraints to the technique presented by Wang and
Chi [5] and mainly compare this extension to our
method. Given that edge directions are independent
of handle positions, this simple extension is highly
unstable. Handles typically move to unexpected posi-
tions because of edges with wrong directions. The ac-
companying video verifies this limitation. By contrast,
handles are controllable when users apply our system

Fig. 11. Two different layouts of the Lisbon metro
map. Our method determines the direction and then
the length of each edge when computing a map lay-
out. Intersections are inevitable when the directions of
neighboring edges are identical, as highlighted by the
dashed rectangle.

to manipulate metro maps. Hence, we claim that our
technique is the only system that performs in real time
and that provides an intuitive editing interface.

Limitations. The presented system solves for edge
directions and edge lengths independently to achieve
interactive performance. Consequently, the obtained
layouts are not guaranteed to be globally optimal.
Intersections are inevitable when neighboring edges
extend in the same direction (Figure 11), although
we have strove to maximize the included angle of
neighboring edges in the optimization. This problem
potentially occurs at junction nodes with four neigh-
bors and above because of limited edge directions.
Accordingly, using our system to edit metro maps
with many junction nodes can be less effective. We
plan to address this problem under the condition of
interactive performance in future.

5 EVALUATIONS
5.1 Subjective evaluation
To evaluate our editing system, we presented the
prototype program to a professor and three research
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assistants who work in the map and multimedia
laboratory of the Department of Geography. We first
explained our objectives and then demonstrated how
to use our system to these cartographers. After the
cartographers edited some metro maps and became
familiar with our interface, we conducted a semi-
structure interview and requested for their feedback.
The interview aimed to make clear whether our sys-
tem is intuitive, helpful to metro map creation, and
beneficial to their work.

The cartographers indicated that they typically
need one day to create a metro map using Adobe R©
Illustrator. One of the cartographers showed us how
he creates a metro map:

”I will set the geographic metro map as a background
and overlay my designed layout on it. Each transportation
line will be straightened from its geographic version and
checked whether the distortion is acceptable. The station
names are then labeled once the layout is determined. At
this step, I have to check whether the labels are sufficiently
large and ensure that no labels are occluded. However, in
many scenarios, the layout has to be refined if the station
names cannot be appropriately labeled. This process has to
be repeated until I feel everything is satisfactory. (S3)”

Although the presented system can help cartogra-
phers create a metro map within a few minutes, they
pointed out that the system may not be beneficial to
them because metro maps are not frequently updated.
However, this tool should be useful to general users
because it reduces the effort of metro map editing.
They believed that many creative ideas and applica-
tions will be developed when a required map can
be easily created. This opinion is based on the fact
that metro maps are unnecessarily created by cartog-
raphers because geographic accuracy is not the main
issue. Instead, they pay more attention to network
topology, display space, map users, and passenger
knowledge on the geography of a city. For example,
maps designed for foreign passengers have to focus
on topology to prevent the passengers from getting
lost; whereas maps designed for citizens should con-
sider geography, travel time, and travel fee to save
daily transportation cost. In all, the cartographers
indicated that topology is the most important and
should be preserved when the display area is small or
even flat 1. Other information can be neglected when
the display area is insufficiently large.

The cartographers indicated that our system is easy
to use because they can manipulate the map layout
by controlling only a small number of stations. This
characteristic is important because they typically have
no exact idea about the map layout before they start
creating it. Because trial and error is inevitable, plac-
ing node positions to achieve an aesthetic presentation
and prevent label occlusions is a tedious work. There-
fore, the cartographers agreed that our editing system

1. https://www.flickr.com/photos/erussell1984/11315336303/

is intuitive. One of the cartographers said:
”The automatic relocation of stations is very convenient.

In that case, I don’t need to specify all details when editing
a map.” (S1)

However, they expected station names to be always
displayed on the map during editing. This character-
istic allows them to immediately view the final ap-
pearance of a map and check its geographic accuracy.
Specifically, the cartographers said:

”The system does not label the station names whenever
the layout is updated. However, I need to know the name
of each station so as to compare the real and the schematic
maps, and make sure whether the geographic distortion is
acceptable.” (S3)

We admitted that our system can only interactively
label station names of small metro maps because solv-
ing a labeling problem is computationally expensive.
We attempt to solve this performance issue in future.
Another problem pointed out by the cartographers
was the lack of undo and redo operations. We added
these two functions to our system after the user study.

5.2 Quantitative evaluation

Because the cartographers indicated that our system
could be useful to general users and helpful to re-
alize interesting ideas in a metro map, we quanti-
tatively evaluate the effort that users have to take
when creating a map. Particularly, we would like to
know whether users can create a map within the
attention span, which is approximately 5 minutes and
no longer than 20 minutes for an adult. [19]. We
also attempt to understand the numbers of control
stations, interaction steps, and whether intersections
frequently occur during the editing. In other words,
the hypothesis is that users can create a metro map
within 5 minutes if they have a certain idea about
the map. We conducted a user study with several
participants to quantitatively evaluate our system.

Participants. We asked 8 participants to edit metro
maps and recorded the editing statistics. These par-
ticipants were the students recruited from the depart-
ment of computer science; aged from 20 to 24; and
50% of them were females. They were trained to use
our system by a five-minute presentation and allowed
to interact with maps until they became familiar with
the interface. During the study, they had to complete
the task by themselves without any assistance.

Task. We gave the participants three metro maps
and asked them to produce the layouts as close as
possible to the ones we presented, which were shown
in our supplemental material. The task was designed
in this way because a good metro map is difficult to
define. Instead, our goal is to understand the effort
when users have a certain idea and attempt to create
a metro map by using our system.

Environment. The evaluation was mainly per-
formed in a quite room. Each participant operated a

https://www.flickr.com/photos/erussell1984/11315336303/


JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, JANUARY XXXX 11

0

10

20

30

40

50

60

70

80
# of control stations

Berlin Munich Taipei

0

2

4

6

8

10

12
# of intersections

Berlin Munich Taipei

0

10

20

30

40

50

60

70
# of steps

Berlin Munich Taipei

0

50

100

150

200

250

300

350

400

450
manipulation time (s)

Berlin Munich Taipei

Fig. 12. The metro maps of Berlin, Munich, and Taipei are composed of 170, 96, and 97 stations, respectively.
The Box and Whisker plots show the numbers of control stations, intersections, and interaction steps, as well as
the manipulation time recorded from eight participants when they edited these maps.

desktop PC that can run our program interactively.
The editing result was displayed on a 27-inch screen
with a resolution of 1920 × 1080. The editing statistics,
such as the numbers of controlled stations, inter-
sections, and interaction steps, as well as the total
manipulation time, were automatically recorded by
our program during the study.

Results. The box and whisker plots in Figure 12
show the statistics. The five-number-summaries from
top to bottom are max, the 25th, 50th, and 75th per-
centiles, and min. As indicated, approximately 20-30%
of the stations were controlled; less than 10 intersec-
tions occur, and the manipulation time was approxi-
mately 3-5 minutes. The number of controlled stations
could be large because several stations were trans-
formed simultaneously when a region was edited.
However, editing the map by using our system was
not tedious, which was justified by the few interac-
tion steps and the short manipulation time. We also
applied a t-test to analyze whether our hypothesis
was supported. The result indicated a strong evidence
that the alternative hypothesis ”manipulation time is
within 5 minutes” is true for the three cases (p < 0.05
for Berlin, p < 0.005 for Munich and Taipei).

We observed that the number of interaction steps
had a large variation among participants and was
roughly proportional to the manipulation time. To
make sense of this phenomenon, we conducted a short
interview to the participants who took longer time to
create a map. These participants mentioned that they
seldom or even did not use region editing in the study.
They simply preferred controlling one station at a time
and had no idea the way would take longer time.

5.3 Stability evaluation
Our system applies the stability constraint to prevent
irrelevant routes from being changed when handles
are manipulated. The added energy terms potentially
result in the system more constrained. To understand
how much layout quality is decreased, we compute

for the layout energies and present the results in
Figure 13 with and without the constraint. Because the
objective function is solved in a least squares sense
Ax = b when edge directions are optimized, we
determine the mean energy through 1

n |Ax−b|2, where
n is the number of constraints. Note that energies
related to stability constraints are not measured. As
indicated, the mean energy of the edge directions and
edge lengths does not always become large when
the stability constraint is considered. This result is
reasonable because the objective function used to
define good edge directions is non-linear. As our
method cannot guarantee to obtain globally optimal
solutions, the layouts with similar energies can be
considered to have equal quality. We refer readers
to the accompanying video for quality comparison
with and without stability constraint because dynamic
layout changes are difficult to observe in still images.

5.4 Intuition analysis
We present an intuitive interface that allows cartog-
raphers and non-professionals to manipulate node
positions when creating metro maps. Several design
guidelines are presented to achieve this objective,
including interactive, intelligent, stable, and effective.
We analyze whether these guidelines are achieved.
First, our system performs interactively because the
optimization takes less than 0.1 second to determine
the layout of a medium-size metro map. Second, the
determined layouts satisfy metro map criteria and
approximate the demanded handle positions. Third,
nodes that are close to inactive handles are retained
at their previous positions during editing and thus,
global layouts are stable when a local region is ma-
nipulated. Finally, editing a metro map approximately
takes 30 interaction steps and 3-5 minutes if the user
has a clear idea of the metro map layout, as indicated
in Figure 12. Given that all the aforementioned design
guidelines are satisfied, we claim that our editing
system is easy to use.
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(a) dir: 0.025, length: 0.663 (b) dir: 0.027, length: 0.361 (c) dir: 0.027, length: 0.587 (d) dir: 0.029, length: 0.209

1

0

Fig. 13. Montreal metro maps. Left and right show the manipulations without (a-b) and with (c-d) our stability
constraints. In this example, only the handle pointed by the arrow is manipulated. The determined node stabilities
are indicated by colors, and the transfer function is shown at the right. The top right and bottom left (irrelevant)
routes change when the map is manipulated without the stability constraint, which may lead to unexpected
outcomes during manipulation. The problem occurs because both layouts fulfill the requirements. This finding
can be explained by the fact that the mean averages of edge directions and edge lengths do not increase
considerably when the stability constraint is considered.

6 CONCLUSION AND FUTURE WORKS

We presented an editing system that allows users to
design metro maps by controlling a small number
of nodes. Our system supports curvilinear and octi-
linear layouts during manipulation. Both layouts are
expected to have straight lines, evenly spaced stations,
and the maximized included angles at junctions. We
further constrain routes to extend either vertically,
horizontally, or diagonally when creating an octilinear
map. Although some methods have been presented
to lay out metro maps automatically, a system that
considers user input remains essential. The presented
work can dynamically consider human knowledge
and adjust the layout to make it consistent with user
expectations. Furthermore, our algorithm is widely
applicable. It can be used to edit other octilinear
layouts such as water or gas utility networks [20].
We also believe that our optimization framework is
beneficial to generating metro tourist maps [12], [13],
[14] because of its efficiency.

Metro maps such as that of the New York City
Subway2 are designed to overlap street maps. In such
cases, cartographers trade the clarity of map topology
for geography. The advantage of this map is that users
can self-navigate to their destinations by walking
after leaving the train station. We intend to design
a layout algorithm that can maximize the clarity of
both information in the near future.
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