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Although live video communication is widely used, it is generally less engaging than face-to-face commu-
nication because of limitations on social, emotional, and haptic feedback. Missing eye contact is one such
problem caused by the physical deviation between the screen and camera on a device. Manipulating video
frames to correct eye gaze is a solution to this problem. In this paper, we introduce a system to rotate the
eyeball of a local participant before the video frame is sent to the remote side. It adopts a warping-based con-
volutional neural network to relocate pixels in eye regions. To improve visual quality, we minimize the L2
distance between the ground truths and warped eyes. We also present several newly designed loss functions
to help network training. These new loss functions are designed to preserve the shape of eye structures and
minimize color changes around the periphery of eye regions. To evaluate the presented network and loss
functions, we objectively and subjectively compared results generated by our system and the state-of-the-art,
DeepWarp, in relation to two datasets. The experimental results demonstrated the effectiveness of our system.
In addition, we showed that our system can perform eye gaze correction in real time on a consumer-level
laptop. Because of the quality and efficiency of the system, gaze correction by postprocessing through this
system is a feasible solution to the problem of missing eye contact in video communication.
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ral networks;
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1 INTRODUCTION

Live video communication provides an easy, fast, and cost-effective means of communication be-
tween people located far from each other. The increasing number of live video communication
users and companies–and the market forecast–indicate that video calls and video conferences will
dominate communication in the future [1]. However, despite breaking physical limitations, video
communication is inevitably less engaging than face-to-face communication because of limited
social, emotional, and haptic feedback [2]. A common but serious drawback of video communica-
tion is lack of eye contact (Figure 1). A user may perceive that the other party is not attentive to
the conversation. This problem occurs because of the physical deviation between the camera and
screen. For example, when using a phone where the camera is above the screen to chat with a re-
mote user, looking at said user’s eyes is perceived as looking downward by the remote participant.
This common problem is termed "parallax."
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Fig. 1. Eye contact is missing during live video communication because of parallax–the physical deviation

between the camera and screen. The image is obtained from YouTube channel "The Late Late Show with

James Corden" [3].

Solving the eye contact problem perfectly is challenging if participants communicate with each
other by using laptops or mobile phones. Since the remote participant can appear only on a planar
screen, the local participant has to be in front of the screen and face the screen during the conver-
sation. Under this circumstance, eye contact can be achieved if the remote participant is looking
at the camera. Many of the gaze correction systems were built based on this assumption. They
attempted to redirect the participant’s gaze from the screen to the camera by video postprocess-
ing. Ideally, the methods have to estimate eyeball rotation according to positions of the camera,
screen, and the participants. Then, they can process the video based on the estimated rotations.
However, most of the previous methods assumed that the rotation is a constant. Users have to
retain their head pose and relative position to the camera when using the previous systems to
communicate with remote participants. In addition to the eyeball rotation estimation, processing
video frames without producing noticeable visual artifacts while achieving real-time performance
is also challenging.
We build the gaze correction system based on the assumption that users are in front of the

screen and face the screen during video conferencing. Specifically, the system corrects the gaze
by redirecting it from the remote participant’s eyes on the screen to the camera before the video
frame is sent to the remote side. Based on the parameters manually specified once in advance, the
system calculates the positions of the camera, the local participant’s eyes in the real world, and
the remote participant’s eyes on the screen, and then estimates the eyeball rotation angles for gaze
correction dynamically. As a result, users are allowed to move with a certain degree of freedom
during communication. Note that our system is not presented for cheating. It assumes that the
local participant is looking at the remote participant on the screen and corrects the eye gaze by a
relative transformation. The eye contact will be missed if this is not the case, which is the same to
a face-to-face communication.
To postprocess video frames based on the estimated eyeball rotation angles, we apply a deep

neural network to warp the eye regions. Specifically, the eye images are first segmented, warped,
and then overlaid onto the original video frames. We extended the network architecture of a
state-of-the-art, DeepWarp [4], to compute a pixel flow field for relocating pixel positions. Dense
blocks [5] are embedded into the network for better utilizing features in input images. We also
introduce four loss functions to improve quality and efficiency. Two of the functions are used
to preserve the shape of eyeballs and eyelids by forcing the pixels representing an identical eye
component to move similarly. Another two are used to retain colors of the pixels in the boundary
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region of the warped eye image. These loss functions relieve the need for fusion when the warped
eye images are overlaid onto the original video frame.
To evaluate the performance of our system, we objectively and subjectively compared results

generated by DeepWarp and our system. The experimental results revealed that our system outper-
formed the current state-of-the-art model in terms of quality. Furthermore, our system achieves
real-time performance (33 frames per second, FPS) on a laptopwith a consumer-level graphics card.
The aforementioned advantages render gaze correction through postprocessing a feasible solution
tomissing eye contact in video communication. We also have released the source codes, the trained
model, and the collected gaze dataset for public use (https://github.com/chihfanhsu/gaze_correction).
To summarize our contributions,
• we present a system that dynamically estimates eyeball rotation angles to correct users’ gaze
during video communication;

• we introduce a warping-based convolutional neural network to relocate pixels for redirecting
eye gaze;

• we design four loss functions to preserve eye structures and relieve the need for fusing the
gaze redirected images when they are overlaid onto the original video frame; and

• we have implemented a prototype system for gaze correction, released the source codes, the
trained model, and the collected gaze dataset, which could be helpful to the future researches
in gaze correction.

2 RELATED WORK

Eye contact during live video communication has been a topic of research for many years [6–12].
The presented methods can be classified into hardware- and software-based approaches.

Hardware-based approaches attempt to enable users to look at the screen and camera simulta-
neously. Smith et al. [13] designed a video tunnel for the camera to capture the reflection of the
local participant in a half-silvered mirror positioned directly in front of the screen. The local par-
ticipant can see the remote participant through this mirror. This design enables the eye contact
because the mirror and screen are located at the same x and y coordinates (if z is defined as depth
from the user’s perspective). Because the half-silvered mirror is not fully transparent, Tapia et
al. [14] applied a projector to project the remote participant’s face onto a surface embedded in a
small camera, thereby achieving eye contact. Jones et al. [15] presented a system to scan the local
participant’s face in real time and display a three-dimensional (3D) face image on a 3D display on
the remote side. Apple [16, 17] and Sony [18] have proposed new types of liquid-crystal displays
where the camera is embedded behind the screen. However, such devices remain unavailable to
the public.
The goal of software-based approaches is to modify pixels of captured images. Jaklič et al. [11]

and Solina and Ravnik [9] have conducted simple rotation of image plane around the x-axis to fix
missing eye contact. Their experiments have revealed that the subjective experience of missing
eye contact can be reduced. However, to solve the problem, eye gaze redirection is necessary.
Several studies have been presented to synthesize face images based on depth maps or 3D facial
information. A depth map can be estimated by using multiple cameras [19], stereo vision [6, 7], an
RGB-D sensor camera [20, 21], or a monocular RGB camera [10]. Because these methods deform
the entire face image, visual artifacts are likely noticeable if the estimated depth map is inaccurate.
Moreover, the methods demand an additional step to smooth the boundary around a face when
the face is overlaid onto the original video frame.
Several studies establish eye contact by replacing eye images [8, 22–25]. To achieve this, a huge

amount of gaze images covering a variety of head poses and illuminations should be collected
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Fig. 2. Framework of our eye gaze correction system. The system corrects the local participant’s eye gaze

before the video frame is sent to the remote side. The orange arrows denote the flows of the video frame. The

white arrows indicate the flows of the estimated eyeball rotation angles (α ) and the position of the remote

participant’s eyes on the screen (Pw ). The systems at both sides are identical. Some arrows are omi�ed on

the remote side for conciseness.

in advance. However, because conditions can be unlimited and searching for the optimal eye
images can be time consuming, these techniques are not ideal for correcting the eye contact prob-
lems during live video communication. In between modifying entire face image and eye images,
GazeDirector [26] replaces the upper part of a face to redirect eye gaze. The researchers deformed
a 3D template to fit the upper face in a video and then generated the corresponding textures. The
3D upper face plus a 3D synthetic eyeball are then rendered and overlaid onto the original video
frames. Although GazeDirector synthesizes good results in real-time as well, after a few seconds
of model fitting, however, the method cannot handle the people with eyeglasses. It turns out that
a great portion of usage scenarios of video communication are not satisfied.
In addition to replacing the original eyes, DeepWarp [4] was presented to redirect eye gaze by

warping. They trained a warping-based convolutional neural network to achieve the goal. Given
a demanded rotation, the network can estimate a pixel flow field for warping eye images, which
attempts to minimize the L2 distance between the real eye and warped eye images. Although the
method approaches high quality and high efficiency, visual artifacts such as the distortion around
the pupil and eyelids still frequently appear. In addition, the method assumes that the rotation of
eyes is given and does not consider the real scenario of live video communication. To establish
eye contact during live video communication, we extend DeepWarp by modifying the network
architecture and introduce new loss functions to help network training. This extension improves
not only visual quality but also system performance. In addition, we estimate the rotation of eyes
to dynamically correct the gaze and establish eye contact when participants pay attention to each
other. The experiments demonstrated that the presented method can serve as a practical solution
for establishing eye contact in live video communication.

3 GAZE CORRECTION SYSTEM

We introduce a gaze correction system to maintain eye contact between participants during video
conferencing. The system is built based on the assumption that two participants are in front of the
respective screens and facing the screens during the conversation. The scenario involving more
participants will be discussed in Section 5. Since the screen and the camera are not collocated, the
goal is to redirect the local participant’s eye gaze from the remote participant on the screen to the
camera by manipulating each video frame before it is sent to the remote side. Figure 2 illustrates
the workflow. Specifically, the system estimates the eyeball rotation angles according to positions
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Fig. 3. Our system redirects the gaze of a local participant from the remote participant Pw to the camera Pc .

The eyeball rotation angles αw2c are determined by αw2z and αz2c . The arrows located at upper right corner

indicate the axes and the corresponding positive directions of the physical coordinate system P .

of the camera and the two participants’ eyes. Then, it warps the eye images based on the estimated
angles to correct eye gaze.

3.1 Estimation of eyeball rotation angles

We estimate the eyeball rotation angles to redirect the gaze of a local participant from the remote
participant on the screen to the camera. Figure 3 illustrates the estimation, where the unit of
the physical coordinate system P is centimeter (cm), and the screen is aligned with the xy−plane
of the coordinate system. Let Pc , Pe , and Pw denote the positions of the camera, center of the
local participant’s eyes, and center of the remote participant’s eyes on the screen, respectively. To
establish eye contact during video communication, wemodify the local participant’s gaze direction

from
−−−→
PePw to

−−−→
PePc by rotating the eyeball by αxw2c and α

y
w2c degrees about the x− and y−axes,

respectively. Let Pz be the intersection of the ray from Pe normal to the xy−plane, we further
separate the eyeball rotation angles into

{
αxw2c = αxw2z + α

x
z2c

α
y
w2c = α

y
w2z + α

y
z2c

. (1)

In equation 1, αw2z and αz2c represent the eyeball rotation angles that can redirect the gaze from
−−−→
PePw to

−−−→
PePz and from

−−−→
PePz to

−−−→
PePc , respectively. Accordingly, based on Equation 1, we calculate

the separated angles by





αxw2z = tan
−1

(
Pxw − Pxe
Pzw − Pze

)

α
y
w2z = tan

−1
(
P
y
w − P

y
e

Pzw − Pze

) , and





αxz2c = tan−1
(
Pxe − Pxc
Pzc − Pze

)

α
y
z2c = tan−1

(
P
y
e − P

y
c

Pzc − Pze

) , (2)

and then sum the results to obtain the eyeball rotation angles, where the superscript z indicates
the z−axis of the coordinate system.
To obtain the camera and participants’ eye positions (Pc , Pe , and Pw ) in the physical coordinate

system, we first define the origin of the system Po at the screen center. For the devices with fixed
specifications such as a smartphone or a laptop, the camera position Pc can easily be determined.
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Fig. 4. Framework of our gaze redirection method. We apply the facial landmarks of the eye (anchors) to

crop eye images I and generate the corresponding anchor mapsMA. Then, I ,MA, and the estimated eyeball

rotation angles α are fed into a warping-based convolutional neural network for gaze redirection. Finally, we

overlay the warped eye images onto the original video frame.

Otherwise, we ask users to manually specify the camera position based on the given coordinate
system. To determine the center of the remote participant’s eyes Pw , we track his or her eyes on
the screen and then transfer the tracked position to the physical coordinate system. Finally, to
determine the position of the local participant’s eyes Pe , which is dynamic, we use the focal length
of the camera, f , to estimate the depth from the screen to the participant. The focal lengths of
popular devices are available online. Alternatively, we ask the participant to place their head d cm
away from the camera. Our system counts the number of pixels in the interpupillary space in the
captured image to estimate the focal length based on the perspective projection [27]:

f =
RIPD × d

PIPD
, (3)

where PI PD and RI PD denote the user’s interpupillary distances in the physical (cm) and screen
(pixel) coordinate systems, respectively. We set PI PD = 6.3 cm by default based on the statistic
in [28]; this value can be modified for personalization.
Once the focal length is available, the distance from the participant’s eye to the screen Pze and

then the center of the eyes Pe can be dynamically estimated from the captured video frame by

Pze = − f × PIPD

RI PD
(4)

and

P
x ,y
e =

Rle + Rre

2

( |Pze |
f

)
+ P

x ,y
c , (5)

where Rle and Rre are the positions of the left and right eyes in the screen coordinate system R

(pixel), respectively. Once the aforementioned three positions (Pc , Pe , and Pw ) are estimated, the
eyeball rotation angles αxw2c can be calculated to correct the local participant’s gaze direction.

3.2 Image warping based on the estimated eyeball rotation angles

We warp eye images based on the estimated eyeball rotation angles to achieve gaze correction.
Specifically, the system segments the left and right eyes from each video frame, modifies the eye
pixels by a warping-based convolutional neural network, and then overlays the warped results
onto the original video frame. Figure 4 shows the framework of the gaze redirection method.
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(a) (b)

Fig. 5. (a) Sixty-eight facial landmarks detected byDlib. (b)We crop the eye images according to the detected

landmarks. The le�most aℓ and rightmost ar landmarks that tightly surround an eye are used to define the

eye region. We set the center of the eye region Ec slightly above the center of aℓ and ar because the upper

eyelid is more stretchable than the lower eyelid.

3.2.1 Preprocessing. To segment the eye region I , we employ the Dlib library [29, 30] to detect
68 facial landmarks, as illustrated in Figure 5(b). Let the six landmarks that tightly surround the
eye term "anchors", and the leftmost and rightmost anchors of an eye be aℓ and ar , respectively.
To cover the whole region of an eye, we empirically set the eye region’s width to 1.5 × L, where
L is the horizontal distance between aℓ and ar , and set the region’s aspect ratio to 4:3. Because
the upper eyelid is more stretchable than the lower eyelid, we set the eye center Ec , to a position
slightly above the center point of aℓ and ar . Namely,




Exc =
1

2
(ax

ℓ
+ axr )

E
y
c = 1.5L × 3

4
× 1

12
+

1

2
(ay

ℓ
+ a

y
r )
, (6)

where 1.5L × 3
4 is the height of the eye region. In addition, we generate twelve anchor maps MA

as same as DeepWarp to embed eye’s structural information to the neural network. These maps
are computed from the six anchors. Specifically, let A be the anchor of an eye. For each anchor,
ai = (axi ,a

y
i ),ai ∈ A is used to generate two maps by

{
Maxi

(x,y) = axi − x

Ma
y
i
(x,y) = a

y
i − y

. (7)

3.2.2 Warping-based convolutional neural network. The core of the gaze redirection is awarping-
based convolutional neural network. The network takes three inputs, namely a segmented eye
image I , the corresponding anchor maps MA, and the eyeball rotation angles αw2c . Subsequently,
the network generates a pixel flow field Fθ and a brightness field Bθ to warp eye images I ′

θ
. In

other words, the goal of the network is to minimize the objective function

minθD(I ′θ , I
t ), (8)

where I t is the ground truth, D(·) is a distance function that measures the similarity of I ′
θ
to I t ,

and θ denotes the hyperparameters in the network. Note here that θ is omitted in the following
passages.
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Fig. 6. Overview of our warping-based convolutional neural network, which contains three components: an

encoder, a warping network (WN), and a color network (CLN). The sizes of each input and output are shown

to help readers to interpret the structure.

We construct the neural network based on the concept of DenseNet [5] which improves the util-
ity of features in hidden layers and prevents the vanishing gradient problem. The detailed structure
is shown in Figures 6 and 7. As illustrated, the network structure is composed of three components:
an encoder, a warping network (WN), and a color network (CLN). The encoder transforms the eye-
ball rotation angles αw2c from a two-dimensional (2D) vector to a 16-dimensional vector (16D) and
duplicates the 16D vector to form a feature map. The feature map is concatenated with I andMA

and then the integrated input is fed into the WN. TheWN takes the input to infer a pixel flow field
for image warping and a feature map for color correction. Eye gaze redirection through simple
warping may create visual artifacts; specifically, artifacts appear when the eye anchors deviate
from the boundary of eyelids and sclera or when the iris is occluded or dis-occluded by eyelids.
Because artifacts mainly appear at the sclera, we alter the brightness of the warped eye image by
adding the CLN at the back end of the WN in order to generate a brightness field that can linearly
interpolate the white and the original pixel colors. Notably, each position in the field is a 2Dweight
vector. Because the weight should be among [0,1] and the L1-norm of each weight vector should
be 1, we add a spatial Softmax layer at the end of the CLN.

3.2.3 Loss functions. We train the neural network to minimize the L2 distance between I ′ and
I t (Equation 8) because this strategy can strongly penalize outliers that are visually noticeable
to humans. However, minimizing only the L2 distance is insufficient for generating high-quality
warped results because the distance only considers color differences between images. While the
shape and structure of eyes are oblivious, ghost effects frequently appear at regions close to pupil,
iris, sclera, and eyelids. We thus present new loss functions to help training the network.
Shape-based loss functions. To retain the shape and structure of an eye, we expect pixels

on eyeballs and eyelids to move similarly when the eye image is warped. An intuitive idea to
achieve this is to segment the sclera, pupil, and iris, and then constrain their movements. However,
this additional segmentation process can be imperfect and time consuming. Observing that the
sclera is almost white, whereas the pupil and iris are usually darker than the sclera, the shape of
each region can be preserved according to the brightness of a pixel. In other words, dark pixels–
which represent the iris and pupil–are forced to have similar motion, whereas bright pixels–which
represent the sclera–have greater freedom of movement. Accordingly, we define the loss function
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Fig. 7. Detailed network structure of each component. The shape in each box indicates the tensor size of the

hidden layer. In the encoder, each fully connected block (FC BLK) sequentially contains a fully connected

layer and ReLU activation function [31]. In the WN and CLN, the convolutional block (Conv BLK) sequen-

tially contains a convolutional layer, ReLU activation function, and batch normalization layer [32]. AvgP
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Fig. 8. We warp each eye image I to as similar as I t to redirect the gaze. To retain the eyeball structure,

pixels on pupil and iris should move similarly. We also expect pixels on eyelids to move similarly because of

the low degree of freedom of eyelids.

as follows:

losseb =
∑

p ∈I
R(p) · (1 − L(p)) ·

(���
∂F (p)
∂x

��� +
���
∂F (p)
∂y

���
)
, (9)

where

R(p) =
{
1 if p is a pixel representing the eyeball,

0 otherwise.
(10)

The subscript eb indicates the eyeball, L(p) is the brightness of a pixel p, and F (·) is pixel flow
field inferred by the neural network. Regarding the eyelids el , we similarly preserve their shapes
as follows:

lossel =
∑

p ∈I
(1 − R(p)) ·

(���
∂F (p)
∂x

��� +
���
∂F (p)
∂y

���
)
. (11)

Color-based loss functions. We apply the CLN to reduce visual artifacts when an iris is
occluded or dis-occluded by the eyelid. However, when training of an end-to-end neural network,
the CLNmay markedly change pixel colors to minimize the L2 distance. For example, the CLN can
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transform the color of a pixel from black to white to represent sclera instead of moving a sclera
pixel to the correct position. To prevent this phenomenon, we add color-based loss functions to
the objective function. We expect the brightness field at each pixel B(p) to be small and introduce
the term

lossp =
∑

p ∈I
C(p) · B(p), (12)

whereC(·) is a predefined penalty map whose values increase from the eye center Ec (Figure 5(b))
to the boundary of the eye region. Specifically,

C(p) = β × 2

√
(px − Exc )8 + (py − E

y
c )8 + γ , (13)

where β and γ are the arbitrary parameters used to control the curve and base of the penalty map
C(·), respectively, and we set β = 3 and γ = 0.05 during training. In addition to reducing the color
adjustment, we expect the adjustment to be smooth, particularly in the areas close to the boundary
of the eye region. Otherwise, unnatural color discontinuity may appear. Therefore, we minimize
the first derivative of the brightness field. To implement this idea, we present the following term:

losss =
∑

p ∈I
C(p) ·

(���
∂B(p)
∂x

���+
���
∂B(p)
∂y

���
)
. (14)

By integrating the aforementioned loss functions,

losstot =lossL2 + losseb + lossel + lossp + losss , (15)

into the training procedure, we found out that the loss function not only improves the quality of
warped results but also relieves the burden of postprocessing for stitching or blending when the
results are overlaid onto the original image because relocating pixels in the boundary region will
be strongly penalized by the loss function, therefore, the boundary pixels are nearly untouched.
Notably, these loss functions are differentiable and the integrated loss function can be a weighted
sum of these loss functions.

4 SYSTEM IMPLEMENTATION AND NETWORK TRAINING

4.1 Implementation details

We have implemented the presented gaze correction system using Python 3.5.3. The video sender
and receiver are implemented by the TCP socket API and the proposed neural network is imple-
mented using TensorFlow [33]. To accelerate the face detection of the local participant, we down-
sample the input video frame from VGA (640 × 480 pixels) to QVGA (320 × 240 pixels) to reduce
the searching cost because the position of faces can tolerate distortions to a certain degree. Then,
to crop the eyes of the local participant and estimate the participant’s eye position Pe (Equation 5),
the 68 facial landmarks are detected in the VGA-size video frame based on the corresponding re-
gions of faces. Regarding the position of remote participant’s eyes Pw , we simply estimate Pw by
the face position for acceleration. The simplification is reasonable because the remote participants’
eyes are only used for eyeball rotation estimation. Namely, Pw can be estimated by




Pxw =
PWs

RWs

(
RWs
2

− Rxw

)

P
y
w =

PHs

RHs

(
RHs
2

− R
y
w

)
,

(16)

where Rw denotes the position of the face in the screen coordinate system, Ps denotes the physical
size of the screen, Rs denotes the screen resolution, and superscriptsW andH represent the screen
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width and height, respectively. Considering that detecting the remote participant’s face in the
screenshot can be time consuming and interfere by the desktop wallpaper, we estimate Rw based
on the position of the application window and the center of the face in the application window
for further acceleration. Once the segmented eye images I , corresponding anchor maps MA, and
eyeball rotation angles αw2c are ready, they are fed into two pre-loaded networks to correct the
eye gaze.

4.2 Network training

We trained the presented network on a desktop with an Intel® CoreTM i7-6850K and two NVIDIA
GeForce GTX 1080 graphics cards. The collected gaze dataset was partitioned into 35 and 2 volun-
teers for training and validation (3,450 and 198 gaze images), respectively. Adam optimizer [34]
was used to minimize the total loss, the batch size was set to 256 for each GPU, and the initial
learning rate η was set to 10−3. To fully utilize GPU resources, in each step, two different training
batches were fed into the networks on the two graphics cards. Because the networks shared the
same weight, the gradients computed from various image batches were first averaged and then
used to update the shared weights for synchronization. During the training, we calculated the
validation losses once every half of the training set had been fed to the network. Empirically,
we found that the adaptive learning rate algorithm could further improve the quality of the gaze
redirected image. If the validation loss did not decrease five times in a row, the learning rate was
decreased by 0.9 × η. To avoid the network overfitting, the training process was stopped if the
validation loss did not decrease 16 times in a row.

4.3 Dataset collection

We developed our own training dataset because no gaze datasets containing precise anchors are
publicly available. The dataset was developed in a carefully designed laboratory environment un-
der consistent lighting conditions. Specifically, a "×" mark was shown on the screen to indicate
the direction where the volunteer was asked to gaze at. In addition, a chinrest was used to fix the
position of volunteer’s head to reduce the direction error; and a green board was placed behind
the volunteer to prevent unstable autofocus of the camera. Thirty-seven Asian volunteers partici-
pated in the dataset collection; each of them was asked to fix his or her gaze at 100 different gaze
directions. Considering the physical limitations of eye movement, we recorded the volunteers’
gaze directions from -40◦ to 40◦ horizontally and -30◦ to 30◦ vertically. Among the 100 recorded
gazes, sixty-three were of fixed directions and the remaining 37 were randomly sampled. In the
fixed directions, the angle difference between two adjacent directions was set to 10◦ horizontally
or vertically. To maintain data quality, we manually removed images that the volunteer’s eyes
were closed. Figure 9 shows the environmental setup and an example of a collected gaze image.
Overall, our collected dataset contains 3,648 gaze images (359,810 training pairs).

5 RESULTS AND DISCUSSIONS

We have implemented the presented eye gaze correction system and tested the program on a
consumer-level laptop with Intel® CoreTM i7-4720HQ @ 2.60GHz, 16 GB RAM, and a NVIDIA
GeForce GTX 960M GPU. The input video was captured by a built-in webcam with VGA resolu-
tion. We tested our system in a one-on-one communication scenario (a local participant chatted
with a remote participant). Table 1 shows the timing statistics, namely the averages measured
in 1 minute. The table also shows the performance of DeepWarp measured under the same con-
dition. Our system is slightly faster than DeepWarp although it contains more hyperparameters
than DeepWarp (249,328 vs. 58,656). The reason is that DeepWarp adopts a two-level warping
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Gaze dir.

indicator

Webcam

Volunteer

Recorder

(a) Environmental setup

Green

Board

Chinrest

(b) A collected image

Fig. 9. Setup of our collected dataset. We showed a "×" mark on a screen to indicate the position where the

volunteer was asked to gaze at. A camera was placed in front of his or her head to collect the gaze image. To

maintain quality when collecting the dataset, we used a chinrest to restrict the participant’s head pose and

a green board to prevent unstable autofocus of the camera.

Table 1. Timing statistic of each major step of our system, which was tested using a consumer level laptop.

Values in parentheses are standard errors, which were calculated by σ/√n, where σ is the standard deviation

and n is the number of samples.

Face detection Eyes segmentation Gaze redirection Total

Our system 14.99 (0.02) ms 4.51 (0.05) ms 9.14 (0.03) ms 30.4 (0.04) ms
DeepWarp 14.99 (0.02) ms 4.57 (0.05) ms 9.95 (0.03) ms 31.2 (0.05) ms

framework that needs to relocate pixels and perform bilinear interpolation twice, whereas our
system adopts a one-level framework, thus the computation cost can be cut in half. We mention
here that the total computation time comprises not only gaze redirection but also the processing
time of face detection, eye image segmentation, and other minor steps. Overall, our system can
perform in real time.
To evaluate whether our system is sufficient to solve eye contact problem in video conferencing,

we extend the system to a video communication platform. Figures 10, 11, and 12 show screenshots
with and without gaze correction. As can be seen in Figure 10, the local participant was allowed
to move while communicating with the remote participant because the eyeball rotation angle for
correction was dynamically estimated based on the relative positions of the camera and the two
participants. We point out that, although the network was trained on the dataset that contains
only frontal faces, it is still able to correct the eye gaze of a local participant whose head is slightly
rotated. It it because eye movements in a video would not be strongly affected if the head is close to
the frontal pose. Since our system corrects the eye gaze by warping rather than synthesis, it allows
users to move when communicating with remote participants. In addition, our system can correct
the eye gaze when the participant wears eyeglasses (Figure 11). Thanks to the image warping,
visual artifacts can be unnoticeable if the eyeglasses frame does not occlude eyeballs. Finally,
Figure 12 shows the result that contains complex background and dynamic illumination. While the
work of [29, 30] is quite robust to detect facial landmarks, our system inherits the advantages and
is sufficient to crop the eye regions and then correct the gaze in such a challenging environment.
The figure also shows that our method can handle multiple people in the local side, with the
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Warped Result

Original Input

Warped Result

Original Input

Warped Result

Original Input

Fig. 10. Our system can dynamically estimate eyeball rotation angles to correct eye gaze. The participant is

allowed to move his body and head poses during video conferencing.

Warped Result

Original Input

Warped Result

Original Input

Fig. 11. Our system can correct eye gaze even when a participant’s head is partially occluded by his or her

hand or accessories such as eyeglasses.

price of multiple computation. We encourage readers to view our supplementary video of system
demonstration (https://youtu.be/9nAHINph5a4) because dynamic motions are difficult to observe
in still images. Note that all the experimental results shown in the paper and the supplementary
video were generated with the same system parameters.
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Warped Result

Original Input

Warped Result

Original Input

Fig. 12. Our system can correct eye gaze in various sites with various background. In addition, the system

can correct multiple local participants’ gaze based on the estimated eyeball rotations.

5.1 Redirecting Gaze on Heterogeneous Datasets

We trained the network on our collected dataset, which comprises images of only Asian people.
To evaluate its robustness against individuals of a range of ethnicities, we tested the network on
two heterogeneous datasets: 1) the validation set of our collected gaze dataset (DIRL) and 2) the
Columbia gaze dataset (CAVE) [35]. Figure 13 shows the results of gaze being redirected vertically
and horizontally, ranging from -15◦ to 15◦. The left and right columns show the images selected
fromDIRL and CAVE, respectively. As indicated, although our systemwas trained onDIRL dataset,
it works well on the CAVE dataset. The result is not surprising because we redirect eye gaze by
warping. The color of pupil and iris will be kept by our system. We also show the gaze redirected
faces in Figure 14, which are not considered when the network was trained.

5.2 Ablation study

To evaluate the performance of the presented loss functions, we trained the network with three
loss combinations; the results are shown in Figure 15(a) and 15(b). Specifically, the combinations
were L2 loss only (L2), L2 loss plus shape-based loss (L2S), and L2 loss plus shape-based loss and
color-based loss (L2SC). In the experiment, the L2 distance between the warped eye image I ′ and
ground truth I t was computed for evaluation. We evaluated only gaze ranging from −15◦ to 15◦

horizontally and −10◦ to 10◦ vertically because of the range limitation of CAVE. No gaze images
outside of this range were included.
Figure 15(a) shows the averaged L2 distances of our system. The error bar on the top shows

the 95% confidence interval, which can be calculated by ±1.96× standard error. As indicated, the
shape-based loss functions yielded significant improvements in both datasets, whereas the color-
based loss functions did not. We applied our loss functions to DeepWarp (Figure 15(b)) in the
experiment and found similar results. However, the color-based loss functions remain important
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Input eye image Warped eye image Input eye image Warped eye image

Fig. 13. We redirect the gaze of eye images, which are from our dataset (le�) and the CAVE dataset (right),

by using our system. The range is from −15◦ to 15◦, both vertically and horizontally. Although the presented

network was trained onDIRL dataset, which comprises images of only Asian people, it can handle individuals

of a range of ethnicities in the CAVE dataset.

Fig. 14. Original images (highlighted with a red border) and the gaze redirected results (on the le� and right

sides of each set). The dot indicates the direction in which the person in the image is looking. Notice that

these images were not considering in network training.

because they can retain the colors of pixels on image boundaries. Accordingly, postprocessing
such as stitching and blending are not required when warped results are overlaid onto the original
video frame. Figure 16 shows an example of this. The left and right images were warped by our
network trained with L2 and L2SC, respectively. In the left image (trained by L2 only), shape
artifacts on the eyeball and discontinuity artifacts on the boundary of the eye image are easily
noticeable.

5.3 Image quality evaluations

We compared our gaze redirection network with the state-of-the-art method, DeepWarp [4], objec-
tively and subjectively to evaluate the effectiveness of our network. The two models were trained
on the DIRL dataset and the training processes was halted before overfitting began.

5.3.1 Objective evaluation. The eye landmarks demanded by DeepWarp and our method are
different. Both require six landmarks to describe the eye’s structure. However, DeepWarp de-
mands an additional landmark to indicate the pupil. Therefore, we compared our method to two
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Fig. 15. Average L2 distance to ground truth under various loss combinations. Shape-based loss functions

significantly improve the quality. Although the color-based loss functions dose not, it restricts the color

changing in the boundary of the eye image. Hence, an additional fusion process for our system is not re-

quired.

Fig. 16. Results generated by our networks trained by L2 (le�) and L2SC (right) loss combinations. Shape

artifacts on the eyeball and discontinuity artifacts on the eye image boundary are easily noticeable in the

le� image.

versions of DeepWarp, which takes seven and six landmarks as inputs in this objective evaluation.
Figure 17(a) shows the averaged L2 distances measured in the DIRL dataset. Unsurprisingly, our
system performs the best because of the shape- and color-based loss functions. However, unex-
pectedly, DeepWarp with seven landmarks performs worst. We suspect the reason for this is that
the network is undermined by ambiguous pupil positions labelled by humans. In addition to sta-
tistics, we show examples generated by all three networks. As can be seen, visual artifacts such as
structural distortions and ghost effects appear in the results generated by DeepWarp.
In addition to L2 distances, we compared the warped results and ground truths by calculating

the peak signal-to-noise ratios (PSNRs). The results generated by our system and DeepWarp were
evaluated. Of the DeepWarp versions, only that with six landmarks was included in the compari-
son because it performs better than that with seven landmarks. Figure 18(a) shows the averaged
PSNRs of the training set for vertical and horizontal eyeball rotations. As indicated by the lines,
our system outperforms DeepWarp in both vertical and horizontal directions. In addition, we eval-
uated the two methods in the validation set; Figure 18(b) and 18(c) shows the results. Again, our
system outperforms DeepWarp in our collected validation set and the CAVE dataset. One notable
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Fig. 17. Our system outperforms two versions of DeepWarp, which utilizes six and seven (including pupil

position) landmarks, respectively, in objective evaluation (a) and visual quality comparison (b).
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Fig. 18. Objective evaluations of our systemandDeepwarp on our collected dataset (DIRL) and the Columbia

gaze dataset (CAVE). The PSNR values indicate that our system outperforms Deepwarp.

finding is that although the average PSNR decreased as the eyeball rotation angle increased, the
quality of gaze redirected horizontally is superior to the quality of gaze redirected vertically. We
reason that redirecting gaze vertically is more difficult because pupils and eyelids interact when
humans shift their gaze upward or downward.

5.3.2 Subjective evaluation. Because users are the most important aspect of the system, we con-
ducted a user study to evaluate the degree of realism of the warped eye images. The participants
were shown a test eye image on the screen, and then asked to judge whether the image was real.
We randomly selected 30, 35, and 35 images from the real dataset and results generated by our
system and DeepWarp; and the test images were shown in a random order to avoid bias. During
the study, the participants were able to observe the test images with no time restrictions. However,
once they hadmade a decision, theywere not allowed to change their answer. In addition, to obtain
reliable results, the participants were not informed of the setting of the test images, and we disre-
garded studies that were incomplete or exhibited periodical patterns throughout the questionnaire.
Figure 19(a) shows a page of the questionnaire.
Figure 19(b) shows the results contributed by 30 participants (18 males and 12 females). The

height of each bar chart indicates the rate of the test images in the corresponding category that
were considered real (realistic ratio). The images selected from the real dataset have the highest
rate (mean = 0.81, standard error = 0.03), those generated by our system and DeepWarp have the
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Fig. 19. �estionnaire and the results of the subjective evaluation.
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Fig. 20. The larger rotation angles result in the lower realism. The value above each bar chart indicates the

number of samples in the interval of rotation angles.

second highest rate (mean = 0.58, standard error = 0.03) and lowest rate (mean = 0.16, standard error
= 0.02), respectively. The participants can easily recognize the results generated by DeepWarp
because of the shape distortions of the pupils and eyelids, as shown in Figure 17(b). Figure 20
shows the impacts of eyeball rotation angles on the realistic ratio. Apparently, the larger rotation
angles result in the lower realism.

5.3.3 Correlation between subjective and objective evaluations. Considering that no quality as-
sessment is subjectively or objectively perfect, we compared the evaluation results to check for
matching. Specifically, we computed the Pearson correlation coefficients of the PSNRs and the
degrees of realism (i.e., realistic ratios) based on the participants’ assessments. The values of cor-
relation coefficients were 0.57 (p-value < 3.0×10−5) and 0.72 (p-value < 5.0×10−8) in the horizontal
and vertical directions, respectively, indicating that the PSNRs and degrees of realism were corre-
lated.
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Fig. 21. Visual artifacts may occur when 1) the original eye gaze is far from center, 2) an eye gaze is redirected

considerably, and 3) eyeglasses or hairs are present in the eye image. The images with a red border are the

input images; those on the le� and right of the input images are warped by our system.

5.3.4 People with eyeglasses. Considering that a great portion of system users may wear eye-
glasses, we conducted an experiment to quantify the effectiveness of our system. Eighty-seven
facial images with eyeglasses were selected from the Internet (eyeballs are not occluded by the
frame). We designated gaze directions to 40 radial segments along the cone surface of 30◦ cone
angle. Namely, forty images with different gaze directions were generated from each facial image
(3,480 images in total) by our system. Eight volunteers (five males and three females, age ranged
from 25 to 43) in Academia Sinica participated in the experiment to determine whether warped fa-
cial image is natural or not. The result shows that 84.5% (standard deviation = 5.9%) of the warped
facial images are treated as real images, and the eyeglasses can be moderately handled by our
system.

5.4 Limitations

Our system assumes that there is only one remote participant on the screen when it corrects the
local participant’s eye gaze. If this is not the case, the system cannot distinguish which remote
participant is gazed during communication, and corrects the gaze from the firstly detected partic-
ipant’s face to the camera. We plan to solve the problem by applying the eye tracker in future.
Regarding the image processing part, distortions may appear if the eyeballs are occluded by eye-
glasses’ frame or hairs, because such external objects are not considered. Figure 21 shows several
examples of failure cases. Finally, the system inevitably produces visual artifacts when the orig-
inal gaze is far off center or redirected to an extreme degree. Solving this problem by using the
warping algorithm can be difficult because of occlusion of an eyeball by the eyelids. Fortunately,
the problem is not serious because eyeball rotations for gaze correction are usually small, unless
the distance between the camera and remote participant’s face on the screen is long or the local
participants are very close to their screens.

6 CONCLUSION AND FUTURE RESEARCH

This paper presents a real-time gaze correction system to solve the problem of missing eye contact
in live video communication. First, we estimate eyeball rotation angles based on the positions of
the camera, and local and remote participants’ eyes. Then, the neural network is used to warp eye
images to correct the gaze direction. To fulfill quality and efficiency requirements, we extend the
current state-of-the-art model, DeepWarp, by modifying its network architecture and presenting
shape- and color-based loss functions for training. Objective and subjective evaluations reveal
the effectiveness of our system. Since the system achieves real-time performance (33 FPS) on a
consumer-level laptop, it can serve as a practical solution to the problem of missing eye contact
in video conferencing. Currently, the system is presented to solve eye contact problems for two-
participant scenarios because we assumed that the local participant should look at the remote
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participant on the screen if he or she pays attention to the conversation. In future, we will consider
using eye tracker for gaze detection and solve the eye contact problem thoroughly.
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