Basketball Flow: Learning to Synthesize Realistic and Diverse
Basketball GamePlays based on Strategy Sketches

Ming-Feng Kuo
National Yang Ming Chiao Tung University
Taiwan
sunnyday90154@gmail.com

ABSTRACT

In this study, we present BasketballFlow, a system designed to
generate diverse basketball gameplays based on a pre-determined
strategy sketch. A strategy sketch is a graphical representation that
coaches use to outline their planned tactics, encompassing the pro-
jected routes of the ball and the offensive players. Despite the visual
depiction of the offensive strategy, less experienced players might
find it challenging to fully understand these tactics and often falter
in their implementation due to interference from defensive play-
ers. Our system aims to remedy this by simulating different game
scenarios that illustrate potential defensive maneuvers, thereby aid-
ing these less experienced players in improving their success rate
of tactical execution. BasketballFlow is composed of a variational
generative adversarial network (VAEGAN) and a normalizing flow.
The VAEGAN is tasked with producing highly accurate game sce-
narios, while the normalizing flow ensures a wide diversity in the
simulated outcomes. Compared to other existing methods, Basket-
ballFlow demonstrates superior proficiency in simulating a broad
spectrum of gameplays while maintaining a lower Fréchet distance
to real gameplays. The effectiveness of our BasketballFlow system
is validated through our experimental results.

CCS CONCEPTS

« Information systems — Multimedia content creation;
Human-centered computing — Interactive systems and tools.

KEYWORDS

Basketball, sketch, generative networks, normalizing flows

ACM Reference Format:

Ming-Feng Kuo and Yu-Shuen Wang. 2023. Basketball Flow: Learning to
Synthesize Realistic and Diverse Basketball GamePlays based on Strategy
Sketches. In ACM Multimedia Asia Workshops (MMAsia 23 Workshops),
December 6-8, 2023, Tainan, Taiwan. ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/3611380.3630167

1 INTRODUCTION

Basketball coaches typically sketch out players’ moves and pass
routes on a strategy board to illustrate how to carry out offensive

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MMAsia °23 Workshops, December 6-8, 2023, Tainan, Taiwan

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0326-3/23/12...$15.00
https://doi.org/10.1145/3611380.3630167

Yu-Shuen Wang
National Yang Ming Chiao Tung University
Taiwan
yushuen@cs.nycu.edu.tw

strategies. Professional players can use these examples to rehearse
game situations on the strategy board, following the coach’s plans
in actual games. However, for players with less experience, their
offense can be easily thrown off by defensive players from the other
team, making it hard for them to stick to the original game plan. If
these strategies could be shown in real time before the games start,
players would gain a better understanding of the strategies and
anticipate defensive reactions. This could ultimately boost their
overall performance in games.

Although using game simulations to help players understand the
reactions of offensive players isn’t novel [5, 6, 16, 24], these meth-
ods typically rely on regression or generative adversarial networks
[12], which often can’t generate diverse gameplays that meet the
requirements of the initial strategic sketch. Specifically, defensive
players can disrupt an offensive strategy in many different ways, so
simulating only one possible outcome can limit players’ understand-
ing of the strategy. This is particularly true for less experienced
offensive players, who may be thrown off if the defenders do not
react as they were taught in the simulation, potentially reducing
the success rate of their offensive strategy.

We introduce BasketballFlow, a system that combines a varia-
tional generative adversarial network (VAEGAN) [27] and a nor-
malizing flow [8, 9, 13, 21] to generate a variety of gameplays
based on a given strategy sketch. Specifically, VAEGAN comprises
a variational auto-encoder and a generative adversarial network,
which uses the offensive strategy sketch to generate a full gameplay
that includes the defensive player trajectories. To make the game
simulation more accurate, we add a discriminator at the end of
the decoder and train the network by optimizing the adversarial
loss. We also use the reconstruction and fidelity losses to guide the
network’s training. While this VAEGAN aims to produce realistic
gameplays, the task of the normalizing flow is to sample diverse
latent representations for gameplay synthesis. Notably, normaliz-
ing flow is a bidirectional network composed of invertible layers,
capable of transforming the latent distributions of the game data
and a standard normal distribution in both directions. It exploits
the benefits of sampling from a normal distribution to generate
diverse gameplays that adhere to the conditions of the sketch.

To assess the effectiveness of BasketballFlow, we carry out a
comparison study with various baseline methods. We specifically
measure the Fréchet distance between the synthesized and actual
gameplays, and carry out a visual analysis of the players’ distribu-
tions on the court to evaluate fidelity. We also showcase the wide
range of outcomes that our BasketballFlow system can produce.
The experimental results confirm the effectiveness of our approach.

https://doi.org/10.1145/3611380.3630167
https://doi.org/10.1145/3611380.3630167

MMAsia *23 Workshops, December 6-8, 2023, Tainan, Taiwan

2 RELATED WORK

Analytics and Synthesis of Basketball Game Data. Basket-
ball analytics has long been a field of interest, with early research
focusing on statistical data and mathematical computations to dis-
cern which stats directly or indirectly impacted basketball game
outcomes [18, 20, 22, 23]. With more teams embracing data ana-
lytics techniques in recent years, this field has increasingly drawn
research interest. For instance, Franks et al. [11] developed ’Coun-
terpoints’, a system that evaluates players’ efficiency during both
defense and offense. It provides heat maps showcasing zones where
defensive players excel or struggle, offering a comprehensive view
of player performances that can inform strategic decisions during
games. On another note, Beshai et al. [3] introduced a tool that
visualizes basketball shooting data, permitting users to compare
player data via interactive charts, thereby making the exploration
of basketball analytics more engaging and user-friendly.

The emergence of publicly accessible data from STATS SportVU,
which records player positions and movements on the court as
trajectories, has led to numerous applications. Seidl et al. [24] pro-
posed an interactive offensive tactic diagram playback system that
can simulate defensive behavior based on offensive tactic diagrams.
In parallel, Chen et al. [6] and Hsieh et al. [16] used a generative ad-
versarial network (GAN) [12] to model defender trajectories based
on offensive data, effectively simulating complete basketball games.
While the generated data were highly realistic, there was a lack
of diversity in the game simulations. Building on their work, our
study maintains the authenticity of basketball game simulations
while addressing the insufficient diversity in simulation outcomes.

Generative Networks are a subset of machine learning models
specifically designed to generate new data instances that closely
mimic the original training data. Their applications are broad, ex-
tending from the synthesis of novel images to the creation of textual
content. The spectrum of these models includes various types, such
as generative adversarial networks (GANSs) [2, 12, 15], variational
autoencoders (VAEs) [10], Autoregressive models [14], normalizing
flows [1, 7-9, 17], and diffusions [26]. Each of these types presents
unique advantages and limitations. While the goal of this study is
not to construct a universal generative model, we refer readers to
[4] for the details of these networks.

3 BACKGROUNDS

Normalizing flows [8, 9, 13, 17] are a type of neural network de-
signed to transform basic probability distributions into more intri-
cate ones for generative modeling purposes. Starting with a random
variable z that has a defined probability density function pz,(z), a
normalizing flow employs a series of differentiable and invertible
transformations f, such that z; = f;. o ... o fi(29), with k denoting
the number of applied transformations. This results in producing
a sample z; from the desired target distribution. Whereas earlier
techniques in normalizing flow depended on the change of variables
formula to ensure invertibility and differentiability, our approach in-
tegrates the neural ordinary differential equations (Neural ODE) [7]
to connect the two distributions. In essence, a Neural ODE reframes
the transformation from one layer to the next into a continuous
trajectory. To achieve this, an ODE solver determines the contin-
uous transformation mapping the inputs to the outputs. When z;

Kuo and Wang

Movement ° I
Ly
{
(o | —Z,
D (@H— i
g |"Z -
—>ZM
! A Loy
| Rl B Discriminator -~
E — <—>WE
: :
X Flow -~

Figure 1: This figure illustrates the architecture of our bas-
ketball flow.

symbolizes the state of a data point at time t, the transformation
follows the equation:

=0 - foeto), o
t

where f represents a neural network with parameters 6 determining
the state’s derivative.

4 SYNTHESIS OF BASKETBALL GAMEPLAYS

We present a novel network architecture named BasketballFlow, de-
signed to create realistic simulations of basketball gameplays based
on strategy sketches. The architecture of this network consists of a
VAEGAN paired with a normalizing flow, as depicted in Figure 1.
The encoder’s role is to convert gameplays x and the corresponding
strategy sketches s into latent representations, denoted as z, while
the decoder’s job is to reconstruct the full game data x, encompass-
ing the trajectories of both offensive and defensive players. Due
to the bottleneck of the encoded representation, where relevant
information might be discarded, we employ a discriminator to guide
the synthesis of gameplays. Alongside the VAEGAN, a normalizing
flow is trained to comprehend the latent distribution Z. This allows
it to sample from a variety of representations that comply with an
offensive strategy sketch.

4.1 Encoder

The BasketballFlow encoder E comprises three transformer layers,
responsible for encoding the concatenated real gameplay x and the
associated strategy sketch s into a latent representation z, where
z = E(x,s), as detailed in Figure 1. Given the time-series nature of
both the trajectories and the sketch, we temporally segment the
concatenated data into n patches, with each patch encapsulating
1 second of game time. Acknowledging the 24-second shot clock
restriction inherent in basketball games, we set n = 24 in our model
implementation, utilizing the ‘zero’ token in the patch to fill in the
gaps if the offensive play does not span the full 24 seconds. For
training the encoder, we attach a positional encoding to each patch
before inputting it into the transformer. We also introduce a ‘CLS’
patch to the transformer to acquire comprehensive information
about the offensive strategy.

We incorporate the variational autoencoder framework within
BasketballFlow due to the limited expressiveness of the normalizing
flows. Specifically, by moderating the irregularity of the encoded

Basketball Flow: Learning to Synthesize Realistic and Diverse Basketball GamePlays based on Strategy Sketches MMAsia *23 Workshops, December 6-8, 2023, Tainan, Taiwan

distribution, we secure two primary advantages: 1) the task of mod-
eling the latent distribution is simplified, given that a normalizing
flow’s purpose is to convert a standard distribution into a complex
data distribution, and 2) the decoder maintains the ability to gen-
erate realistic basketball gameplays even when the sampled latent
representation slightly deviates from the true latent distribution.

4.2 Decoder

The decoder G is composed of four transformer blocks and two
multilayer perceptrons (MLPs). The first MLP escalates the dimen-
sionality of the latent representation z from Rl to RE*™, where
m represents the number of patches. The m representations are
subsequently concatenated with positional encodings and then in-
put into the transformer blocks. The output is further processed
through an MLP layer to reconstruct the comprehensive basketball
gameplay. Specifically, we train the VAEGAN by optimizing the
reconstruction loss for each generated gameplay:

Lr(®) = |x - %] @
where X = G(z), and x is the actual gameplay. Given that the latent
representation z does not incorporate defensive information, the
decoder has the responsibility to synthesize defensive plays based
on the encoded offensive strategy. Hence, we employ a deeper
decoder G than the encoder E to simulate basketball gameplays. We
also utilize a discriminator D, also comprised of transformer blocks,
to assess the realism of the generated gameplays and guide the
decoder’s training. In our implementation, we use the WGAN-GP
[15] method to train the VAEGAN as well as the discriminator. The
loss can be articulated as:

Lado = Ex[D(%)] = Ex[D(x)] + 2z [([[VzD()]]2 = D?], (3)
where X is an interpolation of a generative and a real game plays.
The discriminator’s inputs are also segmented patch-wise, in line
with the discriminator’s backbone architecture. As the discrimina-
tor evaluates the realism of each trajectory segment independently,
the synthesized gameplays could suffer from discontinuity artifacts.
Therefore, akin to the strategy used in VITGAN [19], we feed over-
lapping patches into the discriminator to ensure the continuity
of time series game data. In addition, training a GAN is notori-
ously challenging due to its inherent instability. To mitigate this,
we employ feature loss optimization to assist in the training of
BasketballFlow. Specifically, when the discriminator encodes the
gameplays into features, referred to as D¢(x) and Dy (%), for the
purpose of assessing their realism, we aim to have these encoded
features be as similar as possible. The feature loss is calculated as:
Ly (%) = [Df(x) = Df(3)]. ©
Despite the potential for unexpected pathways to minimize this
feature loss, we maximize the entropy of both D¢ (x) and Dy (%) to
inhibit the Dy function from degenerating. Specifically, our goal
is for Dy (%) to possess sufficient information to reconstruct the
offensive strategy s by utilizing an MLP P, as depicted in Figure 1.
The loss for this entropy maximization is formulated as:

Le=|s—PDF®)])
Note that an alternative approach to prevent the degeneration of D¢

might be the reconstruction of the entire gameplay x. However, our
experimental findings recommend the reconstruction of strategy s

as a more favorable option. We hypothesize that the intricacy within
x might be overwhelming. Tasking an MLP with the complete
gameplay reconstruction could compromise the ability of Dy (%) to
evaluate the realism of the synthesized gameplays effectively.

In addition to the aforementioned loss functions, we incorporate
the dribbler loss, defender loss, ball passing loss, and acceleration
loss when training the BasketballFlow. These functions, grounded
in basketball expertise, align closely with the ones outlined by [16].
For a comprehensive breakdown of these functions, please refer to
the supplemental material.

4.3 Normalizing Flows

The main objective of the normalizing flow within our framework is
to obtain a latent representation from which the decoder can synthe-
size complete basketball gameplays. As previously mentioned, nor-
malizing flows operate as bi-directional neural networks, wherein
their operations during the training and testing phases are in op-
posite directions. During the training phase, the normalizing flow,
denoted by f, is designed to map a latent distribution Z to a stan-
dard normal distribution W while integrating the encoded strategy
sketch &(S), as illustrated in Figure 1. Specifically, the training
procedure minimizes the negative log-likelihood loss, which is ar-
ticulated as:

Luee = - log pz5(s) (2IE(s))
=—log pw(wy,) + /tl tr (;W—J:) dt. (6)

ty
Here, w;, is a noise vector drawn from the standard normal dis-
tribution, and z € Z is a representation consistent with &(S). On
the other hand, in the testing phase, the normalizing flow ingests a
sample randomly drawn from a standard normal distribution and
yields a latent representation z in line with the specified strategy
condition. This representation z is computed as:

t
2= wp, + /t ot E(), we)dt.)

Note that we train the normalizing flow f to model the distribu-
tion Z,, (Figure 1), rather than Z. The underlying rationale is that
Z,, offers a more constrained representation compared to Z. By
subjecting the normalizing flow to this more challenging task, we
anticipate enhancing its capacity to faithfully capture the latent
distribution, which is essential for simulating basketball gameplay.

The normalizing flow’s network structure comprises a moving
batch normalizing layer [25], four concatsquash layers [13, 25],
and another batch normalization layer. The concatsquash layer is
mathematically expressed as:

CCS(t,c,u) = o1((Yyu +by) X gate + bias).

Here, gate = 02(Ysst + Yicc+by) and bias = (Ypt + Ypcc+bpt). The
terms Yy, Yit, Yie, Ypr, Yoo, bu, bt, by, are learnable parameters. The
activation functions, o1 and oy correspond to tanh and sigmoid.

4.4 Implementation Details

We trained BasketballFlow, encompassing both the VAEGAN and
normalizing flows, using the Adam optimizer. The batch size, learn-
ing rate, parameters 1 and ff2 used in the optimizer were set to 64,
1074, 0.9, and 0.999, respectively. The ODE solver’s error tolerance

MMAsia *23 Workshops, December 6-8, 2023, Tainan, Taiwan

Kuo and Wang

sketch

Figure 2: We show the input sketch on the left, and the generated game plays on the right. In the results, red and blue trajectories
indicate offensive and defensive plays, and the game plays are depicted from left to right. As indicated, basketball flow generates
two different realistic game plays, although the input is the same.

BasketballGAN | BasketballFlow | CVAEGAN
Fréchet Distance 25.584 6.604 7.394

Table 1: The numbers indicate the similarity of the generated

and actual basketball gameplays. The lower values are better.

was set to 107>, The training process spanned 1000 epochs, and the
model achieving the best validation performance was selected for
basketball gameplay generation. The training was carried out on
an AMD R9 CPU with an NVIDIA GeForce RTX 4090 graphics card,
taking approximately 8 to 10 hours to complete.

5 RESULTS AND EVALUATIONS
5.1 DataSets

Our data is sourced from SportsVU, which records the movements of
ten players and the ball during a match. The recorded data pertains
to the NBA’s 2015-2016 season, encompassing approximately 600
basketball games. By combining this with the official play-by-play
data, we partition these trajectory data into different gameplays.
Each gameplay begins when the offense brings the ball past half-
court and ends after a shot, regardless of whether points were
scored. We also reduced the original data to 5 frames per second for
training. Additionally, we simplify the offensive trajectories using
the Ramer-Douglas-Peucker algorithm and then apply bezier curves
to generate smooth strategy sketches [16]. This process achieves
more effective and cost-efficient data generation for training.

5.2 Quality Comparison with Baseline Methods

We evaluated the realism of gameplays produced by BasketballFlow
by benchmarking it against BasketballGAN [16] and CVAEGAN.
Basketball GAN, a leading competitor, also synthesizes gameplay
based on strategy sketches. CVAEGAN, on the other hand, shares
similarities with our BasketballFlow but doesn’t incorporate the nor-
malizing flow element. For a balanced comparison, we employed

the same backbones — specifically, the transformer — across the
training of these three generative networks. After training, we
computed the Freéchet distances between genuine and generated
gameplays. Results, presented in Table 1, indicate superior qual-
ity from both BasketballFlow and CVAEGAN over BasketballGAN,
as evidenced by their reduced Fréchet distances. This superiority
might stem from the inherent challenge in conditioning GAN, as
compared to non-conditioned models [1]. Moreover, while both
models effectively captured the gameplay representation distribu-
tion, BasketballFlow demonstrated its ability to produce diverse
gameplays from a single strategy sketch, showcased in Figure 2.

6 CONCLUSIONS

We present BasketballFlow, an innovative system designed to gen-
erate realistic and varied basketball game plays based on a provided
sketch. BasketballFlow combines a variational autoencoder and a
conditional normalizing flow. The variational autoencoder trans-
lates strategy sketches into latent forms and then reconstructs
these forms into related basketball plays. Concurrently, the condi-
tional normalizing flow captures the latent distribution of basketball
plays, enabling the generation of varied plays from a single input
sketch. The successful synthesis of realistic and diverse gameplays
demonstrates the efficacy of blending variational autoencoders with
normalizing flows. Moving forward, we aim to have coaches and
players test the system to assess if BasketballFlow can enhance the
efficacy of offensive strategies in their future competitions.

ACKNOWLEDGMENTS

We thank the reviewers for their insightful comments. This work is
partially supported by the National Science and Technology Council
(NSTC), under Contract: 112-2425-H-A49 -001 - and 111-2221-E-A49
-129 -MY3, Industrial Technology Research Institute (ITRI), and by
the Higher Education Sprout Project of the National Yang Ming
Chiao Tung University and Ministry of Education (MOE), Taiwan.

Basketball Flow: Learning to Synthesize Realistic and Diverse Basketball GamePlays based on Strategy Sketches MMAsia *23 Workshops, December 6-8, 2023, Tainan, Taiwan

REFERENCES

(1]

[11]

[12

[13

[14]

[15

[16]

(17

(18]

[19]

[20]

[21]

[22

[23]

[24]

[25

[26

[27]

Rameen Abdal, Peihao Zhu, Niloy J Mitra, and Peter Wonka. 2021. Styleflow:
Attribute-conditioned exploration of stylegan-generated images using condi-
tional continuous normalizing flows. ACM Transactions on Graphics 40, 3 (2021),
1-21.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. 2017. Wasserstein gan.
arXiv preprint arXiv:1701.07875 (2017).

Peter Beshai. 2014. Buckets: Basketball Shot Visualization. University of British
Columbia, published Dec (2014), 547-14.

Sam Bond-Taylor, Adam Leach, Yang Long, and Chris G Willcocks. 2021. Deep
generative modelling: A comparative review of vaes, gans, normalizing flows,
energy-based and autoregressive models. IEEE transactions on pattern analysis
and machine intelligence (2021).

Chieh-Yu Chen, Wenze Lai, Hsin-Ying Hsieh, Yu-Shuen Wang, Wen-Hsiao Peng,
and Jung-Hong Chuang. 2018. Adversarial generation of defensive trajectories
in basketball games. In 2018 IEEE International Conference on Multimedia & Expo
Workshops (ICMEW). IEEE, 1-1.

Chieh-Yu Chen, Wenze Lai, Hsin-Ying Hsieh, Wen-Hao Zheng, Yu-Shuen Wang,
and Jung-Hong Chuang. 2018. Generating defensive plays in basketball games. In
Proceedings of the 26th ACM international conference on Multimedia. 1580-1588.
Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. 2018.
Neural ordinary differential equations. arXiv preprint arXiv:1806.07366 (2018).
Laurent Dinh, David Krueger, and Yoshua Bengio. 2014. Nice: Non-linear inde-
pendent components estimation. arXiv preprint arXiv:1410.8516 (2014).

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. 2016. Density estimation
using real nvp. arXiv preprint arXiv:1605.08803 (2016).

Carl Doersch. 2016. Tutorial on variational autoencoders. arXiv preprint
arXiv:1606.05908 (2016).

Alexander Franks, Andrew Miller, Luke Bornn, and Kirk Goldsberry. 2015. Coun-
terpoints: Advanced defensive metrics for nba basketball. In 9th Annual MIT
Sloan Sports Analytics Conference, Boston, MA.

Tan Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial
nets. Advances in neural information processing systems 27 (2014).

Will Grathwohl, Ricky TQ Chen, Jesse Bettencourt, Ilya Sutskever, and David
Duvenaud. 2018. Ffjord: Free-form continuous dynamics for scalable reversible
generative models. arXiv preprint arXiv:1810.01367 (2018).

Karol Gregor, Ivo Danihelka, Andriy Mnih, Charles Blundell, and Daan Wierstra.
2014. Deep autoregressive networks. In International Conference on Machine
Learning. PMLR, 1242-1250.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and
Aaron C Courville. 2017. Improved training of wasserstein gans. In Advances in
Neural Information Processing Systems. 5767-5777.

Hsin-Ying Hsieh, Chieh-Yu Chen, Yu-Shuen Wang, and Jung-Hong Chuang. 2019.
Basketball GAN: Generating Basketball Play Simulation Through Sketching. arXiv
preprint arXiv:1909.07088 (2019).

Diederik P Kingma and Prafulla Dhariwal. 2018. Glow: Generative flow with
invertible 1x1 convolutions. arXiv preprint arXiv:1807.03039 (2018).

Justin Kubatko, Dean Oliver, Kevin Pelton, and Dan T Rosenbaum. 2007. A
starting point for analyzing basketball statistics. Journal of Quantitative Analysis
in Sports 3, 3 (2007).

Kwonjoon Lee, Huiwen Chang, Lu Jiang, Han Zhang, Zhuowen Tu, and Ce
Liu. 2021. Vitgan: Training gans with vision transformers. arXiv preprint
arXiv:2107.04589 (2021).

Dean Oliver. 2004. Basketball on paper: rules and tools for performance analysis.
Potomac Books, Inc.

George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed,
and Balaji Lakshminarayanan. 2019. Normalizing flows for probabilistic modeling
and inference. arXiv preprint arXiv:1912.02762 (2019).

Jaime Sampaio, Eric J Drinkwater, and Nuno M Leite. 2010. Effects of season pe-
riod, team quality, and playing time on basketball players’ game-related statistics.
European Journal of Sport Science 10, 2 (2010), 141-149.

Jaime Sampaio, Manuel Janeira, Sergio Ibafiez, and Alberto Lorenzo. 2006. Dis-
criminant analysis of game-related statistics between basketball guards, forwards
and centres in three professional leagues. European journal of sport science 6, 3
(2006), 173-178.

Thomas Seidl, Aditya Cherukumudi, Andrew Hartnett, Peter Carr, and Patrick
Lucey. 2018. Bhostgusters: Realtime Interactive Play Sketching with Synthesized
NBA Defenses.(2018). (2018).

Guandao Yang, Xun Huang, Zekun Hao, Ming-Yu Liu, Serge Belongie, and Bharath
Hariharan. 2019. Pointflow: 3d point cloud generation with continuous normaliz-
ing flows. In IEEE/CVF International Conference on Computer Vision. 4541-4550.
Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao,
Wentao Zhang, Bin Cui, and Ming-Hsuan Yang. 2022. Diffusion models: A
comprehensive survey of methods and applications. Comput. Surveys (2022).
Xianwen Yu, Xiaoning Zhang, Yang Cao, and Min Xia. 2019. VAEGAN: A Collab-
orative Filtering Framework based on Adversarial Variational Autoencoders.. In

IJCAL 4206-4212.

	Abstract
	1 Introduction
	2 Related Work
	3 Backgrounds
	4 Synthesis of Basketball gameplays
	4.1 Encoder
	4.2 Decoder
	4.3 Normalizing Flows
	4.4 Implementation Details

	5 Results and Evaluations
	5.1 DataSets
	5.2 Quality Comparison with Baseline Methods

	6 Conclusions
	Acknowledgments
	References

