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ABSTRACT

In this study, we present BasketballFlow, a system designed to
generate diverse basketball gameplays based on a pre-determined
strategy sketch. A strategy sketch is a graphical representation that
coaches use to outline their planned tactics, encompassing the pro-
jected routes of the ball and the offensive players. Despite the visual
depiction of the offensive strategy, less experienced players might
find it challenging to fully understand these tactics and often falter
in their implementation due to interference from defensive play-
ers. Our system aims to remedy this by simulating different game
scenarios that illustrate potential defensive maneuvers, thereby aid-
ing these less experienced players in improving their success rate
of tactical execution. BasketballFlow is composed of a variational
generative adversarial network (VAEGAN) and a normalizing flow.
The VAEGAN is tasked with producing highly accurate game sce-
narios, while the normalizing flow ensures a wide diversity in the
simulated outcomes. Compared to other existing methods, Basket-
ballFlow demonstrates superior proficiency in simulating a broad
spectrum of gameplays while maintaining a lower Fréchet distance
to real gameplays. The effectiveness of our BasketballFlow system
is validated through our experimental results.
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1 INTRODUCTION

Basketball coaches typically sketch out players’ moves and pass
routes on a strategy board to illustrate how to carry out offensive
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strategies. Professional players can use these examples to rehearse
game situations on the strategy board, following the coach’s plans
in actual games. However, for players with less experience, their
offense can be easily thrown off by defensive players from the other
team, making it hard for them to stick to the original game plan. If
these strategies could be shown in real time before the games start,
players would gain a better understanding of the strategies and
anticipate defensive reactions. This could ultimately boost their
overall performance in games.

Although using game simulations to help players understand the
reactions of offensive players isn’t novel [5, 6, 16, 24], these meth-
ods typically rely on regression or generative adversarial networks
[12], which often can’t generate diverse gameplays that meet the
requirements of the initial strategic sketch. Specifically, defensive
players can disrupt an offensive strategy in many different ways, so
simulating only one possible outcome can limit players’ understand-
ing of the strategy. This is particularly true for less experienced
offensive players, who may be thrown off if the defenders do not
react as they were taught in the simulation, potentially reducing
the success rate of their offensive strategy.

We introduce BasketballFlow, a system that combines a varia-
tional generative adversarial network (VAEGAN) [27] and a nor-
malizing flow [8, 9, 13, 21] to generate a variety of gameplays
based on a given strategy sketch. Specifically, VAEGAN comprises
a variational auto-encoder and a generative adversarial network,
which uses the offensive strategy sketch to generate a full gameplay
that includes the defensive player trajectories. To make the game
simulation more accurate, we add a discriminator at the end of
the decoder and train the network by optimizing the adversarial
loss. We also use the reconstruction and fidelity losses to guide the
network’s training. While this VAEGAN aims to produce realistic
gameplays, the task of the normalizing flow is to sample diverse
latent representations for gameplay synthesis. Notably, normaliz-
ing flow is a bidirectional network composed of invertible layers,
capable of transforming the latent distributions of the game data
and a standard normal distribution in both directions. It exploits
the benefits of sampling from a normal distribution to generate
diverse gameplays that adhere to the conditions of the sketch.

To assess the effectiveness of BasketballFlow, we carry out a
comparison study with various baseline methods. We specifically
measure the Fréchet distance between the synthesized and actual
gameplays, and carry out a visual analysis of the players’ distribu-
tions on the court to evaluate fidelity. We also showcase the wide
range of outcomes that our BasketballFlow system can produce.
The experimental results confirm the effectiveness of our approach.
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2 RELATED WORK

Analytics and Synthesis of Basketball Game Data. Basket-
ball analytics has long been a field of interest, with early research
focusing on statistical data and mathematical computations to dis-
cern which stats directly or indirectly impacted basketball game
outcomes [18, 20, 22, 23]. With more teams embracing data ana-
lytics techniques in recent years, this field has increasingly drawn
research interest. For instance, Franks et al. [11] developed ’Coun-
terpoints’, a system that evaluates players’ efficiency during both
defense and offense. It provides heat maps showcasing zones where
defensive players excel or struggle, offering a comprehensive view
of player performances that can inform strategic decisions during
games. On another note, Beshai et al. [3] introduced a tool that
visualizes basketball shooting data, permitting users to compare
player data via interactive charts, thereby making the exploration
of basketball analytics more engaging and user-friendly.

The emergence of publicly accessible data from STATS SportVU,
which records player positions and movements on the court as
trajectories, has led to numerous applications. Seidl et al. [24] pro-
posed an interactive offensive tactic diagram playback system that
can simulate defensive behavior based on offensive tactic diagrams.
In parallel, Chen et al. [6] and Hsieh et al. [16] used a generative ad-
versarial network (GAN) [12] to model defender trajectories based
on offensive data, effectively simulating complete basketball games.
While the generated data were highly realistic, there was a lack
of diversity in the game simulations. Building on their work, our
study maintains the authenticity of basketball game simulations
while addressing the insufficient diversity in simulation outcomes.

Generative Networks are a subset of machine learning models
specifically designed to generate new data instances that closely
mimic the original training data. Their applications are broad, ex-
tending from the synthesis of novel images to the creation of textual
content. The spectrum of these models includes various types, such
as generative adversarial networks (GANSs) [2, 12, 15], variational
autoencoders (VAEs) [10], Autoregressive models [14], normalizing
flows [1, 7-9, 17], and diffusions [26]. Each of these types presents
unique advantages and limitations. While the goal of this study is
not to construct a universal generative model, we refer readers to
[4] for the details of these networks.

3 BACKGROUNDS

Normalizing flows [8, 9, 13, 17] are a type of neural network de-
signed to transform basic probability distributions into more intri-
cate ones for generative modeling purposes. Starting with a random
variable z that has a defined probability density function pz,(z), a
normalizing flow employs a series of differentiable and invertible
transformations f, such that z; = f;. o ... o fi(29), with k denoting
the number of applied transformations. This results in producing
a sample z; from the desired target distribution. Whereas earlier
techniques in normalizing flow depended on the change of variables
formula to ensure invertibility and differentiability, our approach in-
tegrates the neural ordinary differential equations (Neural ODE) [7]
to connect the two distributions. In essence, a Neural ODE reframes
the transformation from one layer to the next into a continuous
trajectory. To achieve this, an ODE solver determines the contin-
uous transformation mapping the inputs to the outputs. When z;
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Figure 1: This figure illustrates the architecture of our bas-
ketball flow.

symbolizes the state of a data point at time t, the transformation
follows the equation:

=0 - foeto), o
t

where f represents a neural network with parameters 6 determining
the state’s derivative.

4 SYNTHESIS OF BASKETBALL GAMEPLAYS

We present a novel network architecture named BasketballFlow, de-
signed to create realistic simulations of basketball gameplays based
on strategy sketches. The architecture of this network consists of a
VAEGAN paired with a normalizing flow, as depicted in Figure 1.
The encoder’s role is to convert gameplays x and the corresponding
strategy sketches s into latent representations, denoted as z, while
the decoder’s job is to reconstruct the full game data x, encompass-
ing the trajectories of both offensive and defensive players. Due
to the bottleneck of the encoded representation, where relevant
information might be discarded, we employ a discriminator to guide
the synthesis of gameplays. Alongside the VAEGAN, a normalizing
flow is trained to comprehend the latent distribution Z. This allows
it to sample from a variety of representations that comply with an
offensive strategy sketch.

4.1 Encoder

The BasketballFlow encoder E comprises three transformer layers,
responsible for encoding the concatenated real gameplay x and the
associated strategy sketch s into a latent representation z, where
z = E(x,s), as detailed in Figure 1. Given the time-series nature of
both the trajectories and the sketch, we temporally segment the
concatenated data into n patches, with each patch encapsulating
1 second of game time. Acknowledging the 24-second shot clock
restriction inherent in basketball games, we set n = 24 in our model
implementation, utilizing the ‘zero’ token in the patch to fill in the
gaps if the offensive play does not span the full 24 seconds. For
training the encoder, we attach a positional encoding to each patch
before inputting it into the transformer. We also introduce a ‘CLS’
patch to the transformer to acquire comprehensive information
about the offensive strategy.

We incorporate the variational autoencoder framework within
BasketballFlow due to the limited expressiveness of the normalizing
flows. Specifically, by moderating the irregularity of the encoded
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distribution, we secure two primary advantages: 1) the task of mod-
eling the latent distribution is simplified, given that a normalizing
flow’s purpose is to convert a standard distribution into a complex
data distribution, and 2) the decoder maintains the ability to gen-
erate realistic basketball gameplays even when the sampled latent
representation slightly deviates from the true latent distribution.

4.2 Decoder

The decoder G is composed of four transformer blocks and two
multilayer perceptrons (MLPs). The first MLP escalates the dimen-
sionality of the latent representation z from Rl to RE*™, where
m represents the number of patches. The m representations are
subsequently concatenated with positional encodings and then in-
put into the transformer blocks. The output is further processed
through an MLP layer to reconstruct the comprehensive basketball
gameplay. Specifically, we train the VAEGAN by optimizing the
reconstruction loss for each generated gameplay:

Lr(®) = |x - %] @
where X = G(z), and x is the actual gameplay. Given that the latent
representation z does not incorporate defensive information, the
decoder has the responsibility to synthesize defensive plays based
on the encoded offensive strategy. Hence, we employ a deeper
decoder G than the encoder E to simulate basketball gameplays. We
also utilize a discriminator D, also comprised of transformer blocks,
to assess the realism of the generated gameplays and guide the
decoder’s training. In our implementation, we use the WGAN-GP
[15] method to train the VAEGAN as well as the discriminator. The
loss can be articulated as:

Lado = Ex[D(%)] = Ex[D(x)] + 2z [([[VzD()]]2 = D?], (3)
where X is an interpolation of a generative and a real game plays.
The discriminator’s inputs are also segmented patch-wise, in line
with the discriminator’s backbone architecture. As the discrimina-
tor evaluates the realism of each trajectory segment independently,
the synthesized gameplays could suffer from discontinuity artifacts.
Therefore, akin to the strategy used in VITGAN [19], we feed over-
lapping patches into the discriminator to ensure the continuity
of time series game data. In addition, training a GAN is notori-
ously challenging due to its inherent instability. To mitigate this,
we employ feature loss optimization to assist in the training of
BasketballFlow. Specifically, when the discriminator encodes the
gameplays into features, referred to as D¢(x) and Dy (%), for the
purpose of assessing their realism, we aim to have these encoded
features be as similar as possible. The feature loss is calculated as:
Ly (%) = [Df(x) = Df(3)]. ©
Despite the potential for unexpected pathways to minimize this
feature loss, we maximize the entropy of both D¢ (x) and Dy (%) to
inhibit the Dy function from degenerating. Specifically, our goal
is for Dy (%) to possess sufficient information to reconstruct the
offensive strategy s by utilizing an MLP P, as depicted in Figure 1.
The loss for this entropy maximization is formulated as:

Le=|s—PDF®)] )
Note that an alternative approach to prevent the degeneration of D¢

might be the reconstruction of the entire gameplay x. However, our
experimental findings recommend the reconstruction of strategy s

as a more favorable option. We hypothesize that the intricacy within
x might be overwhelming. Tasking an MLP with the complete
gameplay reconstruction could compromise the ability of Dy (%) to
evaluate the realism of the synthesized gameplays effectively.

In addition to the aforementioned loss functions, we incorporate
the dribbler loss, defender loss, ball passing loss, and acceleration
loss when training the BasketballFlow. These functions, grounded
in basketball expertise, align closely with the ones outlined by [16].
For a comprehensive breakdown of these functions, please refer to
the supplemental material.

4.3 Normalizing Flows

The main objective of the normalizing flow within our framework is
to obtain a latent representation from which the decoder can synthe-
size complete basketball gameplays. As previously mentioned, nor-
malizing flows operate as bi-directional neural networks, wherein
their operations during the training and testing phases are in op-
posite directions. During the training phase, the normalizing flow,
denoted by f, is designed to map a latent distribution Z to a stan-
dard normal distribution W while integrating the encoded strategy
sketch &(S), as illustrated in Figure 1. Specifically, the training
procedure minimizes the negative log-likelihood loss, which is ar-
ticulated as:

Luee = - log pz5(s) (2IE(s))
=—log pw(wy,) + /tl tr (;W—J:) dt. (6)

ty
Here, w;, is a noise vector drawn from the standard normal dis-
tribution, and z € Z is a representation consistent with &(S). On
the other hand, in the testing phase, the normalizing flow ingests a
sample randomly drawn from a standard normal distribution and
yields a latent representation z in line with the specified strategy
condition. This representation z is computed as:

t
2= wp, + /t ot E(), we)dt. )

Note that we train the normalizing flow f to model the distribu-
tion Z,, (Figure 1), rather than Z. The underlying rationale is that
Z,, offers a more constrained representation compared to Z. By
subjecting the normalizing flow to this more challenging task, we
anticipate enhancing its capacity to faithfully capture the latent
distribution, which is essential for simulating basketball gameplay.

The normalizing flow’s network structure comprises a moving
batch normalizing layer [25], four concatsquash layers [13, 25],
and another batch normalization layer. The concatsquash layer is
mathematically expressed as:

CCS(t,c,u) = o1((Yyu +by) X gate + bias).

Here, gate = 02(Ysst + Yicc+by) and bias = (Ypt + Ypcc+bpt). The
terms Yy, Yit, Yie, Ypr, Yoo, bu, bt, by, are learnable parameters. The
activation functions, o1 and oy correspond to tanh and sigmoid.

4.4 Implementation Details

We trained BasketballFlow, encompassing both the VAEGAN and
normalizing flows, using the Adam optimizer. The batch size, learn-
ing rate, parameters 1 and ff2 used in the optimizer were set to 64,
1074, 0.9, and 0.999, respectively. The ODE solver’s error tolerance
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sketch

Figure 2: We show the input sketch on the left, and the generated game plays on the right. In the results, red and blue trajectories
indicate offensive and defensive plays, and the game plays are depicted from left to right. As indicated, basketball flow generates
two different realistic game plays, although the input is the same.

BasketballGAN | BasketballFlow | CVAEGAN
Fréchet Distance 25.584 6.604 7.394

Table 1: The numbers indicate the similarity of the generated

and actual basketball gameplays. The lower values are better.

was set to 107>, The training process spanned 1000 epochs, and the
model achieving the best validation performance was selected for
basketball gameplay generation. The training was carried out on
an AMD R9 CPU with an NVIDIA GeForce RTX 4090 graphics card,
taking approximately 8 to 10 hours to complete.

5 RESULTS AND EVALUATIONS
5.1 DataSets

Our data is sourced from SportsVU, which records the movements of
ten players and the ball during a match. The recorded data pertains
to the NBA’s 2015-2016 season, encompassing approximately 600
basketball games. By combining this with the official play-by-play
data, we partition these trajectory data into different gameplays.
Each gameplay begins when the offense brings the ball past half-
court and ends after a shot, regardless of whether points were
scored. We also reduced the original data to 5 frames per second for
training. Additionally, we simplify the offensive trajectories using
the Ramer-Douglas-Peucker algorithm and then apply bezier curves
to generate smooth strategy sketches [16]. This process achieves
more effective and cost-efficient data generation for training.

5.2 Quality Comparison with Baseline Methods

We evaluated the realism of gameplays produced by BasketballFlow
by benchmarking it against BasketballGAN [16] and CVAEGAN.
Basketball GAN, a leading competitor, also synthesizes gameplay
based on strategy sketches. CVAEGAN, on the other hand, shares
similarities with our BasketballFlow but doesn’t incorporate the nor-
malizing flow element. For a balanced comparison, we employed

the same backbones — specifically, the transformer — across the
training of these three generative networks. After training, we
computed the Freéchet distances between genuine and generated
gameplays. Results, presented in Table 1, indicate superior qual-
ity from both BasketballFlow and CVAEGAN over BasketballGAN,
as evidenced by their reduced Fréchet distances. This superiority
might stem from the inherent challenge in conditioning GAN, as
compared to non-conditioned models [1]. Moreover, while both
models effectively captured the gameplay representation distribu-
tion, BasketballFlow demonstrated its ability to produce diverse
gameplays from a single strategy sketch, showcased in Figure 2.

6 CONCLUSIONS

We present BasketballFlow, an innovative system designed to gen-
erate realistic and varied basketball game plays based on a provided
sketch. BasketballFlow combines a variational autoencoder and a
conditional normalizing flow. The variational autoencoder trans-
lates strategy sketches into latent forms and then reconstructs
these forms into related basketball plays. Concurrently, the condi-
tional normalizing flow captures the latent distribution of basketball
plays, enabling the generation of varied plays from a single input
sketch. The successful synthesis of realistic and diverse gameplays
demonstrates the efficacy of blending variational autoencoders with
normalizing flows. Moving forward, we aim to have coaches and
players test the system to assess if BasketballFlow can enhance the
efficacy of offensive strategies in their future competitions.
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