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Abstract. In this paper, we introduce a novel concept called seamless-
through-breaking to tackle the challenges that arise in image stitching.
Conventional methods attempt to maintain warping continuity while
stitching two images together to avoid visible breaks in the final output.
However, we propose that content alignment and warping continuity are
mutually exclusive, especially when a significant depth gap exists be-
tween the foreground and the background. To solve this issue, we use
optical flow to warp the source image into the target image’s domain,
which allows the creation of holes in the source image. Considering that
optical flow estimators are trained on synthetic data, we fine-tune the
estimator using real-world data to improve its accuracy in practical ap-
plications. Once the images are aligned within the same domain, we fill
these holes with content from the target image. Additionally, as no op-
tical flow estimators are perfect, directly copying pixels from the target
image to fill the holes may create visual artifacts. To avoid this issue,
we apply an image inpainting technique around the edges of the holes
to smooth out alignment discrepancies, ensuring that the stitched image
looks as natural as if it were captured in one shot.
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1 Introduction

Image stitching is a widely used technique with diverse applications, ranging
from everyday use and medical science to satellite imaging. Its main purpose is
to combine several photographs, each with a limited field of view (FOV), into
one image with an extensive FOV. This is especially important in indoor settings
where the photographer is constrained by proximity to objects, preventing the
capture of the entire scene in a single shot. Therefore, stitching methods are
essential for obtaining a complete view.

Traditional image stitching techniques heavily rely on identifying spatial re-
lationships between images through geometric features such as scale-invariant
feature transform (SIFT) [23] and Kanade-Lucas-Tomasi (KLT) [30]. This pro-
cess then derives a series of spatial transformations for seamless image integra-
tion. Additionally, line segments have also been extensively used as geometric
features to maintain the consistency of global structures [6,10,20,35]. However,
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geometric features are not always present, especially in images with homoge-
neous backgrounds or where feature matching is challenging. As a result, recent
trends [12, 13, 25, 26, 29, 31, 32] have shifted towards employing deep learning
models that utilize high-level semantic features to find spatial transformations,
significantly reducing the visual artifacts produced during stitching.

During the stitching process, one image is typically designated as the fixed
target, and another image (the source) is warped into the target image’s space
to achieve optimal alignment in the overlapping region. Earlier methods assume
that images are 2D planes in a 3D space and apply homographic transformations
for mapping. However, given the parallax effect resulting from camera position
changes, simple homography cannot accurately align objects with large depth
variations. To address this, recent advancements [14, 22, 37, 38] have introduced
local warping techniques to mitigate this issue, though these methods still oper-
ate under the postulation of image smoothness and continuity.

In this study, we propose an innovative approach that introduces holes in the
source image, which we refer to as controlled image breaking due to occlusion
during warping, as a solution to alignment issues. To achieve this, we calculated
pixel-level correspondences by focusing on the overlapping areas between the
source and target with the help of FlowFormer [8]. It allows our method to
break the source image in a controlled manner during warping, ensuring that
corresponding pixels occupy the same position after alignment. A large portion
of missing pixels resulting from image breakage within these areas, can be directly
copied from the target image, given that the source and target images are already
aligned within the same coordinate system. A small fraction of pixels near the
overlapping boundary are repaired using the image inpainting technique since
optical flows for aligning source and target images are not guaranteed perfect.

FlowFormer’s calculation is confined to the overlapping sections. For areas
outside this overlap, we utilize the thin-plate spline (TPS) [1] algorithm to en-
sure a smooth transition near the overlap boundary. Specifically, we strategically
place control points inside the boundary of the overlap region for warping non-
overlapping areas. These points are distributed evenly and in zones of higher
color gradients. This placement is crucial for aligning object structures between
overlapping and non-overlapping regions after warping, providing a comprehen-
sive solution that bridges the discontinuity between these distinct areas.

In addition to the seamless-through-breaking approach, we fine-tune the op-
tical flow estimator using real-world datasets to enhance the accuracy of content
alignment in practice. Since annotating optical flows of real photos for training is
expensive, we fine-tune the estimator based on the color difference of aligned pix-
els. Observing that colors of homogeneous regions are similar, to prevent image
flipping, we apply regularization terms to prevent drastic offsets of neighboring
pixels if these pixels are visible both in source and target images. Furthermore,
since optical flows can only warp the overlapping area of the source image, we
encourage the pixels along the boundary to move smoothly to achieve a seamless
transition to the non-overlapping area when using a TPS warp. The fine-tuning
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Fig. 1. We warp the source image Is to the domain of the target image It to seamlessly
stitch the two images. To explain the process, we use an orange rectangle to represent
the target image’s domain in each transformed source image. The warping is initially
achieved using a homography matrix H. Next, the area of Is that overlaps with It is
warped using optical flows F, whereas the non-overlapping region is warped using the
thin-plate-spline (TPS) method. After the warping is complete, we merge the target
image It with the warped images, F ◦H ◦ Is and TPS ◦H ◦ Is, to generate the final
stitched result.

achieves both precise content alignment and seamless transition between source
and target images.

We have presented a method to merge images into a unified and visually
continuous image. To validate the effectiveness of our approach, we applied it to
several public datasets and conducted both quantitative and qualitative compar-
isons with current state-of-the-art methods [10,20,28]. The results demonstrate
our method’s superiority across multiple metrics, confirming its efficacy. No-
tably, our approach does not require fine-tuning on new datasets, saving time
and memory in practical applications and indicating that the model training de-
tails need not be disclosed to all subsequent users, greatly enhancing the model’s
practicality post-deployment. This research not only provides a new scheme for
image stitching but also offers valuable insights and references for future studies
in related fields.

2 Related Works

Image stitching relies on the overlapping regions between images to identify cor-
responding SIFT features [23], facilitating a transformation that warps one image
to the domain of another, thereby achieving a stitched outcome [2,6,16,17,22,37].
Given that such approaches often neglect larger scale features such as straight
lines [6, 10, 20, 35], which requires additional methods to preserve their shape,
Du et al. [3] explored the representation of geometric structures within images
through multiple edges, ensuring their shape is maintained during warping. An-
other approach involves leveraging depth maps [21] and semantic maps [15]
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during image alignment to preserve high-level structures. Recent developments
have used deep neural networks to compute homographies directly from input
images [12, 13, 25, 26, 29, 31, 32], which minimizes mismatched alignment even
when images contain large homogeneous backgrounds. This innovative approach
pushes the boundaries of image stitching technologies further.

Traditional methods face limitations with global transformations, such as ho-
mography, which operates under the assumption that scenes are planar surfaces
within a 3D space. This assumption often fails in complex scenes where dis-
tances between objects and the camera vary, leading to inaccuracies in aligning
corresponding features. To address these challenges, Gao et al. [6] introduced a
method that segments the scene into distant and ground planes, computing a ho-
mography for each and interpolating between the two to achieve nonlinear warp-
ing. This approach mitigates the limitations of a singular homography. Similarly,
alternative techniques divide the scene into numerous cell-like subregions, each
with its own homography. The different homographies of neighboring regions are
then smoothed [14,37] to enhance the coherence of the stitch. Diverging from the
strategy of calculating homography before smoothing, Lin et al. [22] proposed
optimizing a smoothly varying affine stitching field based directly on correspond-
ing features, yielding impressive results. In a different approach, Zheng et al. [38]
argued against the uniform spatial division of images for warping, pointing out
the flaw in applying the same transformation to all pixels within a local region
regardless of depth variance. They suggested a method that divides the overlap-
ping regions into projective-consistent planes based on the orientation of normal
vectors and reprojection errors, allowing for more accurate alignment in areas
with significant parallax.

These stitching methods strive to maintain continuity in warping various re-
gions within an image. However, this strategy encounters difficulties in areas
where the depth of pixels is discontinuous. In such regions, changes in the cam-
era’s position can result in background pixels being occluded by the foreground.
Insisting on warping continuity in these instances may prevent the correct align-
ment of the same objects across images. An exceptional solution to this challenge
involves pixel-wise warping [12]. This method leverages 3D virtual environments
to generate images from different views and their stitched outcomes. Neverthe-
less, the viewpoints necessary for stitched results are not always available, even
in virtual environments, and the outcomes of stitching are not unique. This lim-
itation leads to a model’s potential overfitting to its training dataset, adversely
affecting its ability to generalize to new data.

Our method distinguishes itself by grounding in optical flow estimation [8,
9, 33, 34], which focuses on the precise alignment of corresponding pixels within
the overlapping regions. This approach allows for flexibility in warping non-
overlapping areas, requiring only that the boundary between overlapping and
non-overlapping regions maintains a similar warping to avoid discontinuity ar-
tifacts. This strategy offers a novel solution to the challenge of image stitching,
particularly in complex scenes where large parallax is prevalent.
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3 Seamless Warping Algorithm

3.1 Overview

Our method aims to warp the source image into the domain of the target image
before seamlessly merging them through seam-cutting [11]. It begins with the
application of homography to warp the source image, effectively reducing the
perspective differences between the two images. This is followed by a second
warping process using optical flow [8] to precisely align corresponding pixels
within the overlapping regions. The two-step warping process is essential due to
the typically limited search range of optical flow estimation, which may overlook
distant corresponding pixels.

Unlike homography warping, which utilizes a transformation of the entire
image, optical flow specifically targets the warping of areas within the source
image that overlap with the target image. We introduce control points along the
borders of the overlapping regions and employ the thin-plate spline (TPS) warp-
ing algorithm [1] to ensure a smooth transition with non-overlapping areas, thus
avoiding discontinuity artifacts. However, due to variations in pixel depths, the
image warped by optical flows may exhibit holes. To remedy this, we can directly
retrieve some of the missing pixels from the target image, since the source im-
age has been transformed into the domain of the target image. Considering that
optical flow estimators are imperfect, we also incorporate an image inpainting
technique to minimize the artifacts that can arise from directly filling missing
pixels with data from the target image.

3.2 Optical Flow Estimation

After the initial homography warping, we employ FlowFormer [8] to compute
the optical flow, which further refines the warping of the source image to better
align corresponding objects across varying depths. Since FlowFormer is initially
trained using synthetic data, its performance may diminish when applied di-
rectly to real-world images. To mitigate this issue, we fine-tune FlowFormer’s
parameters using the UDIS-D dataset [27], which offers a more representative
set of real-world scenarios.

Color consistency. To fine-tune FlowFormer in the absence of ground-
truth optical flows from real data, we minimize the color differences between the
warped source image and the target image. This method effectively utilizes the
inherent visual information present in the actual images for training purposes.
The loss function is defined as follows:

Lc = |It · φ(1,F ◦H)− φ(Is,F ◦H)∥1, (1)

Here, Is and It represent the source and target images, respectively. H and F
are the homography and the optical flow fields. φ(·, ·) is the warping function,
and 1 is a mask containing only 1s, which is used to indicate the overlapping
region after warping.
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Fig. 2. We fill in the holes after warping the source image using optical flows. The left
side shows the source and target images. In the middle left, the source image contains
holes. In the middle right, we start by filling the middle part of the hole by directly
copying pixels from the target image, since the two images are in the same coordinate
system. Finally, on the right, we use an inpainting technique to fill the gaps around the
hole’s boundary to minimize potential visual artifacts, as no optical flow estimators are
perfect.

Regularization. Considering that color differences may not provide suf-
ficient guidance for optical flow computation in homogeneous regions – where
adjacent pixels have similar colors – we introduce a regularization term. This
term encourages the optical flows of neighboring pixels to be similar, promoting
smooth warping and preventing issues such as image flipping, which can disrupt
the visual continuity of the stitched image. Specifically, we minimize

Lr =

h∑
i=1

w∑
j=1

Mi,j (∥Fi,j − Fi+1,j∥+ ∥Fi,j − Fi,j+1∥) , (2)

where the subscripts i and j denote the pixel coordinate, and Mi,j is an occlusion
mask indicating whether pixel at (i, j) will be occluded after being transformed
to the domain of the target image. Let Fs→t be the warping field from the source
image to the target image. In our implementation, we set Mi,j = 1 if the pixel at
(i, j) can retain its position after a forward and a backward warping Ft→s◦Fs→t,
and Mi,j = 0 otherwise. This ensures that we do not regularize optical flows of
occluded regions.

Boundary Smoothness. Since the warping of overlapping and non-overlapping
areas is conducted using different techniques, the boundary between these re-
gions should not distort excessively. Otherwise, it can lead to visible artifacts in
the non-overlapping areas. Let B be an operation that extracts the boundary of
the overlapping region. To mitigate this, we incorporate a boundary term that
maintains the rigidity of these transitions, which is written as:

Lb = ∥B(F)∥1. (3)

This additional constraint ensures that the integrity of image geometry is pre-
served across the stitched panorama, providing a cohesive and visually appealing
final result.
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PSNR↑ SSIM↑
Easy Moderate Hard Average Easy Moderate Hard Average

I3x3 15.87 12.76 10.68 12.86 0.530 0.286 0.146 0.303
SIFT+RANSAC [5] 28.75 24.08 18.55 23.27 0.916 0.833 0.636 0.779

APAP [36] 27.96 24.39 20.21 23.79 0.901 0.837 0.682 0.794
ELA [18] 29.36 25.10 19.19 24.01 0.917 0.855 0.691 0.808
SPW [20] 26.98 22.67 16.77 21.60 0.880 0.758 0.490 0.687
LPC [10] 26.94 22.63 19.31 22.59 0.878 0.764 0.610 0.736
UDIS [27] 25.16 20.96 18.36 21.17 0.834 0.669 0.495 0.648

UDIS++ [28] 30.19 25.84 21.57 25.43 0.933 0.875 0.739 0.838
FlowFormer++ [8] 30.57 26.89 23.50 26.62 0.945 0.909 0.838 0.891

Ours 31.40 27.65 24.09 27.34 0.961 0.932 0.873 0.917
Table 1. We have evaluated the preciseness of the alignment at the overlapping area
of our method and the baseline algorithms on the UDIS-D dataset. Additionally, we
have compared our method with FlowFormer++, which can be considered a variant of
our method. The only difference is that the optical flow estimator in FlowFormer++
was not fine-tuned using real-world datasets.

3.3 Hole Filling

Utilizing optical flows for image warping can inevitably result in holes, especially
in areas where depth discontinuities occur. Since the source image is already
warped to align with the target image’s domain, most of these holes can be ef-
fectively filled using pixels from the target image. However, given that optical
flow estimation is not flawless, we employ inpainting techniques to mend these
gaps. Specifically, for the centers of the holes, we directly copy pixels from the
target image. For the peripheries of the holes, where blending with the over-
lapping and non-overlapping regions is crucial, we apply the reference-guided
inpainting technique [19] to integrate the areas seamlessly. The combination of
the two strategies is particularly beneficial here, as it helps to avoid the creation
of visual artifacts that often occur with larger repairs using inpainting. In our
implementation, we perform an erosion operation on the hole mask to delineate
the specific areas where pixels should be copied directly from the target image.
The remaining regions are then addressed with inpainting.

3.4 Warp on Non-Overlapping Region

Optical flow fields are only capable of aligning the overlapping regions of the
source and target images. This means that objects not present in the target
image cannot be warped, which may result in the source image being broken into
segments. To prevent discontinuity artifacts, we utilize the TPS [1] algorithm to
achieve a smooth transition. The practical implementation involves strategically
placing control points along the boundary between the overlapping and non-
overlapping areas. These control points are influenced by the optical flows and
can guide the warping of the non-overlapping area.
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Fig. 3. In this example, source and target images are represented using a bitmap form
and a rectangle. (Left) Control points are uniformly sampled at the boundary of the
overlapping area. (Right) Points are adjusted to high gradient positions for better
alignment around structural regions. Note that control points are used to warp the
outer region of a source image, and the points in the bottom left corner are unnecessary.

When using the TPS method for warping, pixels that do not overlap with
the control points are moved based on interpolation. To ensure better alignment
around structural regions, we relocate the control points, which are uniformly
distributed along the boundary of the overlapping region, towards areas with
higher color gradients. This adjustment is done by allowing each control point
to move within a range of D/2 when locating it on a high gradient position.
Here, D represents the average distance between neighboring control points. As
shown in Figure 3, this critical adjustment helps align structural objects across
the boundary more precisely. In our implementation, we first sample points along
the target image’s boundary, then remove the points if they do not overlay on
the source image.

3.5 Training Details

We fine-tuned the FlowFormer++ model [8] on the UDIS-D dataset [27] using
an NVIDIA RTX A6000 GPU card. To prevent overfitting, we mixed the syn-
thetic data, which was initially used to train FlowFormer++, with the UDIS-D
dataset during fine-tuning. The synthetic data training was supervised using
ground-truth optical flows while the UDIS-D dataset training was based on the
proposed objective function. We used the AdamW optimizer to update network
parameters, with a batch size of 2 and a learning rate of 3×10−5. Additionally, we
set λa=1.0, λb=1.0, λc=1.0, λd=0.5, and λe=0.3 for the AdamW optimizer. For
inpainting, we fine-tuned the reference-guided TransRef method [19] on 512×512
image sizes using the UDIS-D dataset [27]. We followed the default hyperparam-
eter settings as outlined in the paper, except for the learning rate, which we
adjusted to 2× 10−5.

4 Experiments

We conducted evaluations accordingly to evaluate our seamless image stitching
method. Following the approach of [28], we distinguished between the training
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Fig. 4. We compared our image stitching results with several baselines, including APAP
[36], ELA [18], SPW [20], LPC [10] [10], UDIS [27] and UDIS++ [28]. It is evident that
ghosting effects are present in the results generated by the baseline methods due to
misalignment of the source and target images.
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UDIS++ Ours UDIS++ Ours

Fig. 5. UDIS++ [28] uses seam-cutting [11] to avoid ghosting effects, but this results
in discontinuity artifacts due to image alignment issues and imperfect stitching. These
artifacts are highlighted in rectangles. In the figure, original images are shown on the
left, while the stitched results are compared on the right.

and testing sets, with all subsequent experimental results being derived from the
testing set. Additionally, we tested our method on other public datasets [4,7,24]
without further network training to evaluate its generalization ability.

4.1 Warp Comparison

Quantitative evaluation. We initially conducted a quantitative comparison
on the UDIS-D dataset [27] to evaluate whether the content in the overlapping
sections of the source and target images was correctly aligned. Specifically, we
measured the difference in pixel colors using PSNR and SSIM. The dataset cate-
gorizes each test sample by difficulty level – easy, moderate, and hard. During the
comparison, since traditional methods may fail to generate homography trans-
formations on challenging samples due to a lack of geometric features, in such
cases, we employed an I3x3 identity matrix as a substitute metric to transform
the source image. As demonstrated in Table 1, our method showed significant
improvements across tasks of varying difficulty levels. Specifically, when pixel
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Fig. 6. We evaluated the effectiveness of fine-tuning FlowFormer++ with regulariza-
tion terms (top left), the sampling strategy of control points used in TPS warp (top
right), and warping non-overlapping regions. All of these tactics reduce discontinuity
artifacts when compositing images.

colors of the two images were measured by PSNR, our method achieved a 4%
improvement in easy scenarios and an 11% improvement in hard scenarios. These
results highlight the critical role of image breaking in handling parallax effects
effectively, showcasing its robustness across different levels of complexity within
image stitching challenges.

Qualitative evaluation. The image stitching results generated by the
baseline and our algorithms are displayed in Figure 4. The overlapping pixels
are blended linearly to facilitate a visual comparison of the warping quality. It is
apparent that previous methods have struggled to align foreground objects with
large parallax in their attempt to preserve warping continuity. This often results
in ghosting artifacts in the blended regions of the source and target images. Our
seamless-through-breaking approach effectively addresses this issue.

4.2 Comparison of the Composition Results

An alternative method for combining images is seam-cutting. This technique
involves identifying a seam that has the least color inconsistencies [11], which
passes through the overlapping area of the aligned source and target images.
While this method can be used in combination with all image stitching tech-
niques, we have mainly compared our algorithm with UDIS++ [28], which is a
SOTA that provides precise alignment of images. Traditional methods of finding
the seam involve dynamic programming or graph cut algorithms. However, we
have used the composition network of UDIS++ to compose the source and tar-
get images. The reason for doing so is that traditional methods produce discrete
seams, while the seams extracted by the composition network are continuous.
As shown in Figure 5, when there is a large area of misalignment between the
images, it may not be possible to find perfect seams that seamlessly blend the
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Fig. 7. (Left) Our approach does not change lighting conditions while stitching images.
Discontinuities may appear if the two images (top) significantly differ in brightness.
(Right) Even state-of-the-art optical flow estimation fails to warp images with large
homogeneous backgrounds.

images together. While seam-cutting can reduce ghosting effects caused by in-
accurate alignment, it can produce discontinuity artifacts. These artifacts are
unavoidable because maintaining the continuity of the image and aligning pixels
with large differences in depth conflict with each other. Our algorithm, on the
other hand, eliminates these problems and produces better results.

The results shown in Figures 4 and 5 demonstrate a seamless transition
between overlapping and non-overlapping areas, as their boundaries are hardly
noticeable despite the two regions being altered in two separate steps using
different methods. Moreover, the inpainting does not introduce any unexpected
objects that were not present in the original images since it only synthesizes
pixels near the periphery of the holes, leaving the rest of the image intact.

4.3 Ablation Study

We have evaluated the presented method from two different perspectives. Firstly,
we assessed the accuracy of content alignment by fine-tuning FlowFormer++ [8]
using a real-world dataset. The comparative results are presented in Table 1,
where our fine-tuned FlowFormer++ improved in terms of PSNR and SSIM in
all difficulty conditions. Secondly, we evaluated the continuity of image compo-
sition, as the final output is a composition of two images, and overlapping and
non-overlapping regions are warped using different methods. In Figure 6, we
have presented comparisons with and without the regularization(Lr+Lb) terms
(including boundary smoothness) when fine-tuning FlowFormer++, the sam-
pling strategy of control points used in TPS, and with and without warping the
non-overlapping regions. The results indicate that all our presented strategies
are necessary to achieve high-quality stitched images.
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4.4 Performance

In our experiments, our proposed warping process takes an average of approxi-
mately 0.9 seconds per a pair of images on the UDIS++ test dataset [28]. The
subsequent inpainting step requires roughly 0.04 seconds to complete. This work-
flow showcases the efficiency and compatibility of our warping and inpainting
methodologies in addressing complex tasks within computational constraints.

4.5 Limitations

We have demonstrated the strengths of our algorithm in the comparisons, but
there is still room for improvement. Firstly, our approach merges images without
altering their lighting conditions. Hence, visual artifacts may still be present
even if we accurately align the images, as shown in Figure 7 (left). This issue
can be addressed using Poisson blending, and we consider it to be our future
work. Secondly, when using the reference-guided inpainting technique to precisely
fill holes after warping the source image, the filled pixels may not accurately
represent the objects in the original scene. Lastly, while our method benefits
from advanced optical flow estimation techniques, the estimation is not always
correct (Figure 7 right). We also had to limit the image resolution to 512× 512
for image stitching due to large memory consumption when computing optical
flows.

5 Conclusions

We have developed a seamless-through-breaking strategy to stitch images to-
gether and create a seamless output with a wider view. Unlike traditional meth-
ods, our approach prioritizes precise content alignment over image continuity
when these two objectives conflict. Specifically, we allow images to break and
then fill in the gaps. Our comparative study shows that this method is effective.
While we used only two images in our demonstration, the technique is extend-
able to stitching more than two images together to create panoramas. In this
case, the previous stitched result becomes the target image, and the new image
is the source image. We will share the codes for public use soon.
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