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Abstract An evacuation plan helps people move away
from an area or a building. To assist rapid evacuation,
we present an algorithm to compute the optimal route
for each local region. The idea is to reduce congestion
and maximize the number of evacuees arriving at
exits in each time span. Our system considers crowd
distribution, exit locations, and corridor widths when
determining optimal routes. It also simulates crowd
movements during route optimization. As a basis,
we expect that neighboring crowds who take different
evacuation routes should arrive at respective exits at
nearly the same time. If this is not the case, our system
updates the routes of the slower crowds. As crowd
simulation is non-linear, the optimal route is computed
in an iterative manner. The system repeats until
an optimal state is achieved. In addition to directly
computing optimal routes for a situation, our system
allows the structure of the situation to be decomposed,
and determines the routes in a hierarchical manner.
This strategy not only reduces the computational
cost but also enables crowds in different regions to
evacuate with different priorities. Experimental results,
with visualizations, demonstrate the feasibility of our
evacuation route optimization method.
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1 Introduction

Crowd evacuation is important in building design
and city planning. A well-designed evacuation
plan contains effective evacuation guidance that can
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lead people to exits in a short period of time. In
this paper, we present an approach to determine
optimal evacuation routes taking into account crowd
information and positions of obstacles. As crowd
distributions can be estimated for some events such
as concerts and new year celebrations, evacuation
direction signs can be positioned before crowds
gather at a place. Furthermore, as surveillance
cameras and sensor networks have become more
widespread recently, dynamic estimation of a crowd
distribution allows our system to dynamically
respond, improving its effectiveness.

Mathematical
computing optimal

models have been given for

These
represent an environment as a graph consisting of
a set of nodes and a set of edges, which represent

intersections and roads, respectively. Most of these

routes [1]. models

models assume a single movement direction of a
crowd along the graph edges.
crowd movement speed and road capacities when

They also require
computing an evacuation route. However, crowd
speed varies over time, and it depends on the
attributes of the evacuees and the degree of crowd
congestion. Without a physical simulation that
computes the movement of each evacuee, it is difficult
to tell whether an evacuation plan is effective. For
example, an old person may move more slowly than
a young person, evacuees in a group tend to move
together to exits, and a crowd has difficulty when
joining a main route from a branch route. Such
phenomena can only be modelled and observed using
crowd simulation. Furthermore, rendering believable
animated characters for crowd evacuation is also
crucial.

Our goal is to compute an optimal route for crowd
evacuation. Given the attributes and distribution
of a crowd, exits, road widths, and obstacles, our
system determines the evacuation direction for each
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road to enable evacuation within a short time span.
To achieve this aim, we represent the road network
as a situation map using a graph, and initially set the
evacuation direction of each edge based on a shortest
path algorithm. These directions are then iteratively
updated according to the results of simulation. Note
that the crowd on a road could divide and evacuate
in opposite directions. We call a place where this
phenomenon occurs a division point. Our goal is
to ensure that evacuees near a division point take
similar time to arrive at respective exits. As the
initial route is generally not optimal, our system
updates the division points iteratively until all of
them become stable. In addition, our approach is
adaptive to the results of crowd simulation. It can
handle transportation such as buses and elevators.
That is, a crowd of people can move to a specific
position, wait, and only a portion of them can leave
at discrete time. Experimental results demonstrate
that a crowd can evacuate more quickly using our
optimized routes than those provided by shortest
path and weighted graph algorithms. A preliminary
version of this work was published in Ref. [2].

2 Related work

2.1 Evacuation

Early evacuation methods were often based on
mathematical models. They can be classified into
approaches based on static networks, discrete or
continuous time dynamic networks, and simple
simulation (probabilistic or cellular automata
based). We refer readers to the surveys [1, 3] for
more details.

Dressler et al. [4] applied network flow techniques
to select exits. Hadzic et al. [5] focused on evacuation
in buildings on fire.
of a dynamic network flow. Regions that are not

reachable are removed from the graph so that the

Their model is an extension

routes determined will not lead people to those
regions. Abdelghany et al. [6] employed a genetic
algorithm to search for evacuation routes in an area
in which a crowd is uniformly distributed. Wang et
al. [7] determined evacuation plans by considering
the speed of spread of smoke and carbon monoxide
Desmet and Gelenbe [8] adopted a flow-
based method to compute evacuation routes and
Their

in fires.

used dynamic exit signs to guide evacuees.
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method is intended for low-headcount evacuations;
it does not simulate the movements of the evacuees
and their interactions. Tang et al. [9] proposed
a pseudo-polynomial-time dynamic programming
algorithm to compute evacuation routes for a three-
dimensional network. Berseth et al. [10] conducted
a study to evaluate how the placement of pillars
and doors affects pedestrian flows during evacuation
of a building; a similar study was presented in
Ref. [11]. Haworth et al. [12] optimized level
of service (e.g., crowd density) to improve crowd
evacuation. Moussaid et al. [13] studied movement
patterns of crowds in an immersive 3D virtual
environment, in which the crowds were controlled by
real people.

Given a building and a crowd of agents, Thompson
and Marchant [14] estimated the travel time of
each agent and rendered a distance map to depict
whether a building is well designed. Lovas [15]
introduced several measures based on reliability
theory to evaluate the importance of escapeway
elements. Pelechano and Badler [16] placed leaders,
persons familiar with the layout, at intersections,
to guide evacuees to safety. Ma et al. [17] showed
that a few leaders could effectively guide evacuees
but leaders may also have a negative impact.
Dimakis et al. [18] employed a distributed simulator
based on the multi-agent paradigm for managing an
emergency. Rodriguez and Amato [19] studied how
the types of interaction affect evacuation strategies.
Tsai et al. [20] developed a multi-agent evacuation
simulation which could support several kinds of
agent representing, e.g., children, parents,
persons in authority. Kretz et al. [21] proposed
a method to compute the quickest path for each
Given that the
path is determined according to the information

and

agent using a local simulation.

in the current state, congestion potentially occurs
in later stages. Agents may move back and forth
during evacuation. In contrast, our system computes
the evacuation route for each agent using a full
simulation, allowing it to achieve a stable result.
When routes are determined, they can be conveyed
by wireless devices to guide the evacuees. Inoue
et al. [22] suggested the use of mobile phone for
navigation. Chen [23] adopted a wireless supervision
system to control indicator boards which give
directions for evacuation. Such strategies could be
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integrated into our system to provide a practical tool.
2.2 Crowd simulation

Helbing and Molnar [24] introduced a social force
model to simulate pedestrian dynamics. Relative
distances between agents are preserved to prevent
collisions. To simulate human behavior, van den
Berg et al. [25] presented a reciprocal velocity
obstacle method to compute feasible movement
directions for agents.  Karamouzas et al. [26]
introduced the idea of predicting future collisions
to adjust the movement direction of each agent,
to add realism. Using the principle of least effort,
the method presented by Guy et al. [27] computes
a biomechanically energy-efficient and collision-free
trajectory for a crowd.

Collision handling potentially results in deadlock.
Agents that collide with each other are likely to
collide again in the next time step. To prevent this
problem, Curtis et al. [28] set different priorities
to agents and arranged that agents with lower
priorities would give way to those with higher
priorities. Johansson et al. [29] applied evolutionary
optimization to compute the parameters used in
a social force model, using real videos.  The
method can be used to calibrate crowd models
and group models [30]. Durupmar et al. [31]
used psychological parameters to form different
crowd models. Such models can be employed to
enhance the realism of crowd simulation. Boatright
et al. [32] defined steering contexts (e.g., groups
crossing, chaos) and adopted machine learning
techniques to capture the main characteristics
of crowds in each steering context. Li
Wong [33] employed local views of agents and

and

crowd movement to determine the movements of
pedestrians. Kapadia et al. [34] presented a
variety of techniques to enhance the realism of
crowd simulation, including sound perception, multi-
sense attention, and understanding of environment

semantics.
2.3 Road maps

Maps can be used to guide a crowd to destinations.
Accordingly, given a situation layout, one goal is
to compute a road map that comprises feasible
paths to guide agents.
by Geraerts et al. [35] creates a set of collision

The method presented

free corridors from a situation with static obstacles.

These connected corridors can be considered to form
a graph so that path finding techniques can be used
to determined a route for evacuation. To further
improve the approach, van Toll et al. [36] computed
a density map based on the distribution of agents.
Their method then guides agents to alternative
paths to avoid congestion. Makni [37] introduced a
hierarchical path planning algorithm. He applied the
constrained Delaunay triangulation [38] to represent
a scene map and find paths through adjacent
triangles.  Pettré et al. [39] computed the map
from multi-layered and uneven terrains. Bayazit
et al. [40] applied a global road map to achieve
sophisticated flocking behaviors. Patil et al. [41]
computed navigation fields to guide different crowds
Wong et al. [42] used
particle swarm optimization to refine predefined
evacuation paths based on a fitness function. Our
proposed method relies on guidance paths to guide
the agent movement.

to their own destinations.

3 Theory and system overview

We adopt crowd simulation techniques to optimize
evacuation routes. A crowd of people is represented
by agents and their motions are simulated to
determine the time needed for evacuation, i.e., the
time taken by the agent to move from its initial
position to an exit. Our method is versatile and
can deal with different structures for the situation,
obstacle positions, and crowd distributions. To
determine an optimal evacuation route, the goal is to
maximize the rate of agents arriving at the exits in
every time period. This requirement can be achieved
by expecting the evacuation time of neighbouring
agents, even those who evacuate in different ways,
to be similar.

We show an experiment in Fig. 1, in which the road
to the left exit is narrow, to explain why simulation
is important in evacuation route optimization. The
evacuation plan determined by the shortest path
algorithm is oblivious to the distribution of agents. A
good evacuation plan for 1000 uniformly distributed
agents may not work well for 100 agents because
the congestion problems are different. Instead, our
approach is to refine the position of each division
point so that the evacuation time of agents around
it are similar. To implement this idea, we initially
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Fig. 1 Optimal evacuation route depends on not only the structure
of the situation but also the distribution of people.
agents (blue dots) evacuate to the left or right exit according to the
guidance from a shortest path algorithm (weighted by road capacity).
The division point (vertical red line) should be updated when the
distribution of agents changes: if it is not, the agents do not reach
the exits optimally.

Simulated

set evacuation routes according to a shortest path
algorithm and then iteratively update the routes
until an optimal state is achieved. We also prevent
head-on collision of agents when computing the route
to prevent rapid increases in evacuation time. Thus,
the following constraints should be satisfied:

1. Each edge has at most one division point to divide
a crowd into two groups. Agents in a group
evacuate in a single direction, while those in
different groups go in separate directions.

2. Guidance paths at an intersection cannot across.
Otherwise, head-on collisions potentially occur,
causing evacuees to take a long time to arrive at
the exits.

The input to our system is a scenario map that
indicates the positions of obstacles and roads. We
transform the map into a graph G = (N, E), where
N = {nq,...,n.} is the set of node positions, n €
R?, 2 is the number of nodes, and {7, j} € E indicates
node connectivity. We also denote by n. € N
the exits that agents should reach. Our goal is to
compute the evacuation direction(s) of each edge and
the distribution ratios of each node. When agents
on an edge should evacuate in opposite directions,
we also determine the position of the division point
that minimizes the evacuation time.

Figure 2 shows our system architecture. It
has three major components: route optimizer,
crowd simulation engine, and visualizer. The route
optimizer updates the evacuation routes. The crowd
simulation engine executes crowd simulation based
on the routes, and reports the simulation results.
The visualizer renders the agents in different ways,
e.g., agents as dots, agents color-coded according to
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Fig. 2 System architecture.

evacuation time, or agents as 3D models.

4 Evacuation route optimization

We initialize the evacuation routes according to
the distances of agents to exits and then refine the
routes by considering the agents’ evacuation time.
An optimal state is achieved when neighboring
agents who take different routes arrive at their
respective exits at similar time.

4.1 Route initialization

We apply a shortest path algorithm to initialize the
evacuation routes. To implement this idea, we add
to graph G an auxiliary node m connected to all
exits n, € N,. The distances between m and n, are
set to zero. The cost of an edge {1, j} is equal to the
edge length:
Dij = |[ni — n (1)
By applying the Dijkstra’s algorithm to compute
the shortest path tree,
evacuation routes. Note that no cyclic paths can
appear as D;; must be positive. A weighted graph
algorithm considering edge capacity can be used

we obtain the initial

by setting D;; = ||n; — n;||/w;j, where w;; is the
minimal width of the road modelled by edge {i,;}.
However, if the edge capacity is not fully utilized,
the initial route should also be adjusted.

We set the evacuation direction of each edge
according to the shortest path tree. The directions
are used to guide the agents’ evacuation in the
simulation process. For an edge {i,;j} that is in E
but not on the shortest path tree, we set a division
point on it because the paths from n; to m and from
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n; to m do not cross edge {1, j}. Ideally, the division
point should be set based on the distances from nodes
n; and n; to m, respectively. But we simply set the
point to the middle of n; and n; as the current route
is only used for initialization and will be updated
according to the simulation results.

4.2 Route optimization

We have assigned the initial evacuation directions
based on the shortest path algorithm. A crowd can
move along the evacuation directions to the exits.
However, this approach does not consider the actual
movements of agents and congestion problems.
Therefore, we apply crowd simulation to estimate
the evacuation time of each agent. The evacuation
time of each local region is then determined as
well. The results are used to perform an iterative
refinement process in which we (i) refine the division
points on edges and (ii) determine the distribution
ratios at intersections, to solve the abovementioned
problem. The refinement process stops when the
system converges or a predefined maximum number
of generations is reached. Experimental tests suggest
a suitable value for this number is 10.

4.2.1 Refinement of division points

Let {i,7} be an edge with a division point ¢q. Our
goal is to refine the position of ¢ (denoted by m,)
to ensure that the crowds that evacuate in opposite
directions from this point arrive at their respective
exits simultaneously. The evacuation time at a node
on an edge is set to the average evacuation time
of the agents at that node. We now derive the
formula for updating a division point after each
crowd simulation, based on the evacuation time of
agents moving along an edge.

Let T; and T; be the evacuation time if the
two crowds start evacuation from nodes i and j,
respectively. Let ATy; and ATy; be the evacuation
time that they take to move from n, to n; and

Movement L B
direction n n._
i n, 7
']\'; T +\A\qu T+AT,, f]:,
EVACURON g 5 @ —g
time . . H Y ‘
n; Edge nq Edge nj
segment segment

Fig. 3 Evacuation time of agents along an edge divided into two
parts at a division point q. The agents are divided into two groups
which move in opposite directions.

n;, respectively (see Fig. 3). The division point
separates the crowd into two smaller crowds moving
in opposite directions. So that the two crowds
moving from the division point should arrive at
respective exits at the same time, we get the

following constraint:

Ti + ATy =T + ATy, (2)
Typically, T; and T} are difficult to estimate and
should be determined by simulation. Furthermore,
as crowds are seldom congested when they start
AT, and ATy linearly
proportional to the distance from m, to an end of
{i,7}. Let the division ratio ¢ = ||n;—n,||/||n;—n,||.
After the division point ¢ is updated, the new ¢’
should satisfy the constraint in Eq. (2), so we have:

/ /
T+ SAT: =T+ 11_(2Aqu 3)
Here, ¢'/¢ and (1 — ¢')/(1 — ¢) are the changes in
the distance ratios in the two opposite directions
respectively. Therefore, (¢'/¢)AT,; and (1—¢')/(1—

¢)AT,; are the extra amounts of time for agents

evacuation, can be

moving from the division point to nodes ¢ and j
respectively. If the division ratio does not change,
we need not update g. Otherwise, given the current
state of T, T;, AT,;, and ATy;, we aim to compute
¢’ to satisfy Eq. (3). Let o« = AT, /¢ and § =
ATy /(1 — ¢). Then Eq. (3) becomes:

Ti+¢'a=Tj+(1-¢)B (4)
Therefore, the division point ¢ is updated using the
new division ratio:

T, T+ B

o = )

Our system refines the position of the division point
g and the evacuation routes. If ¢’ is zero, then
all agents move along edge {i,j} towards node j,
while if ¢’ is one, all agents move towards node
i. ¢ may lie outside the interval [0,1] which
implies that the division point should not be on
edge {i,j}. If the valence of node i or j is two, we
propagate the division point to the adjacent edge
to {i,7} in the appropriate direction (see Fig. 4).
Otherwise, we handle the problem during refinement
of intersections.

4.2.2  Refinement at intersections

To evacuate efficiently, people have to make decisions
when they arrive at an intersection. Incoming and
outgoing edges are edges that agents move toward

and away from an intersection. If an intersection
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1) Case ¢'< 0, then set ¢’ = 0.

= —=p — —p
[ ) ) L [ ] e
n, n; n; n, R; Hy
Fig. 4 Division point propagation for nodes with valence two.

Arrows indicate the agent movement direction. Case 1: if the new
division ratio ¢’ < 0, then it is possible that the agents move faster
along edge {i,j} than agents along edge {k,i}. Case 2: if ¢/ > 1,
then the agents may move faster along edge {4, j} than agents along
edge {j,k’}. In either case, the division point should be propagated
from {3, j} to {k,i} or {j,k’}, respectively.

has at least one incoming and two outgoing edges, we
determine distribution ratios of flows to help agents
choose the correct evacuation route. We illustrate
this idea in Fig. 5. Note that an intersection that
has only incoming edges must be an exit. One
that has only outgoing edges can be ignored because
there are no decisions for agents to make: agents
just move along the edges that are closest to them.
In the following we consider agents moving along
an incoming edge to node j and determine how
they should move along the outgoing edge(s) at j.
Let E,(j) be the set of outgoing edges at node j,
and let the distribution ratio of edge ex € E,(j)
be 0, = Dy/ ZieEo(]‘) D;, where D, = 1/T®
and T3" is the maximum evacuation time of agents
moving along outgoing edge {j,k}. The idea here
is that when the agents reach node j, more agents
move to those outgoing edges with lower evacuation
time. In summary, the evacuation time of each
agent is recorded and used to iteratively update the
evacuation route. The division points on edges and
distribution ratios at intersections are fine-tuned.

4.3 Hierarchical route optimization

The priority of evacuation in different zones may
be different. For example, people may prefer to
stay outside rather than inside a building for many
reasons concerning fresh air and safety. Accordingly,

O-D~0 O-O . ¥
X %’ %—@

(a) (b) (c)

Fig. 5 Crowd flow at an intersection. Simulated agents may split
(a) or merge (b) during evacuation. Head-on collision may occur at
complex intersections (c). Suppose a crowd of agents attempts to
move from k1 to k3 and another crowd moves from ks to kg. Our
system assigns agents priorities which are used to choose outgoing
edges, to overcome this problem.
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2) Case ¢’ = 1, then set ¢ = 1.

we present a hierarchical framework to compute
evacuation routes in order to help people leave top-
priority zones efficiently. Consider a situation with
a park including a dome and an outdoor area, both
of which are filled with people. When computing
evacuation routes for these people, a straightforward
approach would simply take the whole scenario into
consideration. However, doing so, the computed
route may cause people stay in the dome for a long
time to minimize overall evacuation time. To prevent
such problems, we partition the situation into two
different zones and optimize the route hierarchically.

There are two steps: (i) compute the evacuation
route for the agents in the dome, and (ii) compute
the evacuation route for the agents in the park and
The first step
is performed because of the higher priority of the
dome. The optimization process is identical to the
one mentioned previously. An additional task is to
collect the records of arrival time and exit of each

the agents leaving from the dome.

agent.

The first step gives the evacuation route for the
agents inside the dome. Then we perform the second
step. One can simply assume an exit of the dome to
be a teletransporter. When using a crowd simulation
to evaluate the routes, the agents inside the dome are
popped up at the specific exits in the teletransporter
based on the records from the first step. These
agents then follow the guidance paths to exits when
optimizing routes in the outdoor area. The agents
in this area are treated as usual. In other words, the
simulations in different zones are separate, but they
are linked by the recorded arrival time of the agents
in the first step.

Another advantage of this hierarchical route
optimization is the reduction of computational costs.
As simulations are expensive due to nonlinear
crowd behavior and congestion problems, larger
numbers of agents often result in much more
computation. Therefore, when routes in different
zones are optimized separately, the costs can be
greatly reduced. The only drawback is that
the global evacuation time of the agents becomes
longer. However, as mentioned, the priorities of
different zones may be different. Our approach allows
people to evacuate early from zones that are more
dangerous. Note that this hierarchical procedure is
not limited to two levels but can be extended to
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multiple disjoint zones.

5 Crowd simulation

Our evacuation route optimization is driven by a
simple physics-based crowd simulation. The crowd
simulation model enables the agents to move faster
(e.g., run) if there is space for them to do so. We
want to emphasize that our method for computing
the evacuation route could be used with any other
crowd simulation model, e.g., Refs. [24, 25, 33].

Following Ref. [43], the attributes of an agent in
our system include position p;, walking speed s;,
and body radius r;. We represent each agent by
a circle, although an ellipse would be better, as
an agent needs some space to turn around. Using
anthropometric survey data [44], we set randomly
the body diameter in the interval [0.3 m, 0.5 m] in
our system. We also set the walking speed in the
interval [I m - s~!, 1.5 m - s7!] based on experiments
reported in Refs. [45, 46]. These parameters could
be dynamically set using real data obtained from
smart phones or tickets in an event, allowing the
simulation results to be more accurate. Parameters
for crowd simulation can also be extracted from
crowd videos [47].

Our simulation process updates the position of
each agent in a continuous space. However, to
efficiently determine the neighbouring agents, the
simulation proceeds in an organized manner. We
divide the situation into a grid structure, in which
the width of each grid cell is set to a value larger
than 205 + vmaxAt, where /, is the maximum radius
of agents, vpax is the maximum speed of agents,
and At is the simulation step size. Therefore, the
neighboring agents to a specific agent can be found
in an area of 3 x 3 grid cells.

5.1 Crowd motions

Our system simulates crowd motions according to
the guidance of the evacuation routes, obstacles, and
crowd density in neighboring regions. Agents move
along edges while avoiding collisions until they arrive
at exits.

5.1.1 Fvacuation direction

To obtain the evacuation direction of each agent, we
find the edge {i,7} € G closest to the agent. The
temporary destination d = mngs is then computed,
where § € {i,j} is set based on the evacuation

direction of edge {i,j}. Let p be the agent position.
Its movement direction is

V= (6)

5.1.2  Spacious regions

People prefer to stay in spacious, less crowded
regions so that they can leave more quickly. To
prevent local congestion, we first compute a density
map [36] for the situation to represent crowd
densities and obstacles. The density of each grid
cell is determined by the number of agents within
it. The map is then applied to adjust the motion
of each agent to steer them to more spacious areas:
an agent should in the negative gradient direction
if the agent’s current speed is less than the agent’s
desired speed. For simplicity, suppose that an agent
is located at the grid cell (z,y). The suggested
movement direction for the agent is

1 1
va= Y > (Day—Dayiysj)uay(i,j) (7)

i=—1j=—1
where D, , is the density of grid cell (z,y), and
Uy (%,7) is the relative unit direction of grid cell
(. +14,y+ j) with respect to (z,y). vq is normalised
to give 94 if it is non-zero; otherwise, ¥4 is a zero
vector.

The velocity of each agent is adjusted to be v/ =
s(v+wdq), where s is the walking speed of the agent,
and w is a weight which controls the influence of the
density map. We set w = 0.25 if v and vq point
in the same general direction, i.e., v-vq > 0. In
this case, the agent can move faster. Otherwise, we
set w = 0 as during evacuation, people would rather
wait than go back if the route in front of them is
congested. The new position of the agent becomes
p'=p+ VAL

5.2 Collision prevention

We update the positions of all agents in each time
step. Given that agents are handled individually,
they may collide with each other. A relaxation step
is used to prevent this problem. Our system assumes
that the agents are patient and give way to one
another. Since agents cannot intersect the walls and
other obstacles in a building, the one that is closer to
an obstacle prefers to stay in position. To implement
this idea, we consider each pair of agents at a given
time and relax their positions iteratively. Suppose
agents a and b potentially collide. Then we relax
their positions by
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Dy, = p, —wpd

Po—p,  (8)
Ip6 —
where w, and w, are relaxation weights. We
normally set w, = w, = 0.5 if both agents are not

in the proximity of obstacles. If one of them is close

f)a = pg + wada
with d = [(ra + 1) — ||}, — P} |l]

to an obstacle, we allow this agent to stay at the
same position by setting its weight to zero. If both
agents are close to obstacles, the one farther from the
destination gives way, and its weight is set to one.

In addition to handling collisions between agents,
our system also prevents agents from colliding with
obstacles. If the updated position p’ is inside an
obstacle, we restore the agent to its previous position
and then move it a small step along the surface of the
obstacle. If the collision still occurs, we iteratively
reduce the step size until the problem is resolved.

Since the movement of each agent potentially
results in new collisions, we repeat the two strategies
to relax agent positions several times to avoid the
problem.

6 Experimental results

6.1 Performance

We have implemented the above algorithm and ran
it on a 3.20 GHz Intel Core i5 CPU with 8 GB
RAM. The simulation step size was 1/30 s. To
evaluate the performance of our method, we tested
the presented system in various scenarios, including
indoor and outdoor environments. In examples
shown, agents and obstacles are represented by using
dots and gray polygons, respectively. The colors of
the dots indicate their evacuation time. Overall,
our system takes eight generations on average to
obtain an optimal evacuation route, as indicated in
Fig. 6. Detailed timing statistics for our CPU-based
implementation are given in Table 1. Clearly, the
computational cost of our crowd simulation depends
on the number of agents in a scene, but the cost
can be greatly reduced by leveraging GPUs. For
the example shown in Table 1, 35% of the crowd
update cost is avoided if our hierarchical framework
is employed.

6.2 Comparison

In the following, we compare the performance of
the proposed method with two other methods: the
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Fig. 6 Our system takes about eight generations to converge based
on the evacuation time of the last agent.

Table 1 Timing. NUM: initial number of agents. ATC: average time
per step of crowd update. ATG: average training time per generation

Scenario NUM ATC ATG
Exhibition 25,000 14 ms 27s
Island 20,000 10 ms 50s
Park, hierarchical scheme 20,000 10 ms 83s
Park, whole scene scheme 30,000 15ms 76s

shortest path algorithm and the weighted graph
algorithm.

6.2.1 Ezhibition example

Figure 7 visualizes the evacuation time for agents
that follow the routes determined by the shortest
path algorithm, the weighted graph algorithm, and
our method. In this example, 25,000 agents were
evenly distributed in the scene. As the shortest
path algorithm guides agents to the nearest exits,
congestion potentially occurs. It often appears when
the agents move from a branch to a main route
because of collisions. The weighted graph algorithm
guides agents to wide roads but congestion may
occur on narrow roads. In contrast, while our
approach may require a portion of the crowd to move
to further exits, it disperses the crowd so as to avoid
congestion, helping them to evacuate efficiently.
Figure 8 shows the numbers of unevacuated agents
for the three methods as a function of time. At
the beginning of the simulation, the numbers of
remaining agents were similar for the three methods
as similar numbers of agents reached the exits. As
time went by, our method caused agents to utilize
the exits more effectively. However, some exits were
not utilized well in the other two methods: see Fig. 9.

6.2.2 Island example

In this example,
distributed on an island according to the placement
of facilities (Fig. 10).

20,000 agents were unevenly

As there are three exits at
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Fig. 7 Exhibition example. We compare the results determined by:
(a) the shortest path algorithm, (b) the weighted graph algorithm,
and (c) our proposed method. Left: color indicates agents assigned
to the same exit. Right: color indicates evacuation time of each agent.
Agents who follow guidance determined by our method evacuate
faster than in the other two cases.
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Fig. 8 Exhibition example. Unevacuated agents for the shortest
path algorithm, the weighted graph algorithm, and our method.

the right of the island, most agents can evacuate
efficiently. Figure 11 shows the distribution of agent
travel time. The results determined by our proposed
method and the other two methods are not greatly

Fig. 9 Exhibition. Snapshots of unevacuated agents for each method
at frame 2800. Left to right: the shortest path algorithm (4122
remaining), the weighted graph algorithm (2549 remaining), and our
method (1559 remaining). The lower exits were not utilized well by
the shortest path algorithm.
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(b) The weighted graph algorithm
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Fig. 11 Island example. Left: distribution of the agent travel time.
Right: remaining agents at frame 4500. Agents are moving to all six
exits in our method, but some exits are no longer utilized in the other
two methods.

different. However, we still can see long queues at the
top left at time step 4500 of the simulation for the
other two methods (see Fig. 11(right)). In contrast,
agents that follow our guidance are much closer to
the exits at the same time step. We conducted
another experiment in which the widths of the roads
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at the bottom and lower right exits were reduced by
around one-half. Figure 12 shows the distribution
of agent travel time. As the widths of two exits
were reduced, it took longer for the agents to leave
the island. Figure 13 shows how the numbers of
remaining agents vary with time for each method.
The shortest path algorithm does not adapt well to
changes in road widths.

Figure 14 shows a 3D of the island. Such 3D
animated agents help users to visualize and evaluate
the realism of the entire evacuation process. This
example shows that the agents are moving in a
regular pattern as expected. In the future, we
hope to conduct a user study in a virtual reality
environment to assess the result quality.

i
:

:
d

¥
I
.

(c) The proposed method

Fig. 12 Island modification: widths of the roads at the bottom and
lower right exits were reduced by around one-half. Left: distribution
of agent travel time. Right: the remaining agents at frame 4500.
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Fig. 13 Island example, numbers of remaining agents over time.
Left: normal exit widths. Right: reduced widths of bottom and lower
right exits.
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6.2.3 Island with transportation

In some cases evacuation may require public
transportation. We tested our system on an
island, in which agents leave the island in discrete
groups whenever vacant ferries arrive at the pier.
Specifically, we assume the top left exit in Fig. 15
to be a pier. The gate in front of the pier opens once
every 1000 time steps and then closes after 200 agents
board the ferry. The initial distribution of agents
was the same as in the previous example. Compared
to the results from the shortest path method (see
Fig. 15(a)), our method guides more agents to other
exits and successfully minimizes the evacuation time
(see Fig. 15(b)), as it takes into account that agents
have to wait for ferries during evacuation.

We point out that our method is adaptive to events
that can be simulated. It is not limited to public
transportation in an urban city but also elevators in
a building. While previous methods usually make
several assumptions when computing the optimal
evacuation route, the current system can work well
in most situations.

6.2.4 Park example

Suppose there are some facilities in a park. During
evacuation, people would prefer to leave buildings
for reasons of fresh air and safety. We thus set-up a
park scenario that contains a dome and an outdoor
area. In addition, we placed 10,000 and 20,000 agents
inside and outside the dome respectively. With
the aim of evacuating agents in the dome first, we
computed routes using our hierarchical framework.
The evacuation time and dome exit of each agent
in the dome is first computed, and then used in the
optimization of evacuation routes outside the dome.
Figure 16 shows both the initial distributions and
the evacuation time of the agents. While agents
take longer to evacuate the park if they follow
the guidance routes determined by the hierarchical
framework, they can leave the dome earlier than if
following routes computed by considering the whole
scene.

6.3 Comparison with a GA-based method

We also compared our method with a method based
on a genetic algorithm (GA) [6] using an example
from that paper of a rectangular hall with length
250 m and width 200 m having ten exit gates of
similar length. Two different configurations were
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Fig. 14 3D view of the island scenario. Agents split into groups and move to their respective exits. Some agents form queues gradually as

they are moving.

Shortest path method

Fig. 15 Evacuation by ferry. Agents have to take ferries to leave
the top left corner, causing evacuation from this direction to be slow.
Our system thus guides more agents to other exits.

employed in Ref. [6], as shown in Fig. 17, the latter
having a rectangular obstacle. Furthermore, we
also introduced the use of safe zones as it is not
appropriate to ignore all the agents after they reach
the exits: they need to take time to move away from
the exits so that they do not block the exits. Thus,
in our experiments, we also recorded the average
evacuation time of agents when the safe zones were
employed. The agents were randomly generated in
The agents could move faster
(at most two times faster than their desired walking
speed) if there was room for them. The goal was to
compute the routes giving lowest average evacuation
time of the agents .

The GA method divided the hall into 25
subregions evenly and the agents in each subregion

a uniform manner.

were assumed to follow the same evacuation plan.
Thus, the GA method attempts to solve a discrete
optimization problem, finding the best combination
for the subregions. The GA method has higher
computation cost for a greater number of subregions.

In the GA method, an individual represents a
route plan for the agents. In general, a certain
number of individuals are required, e.g., 10, 20, of
40 particles as proposed in Ref. [6]. The fitness of
each individual is evaluated by crowd simulation.
Mutation and crossover are employed to generate
new individuals. Our method requires a road map
that is represented as a graph. During the training

Outdoor environment Inside the dome

(c) Evacuation time of agents in the park and the dome

Fig. 16 Park example, showing evacuation time of each agent guided
by our optimized evacuation routes. Left, right: routes computed
by global and hierarchical schemes respectively. Routes computed
hierarchically allow agents to leave the dome faster, but they take
longer to leave the park because of congestion in the park.

process of our method, the agents followed their
allotted paths. In both methods, agents could move
directly to their respective exits if there was no
obstacle between them and the exits.

Figure 18 shows the initial and optimal routes in
our method. We could perform local adjustment
to reassign agents to their exits after the training
process is completed. The idea of local adjustment is
as follows. If two agents ¢ and j are assigned different
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Exit 0 Exit 1 Exit 2 Exit 0 Exit 1 Exit 2

Exit6 Exit 8 Exité Exit 8

Exit? Exit8 Exit7 Exit9

Exit3 Exit4 Exit 5 Exit 3 Exit 4 Exit5

Fig. 17 Example hall, maps for comparisons with the GA method.
Left: environment without an obstacle. Right: environment with a
rectangular obstacle.
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Fig. 18 The initial routes and optimal routes in our method.
Top row: initial routes. Middle and bottom: optimal routes. The
computed routes with and without safe zones are similar to each
other.

exits, if t; > t; + ||p; — p;|/si, then i is assigned the
same exit as j and vice versa; here, ¢; and ¢; are the
evacuation time of ¢ and j before local adjustment,
respectively, while s; is the walking speed of i.
Table 2 compares average evacuation time for
25,000 agents for the GA method and the proposed
method. The GA method attempts to group
the different subregions for an exit while the
proposed method attempts to adjust the division
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points in the graph to achieve an optimal route.
Because our method and the GA are optimization
techniques, both can compute paths with similar
fitness value. However, our method provides faster
evacuation than the GA method in general, with an
improvement in average evacuation time of 5% to
10%.

The time complexity for the simulation part of the
GA method is at least O(NaAMaTs), where Tg is
the computation cost of a crowd simulation, Ny is
the number of individuals, and M, is the number
of training iterations. But M, also depends on
the number of subregions. In Ref. [6], the GA
method took around 19 iterations to converge using
10 individuals. In our method, the time complexity
is O(MoTs), where Mg is the number of training
iterations. Our method converges in around five
iterations, so for this example My > Mo. Thus, our
method has much lower cost than the GA method.

Figures 19 and 20 snapshots during
simulation in two different configurations.  An
important finding is that the GA method is able
to group non-adjacent subregions but our method
is able to group adjacent agents. Figure 21 shows

show

the number of remaining agents during simulation.

6.4 Comparison with a dynamic route

adjustment method

Yang et al. [48] proposed a dynamic method which
adjusts the crowd movement at runtime. Space is
discretized as a grid. This method computes an
attractive value for each grid cell based on four
factors: relative distance to the closest exit (S51),
aisle regions (S2), interaction between agents and
obstacles (R), and movement orientation of agents
in the local region (D). Here, agents are dynamic
obstacles. The first two values can be determined
once the environment is given but the last two
values must be computed at each simulation time
step. The total attractive value is computed as
exp(ks(S1 + S2) + kR + kqaD), where kg, k;, and
kq are user-defined coefficients in [0, 1]. The value of
S1 for a grid cell depends on the shortest distance to
the closest exit and the maximum shortest distance
of all the grid cells to the exits. S, is set for a grid
cell if it is in an aisle region. R is a non-positive
value that makes agents tend to move away. See
Ref. [48] for how to compute Si, Sz, R, and D.
To determine the movement direction of an agent, a
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Table 2 Comparison between the GA method and the proposed method: average evacuation time of 25,000 agents, standard deviations in
parentheses. Desired walking speeds of agents were randomly initialized in a given interval. LA: local adjustment

Without safe zone (s) With safe zone (s)
Walking GA Ours QOurs GA Ours Ours
speed(m-s1) + LA +LA
Without [[0.42,0.72] |69.71 66.06 64.87 71.85 68.32 66.91
obstacle (36.03) (34.65) (33.79) (36.31) (35.09) (34.05)
1.0 37.13 35.79 34.52 38.51 36.67 35.79
(19.08) (18.23) (17.87) (19.34) (18.81) (18..09)
With [0.42,0.72] |85.38 77.26 76.62 87.37 80.78 79.72
obstacle (56.65) (45.08) (44.92) (56.51) (46.07) (45.32)
1.0 45.60 42.56 41.34 46.84 4317 42.75
(30.01) (25.42) (24.29) (30.06) (24.48) (24.23)
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Fig. 19 Evacuation of 25,000 agents without obstacles. Agents were removed once they reached exits. Top: GA, bottom: our method. Left
to right: snapshots at frames 0, 1000, 2000, 3000, and 4000. Our method makes agents move nearly in a straight line at frame 2000 to avoid
collision at the exits. Clogging behaviors occurred at frame 2000 for exits 0, 5, 7, and 8 in the GA method.
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Fig. 20 Evacuation of 25,000 agents with obstacles and safe zones. Agents were simulated even after reaching exits. Top: GA, bottom: our

method. Left to right: snapshots at frames 0, 1000, 2000, 3000, and 4000. In the GA method, the agents in the same subregion moved to the
same exit. Thus, some agents below the obstacle took a long route to move to exit 1.

discrete choice probability model is computed based  regions to attract agents and then distributes the
on the attractive values of the neighboring cells. agents to the exits.

An agent tends to move to a position with higher We implemented the method in Ref. [48] and
attractive value. The method relies on the aisle applied our crowd simulation technique to drive
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Fig. 21 Number of remaining agents over time during simulation
using the GA and our method.

the crowd movement. Figure 22 shows a two-exit
environment with 21 rectangular obstacles and two
exits. There are two message boards in the top
corridor. 35,000 agents were randomly generated
inside the region; some were densely generated in
Let A and B be the left and right
exits, respectively, with crowd densities pa and pg.
When an agent moves to a message board region, the
agent will decide whether to move to the left or right

exit according to the density difference between the

two regions.

two exits. For example, an agent in the middle left
aisle moves to exit B if po > k,pp, where k, is user
defined. k, was set to 1.5 in our experiment. Figure
23 shows the total attractive value map which was
proposed in Ref. [48].

W Message board Aisle region

Exit
e

|
|
|

1
J

Fig. 22 Two-exit environment. Left: 35,000 agents (blue dots).
Right: route computed by our method.

Low mmmm s High Low mmme o High

Fig. 23 Total attractive value map in the dynamic method. Left:
initial total attractive value map. Right: total attractive value map
for higher R (for easy visualization). In regions occupied by agents,
total attractive values are lower.
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Fig. 24 Snapshots for the two-exit environment at frame 2000.
Left: dynamic method from Ref. [48]; ks = 0.008, k. = 0.00015, and
ka = 0.00025. Agents tend to move along the aisle regions as their
total attractive value is higher than for neighboring regions. Right:
our method.

Figure 24 shows snapshots at frame 2000 of
simulation results for the two-exit environment.
Figure 25 shows the evacuation time distribution for
the agents. Figure 26 shows the number of remaining
agents over time for the dynamic method and our
method. Our method took around 15,000 frames
to evacuate all agents, but the dynamic method
took over 20,000 frames. The major weaknesses of
the dynamic method are: (i) some agents need to
move to the aisle regions before they can select an
exit, (ii) agents may not move consistently along
a direction because their movement directions are
computed using a probabilistic model, and (iii) it
is not intuitive how to tune the coefficients kg, k.,
and kq to optimize the final result. The advantage

Low mmm

TR B

Low o High
£ i

Fig. 25 Evacuation time distribution for the agents. Left: dynamic
method. Right: our method.
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Fig. 26 Number of remaining agents in the two-exit environment.
Our method performs better than the dynamic method [48].
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of the dynamic method is that it allows agents
to dynamically adjust their movement directions.
Therefore, the method can handle events that are
not known before simulation.

6.5 Comparisons with other methods and
discussion

Various computational techniques have been
proposed for computing evacuation routes [3]. We
give a brief discussion of recent studies. Hamacher
et al. [49] suggested computing a quickest flow
based on a dynamic network flow model to obtain
a lower bound for the evacuation time. It shows
that the lower bound is not easily achievable
because interaction of agents is ignored when the
quickest flow is computed. An upper bound for the
evacuation time is obtained by simulation based
Tang et al. [9]
proposed a method to compute evacuation routes
for a crowd initially at a single node based on a

computational network composed of an undirected

on a cellular automaton model.

graph. The method requires the input of parameters
(expected travel time and variance) for traversing
each edge. Furthermore, there are critical nodes
and a deadline is associated with each critical node.
Before the deadline, certain evacuation operations
must be performed at the critical nodes. The
method attempts to compute the routes so that
the probability of a successful evacuation is greater
than a given threshold. The method has limitations.
First, it considers the crowd as initially located at a
certain node. Second, the parameters are not easily
estimated. The travel time along an edge may be
time varying as it depends greatly on the crowd
density. Of course, empirical experiments could be
performed to collect such data.

Zhong et al. [50] proposed an evolutionary
algorithm-based method for evacuation planning in
open regions. A region is subdivided into a set of
sub-regions. An agent-based crowd simulation model
is employed to find heuristic rules used to evaluate
the scores of exits for each sub-region. The method
computes evacuation routes based on the heuristic
rules and then assigns the routes to the agents in the
sub-regions. The evacuation routes are evolved by
employing Cartesian genetic programming.

Our method relies on the results of crowd
simulation to drive the computation of division
points and distribution ratios. Compared with the

study in Ref. [9], our method does not require the
input of the travel time and variance along each edge,
but we do not consider critical nodes in our method.
Unlike the study in Ref. [50], our method computes
evacuation routes for a road network but may not be
applicable to open regions. However, the proposed
method can easily adapt to scheduled events because
it adjusts the routes based on the simulation results.
Overall, we believe that our work can inspire new
approaches in the future.

6.6 Different crowd models

The presented system is flexible in choice of crowd
simulation model. To verify this, we also integrated
the social force [24] and reciprocal velocity obstacle
(RVO) [25] models into our framework. We found
that the optimal evacuation routes determined
by the three methods were similar, although the
estimated evacuation time of the agents differed
between the models. In general, compared with
the shortest paths, the last agent simulated in these
models saves 24% to 35% of evacuation time when
guided by our optimal route.

Our proposed method assumes that the crowd is
located in an area with a road network. Because our
method computes the routes based on the results of
crowd simulation, we do not need to know crowd
movement speeds in different road segments as a
prior. It would be difficult to collect such data in
certain regions before a simulation, for example, from
regions where crowds exhibit clogging behaviours
(see Fig. 27). Because of clogging behaviour, an
agent may take longer to reach an exit than its
neighbouring agents.

The inputs to our system are a scenario map and
the distribution of a crowd. The former is easy to
obtain as it simply indicates the positions of the

Fig. 27 Clogging behaviour in the island example. Agents are color-
coded for tracking. Left to right: snapshots at frames 0, 500, 1000,
and 2000. Although some red agents were near the exits, they took
longer to reach the exits, because the roads were filled with moving
agents preventing these red agents from moving to the exits.
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The latter could be more difficult in
some scenarios. Fortunately, people in urban cities

obstacles.

usually have smart phones and their locations can
be sensed by global positioning system or Wi-Fi
signals. Surveillance cameras can also be used to
estimate crowd distribution [8]. To guide the crowd
to evacuate efficiently, one simple approach is to set
Another
approach would be to send individual evacuation

up dynamic signs close to intersections.

routes to each smart phone to guide each user to an
exit.
that all the required inputs can be obtained and
people in the real world will follow the given guidance
during evacuation. We hope to extend our system to
a practical level in future. The proposed method can

However, at the moment, we simply assume

be used under different conditions, such as various
walking speeds, but the evacuation time spans in real
and simulation states could differ.

Given that crowd distribution estimation can be
achieved by analyzing surveillance videos or Wi-Fi
adapters (giving cell phone positions), extending our
work to handle dynamic changes and thus to update
evacuation routes is not a problem. Specifically, the
simplest way is to compute a new evacuation route
whenever the crowd distribution is updated. We
also could improve performance and retain temporal
coherence of routes by setting the result from the
previous state as an initial guess of the current state
when updating the route.

The proposed method can be integrated with
existing crowd modeling methods as long as the
evacuation time of agents can be estimated during
We also believe that combining other
factors, such as sound perception and multi-sense
attention, would be helpful in crowd evacuation in
the real world.

simulation.

The proposed method is dedicated for an
environment with a road network so that it can
compute evacuation routes for users. This network
can be easily obtained if the environment has thin
and long corridors.
large open areas, the areas can be decomposed based

on a Voronoi diagram with respect to the roads

If the environment consists of

connecting to these areas, after which the presented
method is able to compute optimal evacuation
routes.

6.7 Limitations

Our system relies on the results of crowd simulation.

P .
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One of the strengths is its flexibility. However, crowd
behaviors are often difficult to simulate because of
various psychological issues. Thus, no simulation
models can be considered perfect.
people could become aggressive and cut into lines
frequently if they do not feel good during evacuation.
Our current system simply assumes that people

are patient and willing to follow given guidance

For example,

to evacuate. Such simulation can work well in
the situations such as the end of a concert or
a happy new year party. DBut it is not able to
simulate crowd behaviors when a serious earthquake
occurs. Accordingly, the evacuation route computed
by our system is not guaranteed to be optimum.
Furthermore, because the entire simulation must be
executed, the computation cost may be too high
for a large scene. A hierarchically-based route may
not work properly if the major exits of a zone with
higher priority are blocked. The resulting route for
this zone would be undesirable because the agents
would not be able to move away from the zone. In
this case, the agents should not be guided to such
blocked exits.
based on the movement of real crowds because we
do not consider the response time of the agents.
In real life, people would take a short time to
respond to the surrounding environment. “Stop,
wait-and-go” behavior is not modeled accurately in
our implementation. Because our method relies on

Our crowd simulation model is not

adjusting the division points along edges and the
distribution ratios at junctions, it is not suitable for
computing evacuation routes for open regions. We
intend to consider applying data driven approaches
to computing optimal routes.

7 Conclusions

We have presented a novel approach to combine
crowd simulation and evacuation route optimization.
Our system can handle crowds
attributes and environments that are difficult for

with various

previous methods. Given a scene map and a crowd
distribution, we employ a shortest path algorithm
to compute an initial evacuation route. The
route is then iteratively refined according to the
results of crowd simulation until an optimal state
is achieved. Thanks to the integration of simulation,
our approach is adaptable to elevators and public
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transportation that commonly occur in evacuation.
Experimental results demonstrate the flexibility of
the proposed method.

Although our system assumes that a crowd
distribution in a scene is known in advance, the
distribution is not difficult to estimate because of
widely used smart phones and surveillance cameras.
When the optimal evacuation route is computed,
a simple and practical way is to send the route
to each smart phone and guide users to exits.
In the future, we plan to discuss such evacuation
guidance with potential users, seek their feedback,
and eventually develop a practical application. It
would be compelling to compute evacuation routes
combined with traffic [51] and layout design [52].
Finally, it would be important to improve the crowd
simulation based on human factors and the data
extracted from crowd videos [47].
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