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Figure 1: The visual exploration interface of our system includes (a) a distribution control panel, (b) a court view panel, and (c) a video
view panel that are linked mutually. The user can initially select a pair of two players to compare using the drop-down menus in (b), and the
corresponding information will be linked to panels (a) and (c), respectively.

Abstract
Understanding an opposing player’s behaviors and weaknesses is often the key to winning a badminton game. This study
presents a system to extract game data from broadcast badminton videos, and visualize the extracted data to help coaches
and players develop effective tactics. Specifically, we apply state-of-the-art machine learning methods to partition a broadcast
video into segments, in which each video segment shows a badminton rally. Next, we detect players’ feet in each video frame
and transform the player positions into the court coordinate system. Finally, we detect hit frames in each rally, in which the
shuttle moves toward the opposite directions. By visualizing the extracted data, our system conveys when and where players
hit the shuttle in historical games. Since players tend to smash or drop shuttles under a specific location, we provide users
with interactive tools to filter data and focus on the distributions conditioned by player positions. This strategy also reduces
visual clutter. Besides, our system plots the shuttle hitting distributions side-by-side, enabling visual comparison and analysis
of player behaviors under different conditions. The results and the use cases demonstrate the feasibility of our system.

CCS Concepts
• Human-centered computing → Visualization systems and tools; Visual analytics; • Computing methodologies → Machine
learning;
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1. Introduction

Badminton has long been one of the most popular racket sports
played within a standard court, and, for this reason, game broad-
casts can be easily accessed via the Internet. Due to this convenient
accessibility, coaches, analysts, professional players, and beginners
can study, analyze, and learn techniques by repeatedly watching
these video recordings. Although sponsor promotions and close-up
replays are often inserted into these broadcasts, the recordings of
badminton rallies exhibit a certain standard. In practice, rallies are
often recorded via a fixed-view camera to capture the motions of
players, as well as the movement of the shuttle. To quantify a rally,
coaches and analysts usually classify and note down the key times-
tamps of hits and stroke types in a spreadsheet, which is achieved
through a tedious slow-motion video watching procedure [CW07].

To scale up this traditional analytics methodology, we develop
a system that facilitates effective visual analysis of trajectory data
collected from broadcast video recordings [Fed20]. Practically, we
incorporate machine learning techniques to extract meaningful sta-
tistical data that are often captured manually by analysts. We first
partition a broadcast video into segments, in which each video seg-
ment shows a badminton rally. We then track players’ feet in each
video frame and transform the foot positions from the video coor-
dinate system to the court coordinate system. In addition, we de-
tect hit frames in each rally according to player poses. Since play-
ers have to move toward the shuttle and return the shuttle to their
opponent when playing badminton, shuttle trajectories can be ap-
proximated by sequentially connecting players’ foot positions in hit
frames. It deserves noting that detecting hit frames based on play-
ers’ poses is not a trivial task and demands a large amount of data
for training. Since manually collecting hit frames is tedious, we
utilize semi-supervised learning, in which a small amount of label
data and many unlabeled data are utilized during training, to reduce
the data collection load.

Our system allows users to analyze shuttle trajectories and in-
vestigate player behaviors visually. The goal is to examine shuttle
hit distributions on the court under specified conditions. Specifi-
cally, users indicate a radius range where players hit shuttles in the
previous and current shots (i.e., played by two different players)
and our system displays where the shuttles will potentially land
in the subsequent shot. Our designed interface contains two bad-
minton courts, as shown in Figure 1 (b), such that coaches can com-
pare shuttle hit distributions of players in historical games and de-
velop effective tactics. Moreover, considering that the game tempo
of badminton is high, and players have to travel and hit shuttles
instantly, they exhibit a tendency to land shuttles at similar posi-
tions in certain situations. Consequently, our system conveys the
relations between the positions in that players play the previous
shots and the positions at which they will land shuttles. Finally, al-
though our visualization system achieves interactive performance,
users still have to specify various conditions and visually discover
patterns of interest. To further conserve their time, our system re-
trieves the events in which behaviors of the compared players are
considerably dissimilar, or a player’s degree of tendency is high, for
users to consider initially. We demonstrate that players’ behaviors
in their historical games are largely transparent under this view.
In short, our primary contribution is an efficient visual analytics

framework for summarizing and exploring badminton rally data.
The framework uses machine learning to extract gaming statistics
from broadcasts for analysis, and provides extensive data and inter-
active visualization. The use cases presented demonstrate its supe-
riority over traditional tactic analysis methods.

2. Related Work

2.1. Sports Data Visualization

Visual analytics of movements and trajectories provides an in-
tuitive form of understanding the underlying patterns hidden in
datasets [AAB∗13]. This not only allows sports analysts and
coaches to study collective movement behaviors, but also facili-
tates their ability to identify the habits, styles, strengths, and weak-
nesses of a certain player. In 2018, Perin et al. [PVS∗18] proposed a
taxonomy in sports data visualization to guide follow-up scientists
regarding how existing approaches are designed to handle score
data, tracking data, and metadata. Recently, Du and Yuan [DY20]
revisited this taxonomy on competitive sports data beyond data
types, and took task categories and visualization techniques into
consideration. Visual analytics have been introduced in different
sports, such as basketball [LTB16], soccer [JSS∗14, SJL∗18], ten-
nis [PYHZ14, PJHY20], and table tennis [WLS∗18, WZD∗20].

Among the collected sports data, trajectories play an essential
role because visualizing players’ movements from a top view can
provide an overview of a game. Aggregation techniques, such as
glyph-based visual abstraction [AAA∗19] or classical clustering al-
gorithms [LTB16, SAMS∗17], are frequently utilized to eliminate
unwanted spatial or temporal visual complexity. In addition, Janet-
zko et al. [JSS∗14] proposed a multi-faceted view to assist analysts
in finding essential events in a game. Losada et al. [LTB16] intro-
duced coordinated views and linked video sequences to actions to
illustrate the relationship between collected data and video clips
intuitively. With these techniques, however, analysts still need to
collect data on a game manually, and the amount of requested time
is highly correlated to the number of labels (e.g., lob, drop, smash,
etc.) predefined in the data spreadsheet.

2.2. Game Data Acquisition

To extract massive amounts of data efficiently, Therón and Casares
[TC10] utilized GPS devices to record players’ positions in basket-
ball games. Later, approaches were investigated to automatically
build court scenes from videos to map events to a standard top-
view representation. Wen et al. [WCW∗16] used a camera calibra-
tion technique to extract a panoramic court from a video and map it
to a standard court in basketball games. Stein et al. [SJL∗18] inte-
grated and overlaid recorded soccer videos with abstract visualiza-
tion to accelerate advanced collaborative movement analysis. Wu
et al. [WXW∗19] developed a system that allows users to semi-
automatically track and collect positions of soccer players from
recorded videos using machine learning techniques [RDGF16] and
summarized the corresponding team formation.

Classical works were also performed to extract badminton game
data from video frames [CW07] or sensors [TTL16]. Chu and Si-
tumeang [CS17] presented a report that detects badminton courts
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in broadcast videos by extracting court lines. They further pro-
posed a taxonomy of badminton strokes and players’ strategies
using mathematical model. Hsu et al. [HCJ∗19] proposed a bad-
minton analysis and training pipeline, which incorporates object
tracking with hardware devices, such as smart badminton rackets or
smart gloves [SPHL20], to allow machines to interact with players
and perform training in various tactics. Ghosh et al. [GSJ18] devel-
oped a video annotation approach to detect players’ positions and
their corresponding actions. Deng et al. [DWW∗21] introduced a
multiple-level video annotation approach for sports videos, such as
table tennis content exploration. The above-mentioned approaches
concentrated on video annotation, and did not integrate with a vi-
sual analytics pipeline for data exploration.

2.3. Visual Analytics in Net-separated Confrontation Sports

Different from team sports described previously, badminton play-
ers hit the shuttle across a net to win points. The shuttle speed, the
move, the strength, and how to receive such a shuttle require proper
training and techniques [OM06]. To visualize such net-separated
sports, Wu et al. [WLS∗18] proposed iTTVis, a pioneering visual
analysis system for table tennis. The system consists of statistics
and pattern detection models that facilitate the cross-analysis of
underlying data. Their team also visualized consecutive usages of
tactics and the corresponding winning rates for coaches to analyze
a player’s strengths and weaknesses [WGW∗20, WLG∗21]. In ad-
dition to tactics, visualizations in 3D or beyond 3D have also been
investigated. Ye et al. [YCC∗20] and Chu et al. [CXY∗21] intro-
duced an immersive analytics scheme using VR headsets, which
allows experts to analyze 3D badminton trajectory data from the
first-person perspective.

Although several systems have been presented to visualize net-
separated confrontation sports, they were not designed to de-
pict massive amounts of shuttle hitting positions extracted from
broadcast videos. They either demand experts to label event se-
quences [WLS∗18, WGW∗20, WLG∗21] or aim to provide users
with an immersive analytics environment [YCC∗20, CXY∗21]. In
other words, the datasets the previous works visualize are not mas-
sive, and they do not have to handle the caused visual clutter. In
addition, our system can map each shuttle trajectory to the corre-
sponding court-view shot video since the trajectories are automat-
ically extracted. Enabling users to watch the video if they are cu-
rious about a specific shot is needed since videos contain the most
information in games.

3. Background and Design Principles

3.1. Introduction of Badminton

Badminton is a racket sport in which a single player or two players
per side aim to land a shuttle across a net to the other half-court
of the opponent(s) [AAB∗13]. A player needs to gain 21 points to
win a game, and win two games to get the series [Per15]. A point
in a game is obtained through a process called a rally, in which the
opposing players strike the shuttle toward each side of the court un-
til the shuttle lands to win a point. A stroke or a shot is an action
to strike the shuttle with the racket. A good combination of strokes

usually leads players toward a winning position. In addition, a tac-
tic aims to find the most effective stroke patterns against the oppo-
nent. This requires badminton coaches to collect and analyze data
to obtain statistical knowledge of the players and the opponents,
and transfer this knowledge to the players. Such knowledge relies
on the coach’s experience, and it is often gained through massive
data analysis.

3.2. Requirements for Badminton Analysis

To understand the traditional badminton analytics pipeline, we or-
ganized regular meetings with several badminton experts. One is
a professor who specializes in badminton coaching and education
at our university. Another expert is the President of the Chinese
Taipei Badminton Association (CTBA). We also consulted one pro-
fessional player. Together with the domain experts, we organized a
creative visualization opportunities (CVO) workshop [KGD∗19] to
clarify challenges and expectations in the field. In the workshop,
the experts first shared the scenario they collected data from game
videos and how they designed badminton tactics. The coaches also
explained to us a record sheet that they used to label shot landing
positions manually. Generally, they all point out that data collec-
tion is labor intensive such that they can only collect data with low
precision through limited human resources. In practice, the experts
partitioned a half badminton court into six regions based on the
short service line, long service line, and the center line, and asked
annotators to label the region in which each shuttle would land
(similarly to Figure 1(b)). Although the left and right service courts
much larger than the other regions is reasonable (i.e., players would
move to the center court after they play a shot), the quantization of
the court is still problematic since shuttles could land at positions
close to service lines. Hence, we summarized the approach goals
(G) and requirements (R) after the workshop and showed them as
follows:

Approach Goals (G). We collected three main objectives that
the experts expect the software to achieve.

G1 A system that can process broadcast videos to extract bad-
minton game data for visual analytics.

G2 An integrated visualization that shows statistical analysis
and allows intuitive communication with players, especially
through coordinated views and video clips.

G3 A systematic rally summary that can enable historical behav-
ior comparison and strategy development.

Approach Requirements (R). We focus on revealing where
players would land shuttles in historical games. For this reason,
we summarize the approach requirement as follows:

R1 Data preprocessing. The analysts are not interested in adver-
tisements, close-ups, or replays in broadcast videos. Irrelevant
video clips should be filtered out automatically. Moreover, the
system has to automatically extract game data, such as shuttle
trajectories and player positions, from the court view shots.

R2 Correlation of potential shot types (e.g., lob, drop, smash,
etc.), player positions, and shuttle trajectory and speed. A
system that allows users to implicitly understand shot types
by analyzing player positions, shuttle trajectories, and shuttle
speeds.

submitted to COMPUTER GRAPHICS Forum (4/2023).



4 W.-T. Chen, H.-Y. Wu, Y.-A. Shih, C.-C. Wang, and Y.-S. Wang / Exploration of Player Behaviors from Broadcast Badminton Videos

(a) (b) (c) (d) (e)

Figure 2: Our system workflow, including (a) input online video recordings, (b) automatic rally video clip segmentation, (c) shuttle trajectory
extraction in rallies, (d) coordinate system transformation, and finally (e) a coordinated visual analytics system.

R3 A direct visual design for data exploration. Although several
visualization examples were discussed throughout the CVO
workshop, using classical court diagrams in 2D is anticipated
by the analysts. The visual elements should be commonly
used and easy to interpret since the target users of our sys-
tem are coaches and players. We also explored 3D and mixed
reality techniques, yet our experts assert that 2D plots function
most intuitively for large data analysis.

R4 An interface for discovering players’ tendencies and behavior
comparison. Players would feel confident if they knew where
the opposing players tend to land shuttles under specific con-
ditions. This information is also essential for coaches to eluci-
date the weaknesses of the players. In addition, the coach re-
quests side-by-side panels for player comparison because they
can design tactics based on the strengths of the players on his
or her side and the weaknesses of the opposing players.

R5 Integrated coordinated views with a user interface to assess
analytical results. Panels, such as a heatmap view for manag-
ing statistical results, show the selected data, and correspond-
ing videos are requested. This enables analysts to explain and
communicate with the team optimally.

3.3. System Pipeline

We designed our system based on the aforementioned require-
ments. Figure 2 presents an overview of our approach, which in-
cludes (a) input online video recordings, (b) automatic rally video
clip segmentation, (c) shuttle trajectory extraction in rallies, (d) co-
ordinate system transformation, and most importantly (e) a coordi-
nated visual analytics system. Each component will be detailed in
Sections 4 and 5, respectively. Our goal is to develop a novel vi-
sual analytics system that allows badminton coaches, professional
players, and naive players to investigate and compare patterns and
habits in a series of games. We begin with data acquisition. Our
setting is inspired by the traditional analytics pipeline, in which
analysts need to manually collect data by watching game videos
(Figure 2(a)). We replaced this laborious process with state-of-the-
art machine learning techniques (R1). As shown in Figure 2(b), we
first train a neural network to remove unnecessary clips, such as
advertisements and close-up replays. Then we extract the shuttle
trajectory in a rally, by tracking players and detecting hit frames to
identify the hit positions of the shuttle (Figure 2(c)) (R2). Based on
the aforementioned information, we can transform the perspective

court view in the video to a standard top-view court coordinate sys-
tem and avoid the influence of depth perception in the video (R3).
Figure 2(d) presents a conceptual diagram of this step. Finally, we
record all information in a database, so that the information present
in the coordinated views is mutually linked for visual exploration
(Figure 2(e)) (R4, R5).

4. Game Data Acquisition

We apply computer vision techniques to collect game data from
broadcast badminton videos for visual analysis. Specifically, the
goal is to obtain shuttle trajectories from historical games, and
show data on the screen to reveal player behaviors. The overall
process can be divided into the following steps: (1) rally video clip
segmentation (R1) and (2) rough shuttle trajectory extraction (R2).

4.1. Rally Video Clip Segmentation

Broadcast badminton videos contain not only long-shot court
views, but also advertisements and close-up replays, which are not
useful for data analysis. For this reason, we train a neural network
on our collected dataset to classify each video frame into court and
non-court views. The backbone of the neural network is ResNet-
18 [HZRS16]. The dataset contains 4268 and 3714 court view and
non-court view frames, respectively. We downsample each video
frame to the resolution of 64× 64. We also augment the collected
dataset by horizontally flipping the original video frames for train-
ing. In fact, training the classifier is not difficult because the bad-
minton court contains clear and unique visual features. After net-
work training, we classify each video frame into the court view and
the non-court view categories. The long broadcast video is then
segmented into short clips according to temporal adjacency and the
assigned labels. Since a badminton rally or an advertisement lasts
for at least a specific period of time, we flip the label of a video clip
if it is shorter than 60 frames (1 second) to improve segmentation
accuracy further.

4.2. Shuttle Trajectory in a Rally

Tracking shuttle movements is challenging because shuttles are
small and move fast in badminton videos. In addition, the tracked
2D shuttle positions are in the video coordinate system. The lack
of depth information also makes the transformation of shuttles
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Figure 3: (Left) The network takes the RGB image and the cor-
responding joint heat map to detect whether the player strikes the
shuttle. (Right) The network architecture.

from the video coordinate system to the court coordinate system
for future analysis challenging. Considering that players’ feet are
(mostly) on the ground and they have to run toward the shuttle to
return it, we instead track player positions on the court and detect
their hit poses to obtain shuttle hitting positions. The coplanarity
with the court enables the transformation of the coordinate system.
By consecutively connecting foot positions when players hit the
shuttles, we obtain approximate shuttle trajectories. We also com-
pute each hit’s mean shuttle speed based on the moving distance
and the number of frames between hits. Users will use our system
to visually analyze these extracted shuttle trajectories and examine
players’ behaviors.

Player tracking. We apply a pre-trained neural network –
YOLO-v3 [RF18] to locate player positions in each video frame.
Specifically, given an image, it returns bounding boxes that tightly
crop the players. We then apply the OpenPose model [CHS∗18] to
detect the player’s pose in each sub-image. Since our goal is to an-
alyze where players hit the shuttle, we consider only the two feet’
joint positions and transform the mean to the court coordinate sys-
tem. Since YOLO-v3 [RF18] and OpenPose [CHS∗18] were pre-
trained on pedestrians, they did not always correctly locate bad-
minton players and detect their poses. The failure cases often oc-
cur at top-side players because of low video resolution and net oc-
clusion. We thus fine-tune the networks according to our collected
datasets. Particularly, we first collected 3000 failure samples of the
original OpenPose model, fixed the joint labels, and then used the
corrected samples to fine-tune the model.

Analyzing positions in the video coordinate system is meaning-
less because broadcast videos are often captured by cameras with
different positions and orientations. The coordinate system also
suffers from distortions caused by perspective projection. Because
of the fixed camera motion throughout a badminton game, we man-
ually label the four corners of the court in the first frame of a broad-
cast video, although several approaches have been presented to de-
tect court corners [CS17]. Since the court, in reality, is a plane and
its width and height are predefined, we apply homography to trans-
form player positions (i.e., mean of the feet joint positions) from
the video coordinate system to the court coordinate system for fur-
ther analysis. It is worth noting that the court coordinate system can
be rotated by 180 degrees to align data for analysis.

Hit frame detection. Detecting hit frames in a rally video is

essential for generating shuttle trajectories. To achieve this goal,
we train a classifier that can determine whether the player hits the
shuttle. The input of the classifier is player sub-images cropped by
YOLO-v3 [RF18] from video frames and the corresponding joint
heat maps (Figure 3 left) extracted by the OpenPose [CHS∗18]
model. The concatenation is then scaled to the resolution of w×
h× c tensor x. In our implementation, w = h = 96, and c = 4 be-
cause of the RGB channel and the 1D heat map. The output is a
label y∗ indicating whether the frame is a hit frame. Figure 3 right
shows the network architecture. The backbone of the image en-
coder is W-ResNet-28 [ZK16], and the long short-term memory
network (LSTM) [HS97] contains 64 hidden units. In other words,
the classifier first extracts visual features from spatial images and
then feeds the features into the LSTM for learning temporal fea-
ture correlations. The fully connected layer on the back determines
whether the frame is a hit frame.

Unlike the court view classification task, detecting the hit frame
is challenging because of the ambiguity between running and hit-
ting poses. A large number of training samples are needed. To re-
duce the manual labeling work, we train the classifier on a small
amount of labeled data and a large amount of unlabeled data us-
ing a semi-supervised approach. Similar to supervised learning, the
classifier is trained on the labeled data L by minimizing the cross-
entropy loss. Regarding the unlabeled data U , the consistency loss
was minimized. Specifically, for an input sample x, we randomly
augment the sample by horizontal flipping or a limited degree of
rotation q(·), denoted as x̂, and expect the classifier to output the
same label for these two samples x and x′. Formally, we train the
classifier by minimizing

argmin
θ

J(θ) = E(x,y∗)∈L[−logpθ(y
∗|x)]

+λEx∈UEx̂∼q(x̂|x)[DKL(pθ(y|x)||pθ(y|x̂))], (1)

where θ indicates the network parameters, p is the probability
function, DKL denotes the Kullback-Leibler divergence that mea-
sures the similarity of two distributions, and λ is the parameter used
to balance the loss between the labeled and the unlabeled data. In
our implementation, we train the classifier on 1085 labeled (hit :
non-hit frames = 1:9) and 11441 unlabeled samples. Each sample
contains 50 frames and the corresponding 50 labels. This is clearly
an imbalanced problem because non-hit frames are much more than
hit frames. We use the focal loss [LGG∗17] to prevent the classifier
from always guessing the non-hit label. We also apply the training
signal annealing strategy to prevent the classifier from overfitting
the labeled data. Specifically, when the predicted probability of a
correct label is larger than a threshold nt , the loss of that sample is
not counted. The threshold nt = αt × (1− 1

k )+
1
k , where αt =

t
T , t

and T are the current and the total numbers of the iteration, respec-
tively, and K is the number of classes. Intuitively, nt increases from
1
k to 1 as the number of iteration t increases.

5. User Interface

Figure 1 shows our exploration interface consisting of (a) a distri-
bution control panel, (b) a court view panel, and (c) a video view
panel. Users can interact with functions in each panel, and the data
will be linked in a coordinated manner [WBWK00, Rob07].
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The middle court view panel (R3) is the primary panel in our
visualization, in which sample dots or heat maps are displayed to
reveal players’ behaviors on the court. There are two courts dis-
played in this view, and users can select players to be analyzed
via drop-down menus. In practice, users can compare how the two
players behave on the court by visual analysis. Since badminton is a
two-player game, by default, our system considers the bottom-side
player to be the target player, whose behaviors will be examined
by users. Accordingly, the top-side player is the opponent of the
target player, and is denoted as the opposing player. We will use
the opposing player and target player to indicate the top-side and
the bottom-side players, respectively, in later paragraphs. Note that
we align player positions initially on the top-side and bottom-side
courts by rotation in order to study players’ behaviors in the same
coordinate system. The distribution control panel (R4) lets users
set parameters when using our system, such as resizing the filter-
ing lens, adjusting the point opacity, and modifying the tightness
of edge bundling [Hol06] during the investigation. We will provide
corresponding details in the subsequent paragraph. Finally, in the
video view panel, we include video recordings for fast inspection.
When users click on a stroke in the court view panel, the corre-
sponding recordings will be played automatically (R5). We also
show the statistics of each shot, such as the name of the competi-
tion, the game of the shot, and the points that players have gained,
at the bottom of the video view panel for users to understand the
game situation.

5.1. Sample Dot Distributions

One of the keys to understanding a player’s behavior is observing
where he or she will land shuttles on the opposing court. Since
drawing trajectories on the court would introduce visual clutter, we
present a ‘time-to-space’ representation based on the assumption
that player behaviors depend on only recent shots. For example,
analysts can examine shots t− 2, t− 1, and t to forecast the shut-
tle hitting position at shot t + 1. Accordingly, we transform each
shot trajectory into multiple and overlapping segments, in which
each segment contains four consecutive shots. The time points of
the four shots are t − 2, t − 1, t, and t + 1, respectively. We then
visualize the segments rather than the whole trajectories for users
to analyze player behaviors. In this study, we provide users with
two filtering lenses [BC87,TGK∗17,KTW∗13,KKE16], which are
represented by black circles, for them to study data under the condi-
tion in which players are in the lenses. This strategy can reduce vi-
sual clutter [AMST11] because the system only shows partial data
on the screen. Users interact with the system by moving the filter-
ing lenses and adjusting their radius individually. Our system up-
dates the shuttle hitting distributions immediately. In Figure 4 (left
and middle), the arrow shows the condition in which the opposing
player strikes the shuttle toward the bottom side from shot t−1 to
shot t, respectively. The goal is to reveal where the target player
will return shuttles under such a condition. Therefore, we display
sample dots on the top side court to indicate the shuttle hitting po-
sitions at shot t + 1. Each dot is attached with a tail indicating the
mean shuttle velocity. A longer tail means a higher velocity.

We partition a half badminton court into six sectors based on the
observation of hit distributions (Figure 5). The dots in the six sec-

(a)
(c)

(b)

(a)

(b)

(c)

t

t-1

t+1

t-2

Figure 4: Left and middle sides are the sample dot distribution and
the heat map used to reveal a player’s behavioral tendency. Shots
from t− 2 to t + 1 are marked on the left. The bar charts (a) - (c)
show the statistics of the three corresponding regions in the heat
map, respectively. The horizontal and vertical axes represent the
court sector index and the corresponding shuttle hitting probability,
respectively. We also show the number of shuttles on the top of each
bar for users to consider. The visualization indicates that the target
player tends to play a parallel drop shot when traveling from the
bottom-left court (c) to the right court to return shuttles.

tors of the top court are in six distinct colors. We use the colors to
depict further how the target player reacts when he or she moves
from different parts of the court to hit shuttles. We first clarify that
the order of shots from t−2 to t +1 in the central view are dots on
the bottom court, the filtering lens on the top court, the lens on the
bottom court, and dots on the top court, respectively. Marks in Fig-
ure 4 left illustrate the shot order. This means that the target player
plays shot t − 2 at a specific position and then moves toward the
bottom-side circle to play shot t. The goal is to reveal the relations
of hit positions between shot t− 2 and shot t + 1. Specifically, our
system depicts the target player’s positions at shots t and t− 2 us-
ing gray and color dots, respectively, and connects the two shots
to indicate the player’s movement. The dot colors on the two sides
of the court correspond to each other. For example, players move
from the orange dots at shot t−2 toward the lens area to play shot
t would land shuttles at the front left court (Figure 4 left). We also
bundle the connecting lines [Hol06] to reduce visual clutter.

The filtering lens was designed as a circular shape to allow users
to filter data based on players’ positions. Since the points scored by
badminton players are independent of their position on their own
court. there is no need to provide users with lenses of different
shapes. The default radius is 1.5m, which represents a player’s de-
fend zone, where they can only move a little to return the shuttle.
Users have the option to adjust the lens size to match the height and
speed of the players. It’s important to find a suitable size, as a too-
large lens may lead to general behavior not relevant to the player’s
position, while a too-small lens may result in limited data and bi-

submitted to COMPUTER GRAPHICS Forum (4/2023).



W.-T. Chen, H.-Y. Wu, Y.-A. Shih, C.-C. Wang, and Y.-S. Wang / Exploration of Player Behaviors from Broadcast Badminton Videos 7

Figure 5: (Left) We set the filtering lenses to the maximum ra-
dius, and observe the overall shuttle hitting distribution played by
a player. (Middle) The heat map shows that the player tends to play
parallel drop shots when he or she moves from the front-left court
to the middle-right court for returning shuttles. (Right) Users can
investigate the shuttle trajectory in the dot sample distribution and
realize how the rally was played.

ased observations. The lens size depends on the purpose and player
statistics. For instance, users can set a maximum radius to study a
player’s overall behavior (Figure 5 left). Note that increasing the
lens radius to cover the entire court does not result in misselection
as almost all shuttle hitting positions are within the court.

When using a large filtering lens, visual clutter can occur due to
the simultaneous display of dots from shots t−2 and t in the bottom
side court. To alleviate this, we provide users with the option to turn
off the dots from shot t− 2 by clicking a button in the distribution
control panel. With this setting, player positions from shot t are
displayed as colored dots, with colors corresponding to the top-
side court sectors. Since the change only affects the color scheme
of shot t, users can still understand whether shot t− 2 is on or off
by focusing on the central view, minimizing the impact on the user
experience.

5.2. Heat Maps

Our system allows users to switch sample dot distributions to heat
maps, which also reveals where players will land shuttles if they
travel from the position at shot t−2 to receive shuttles at shot t. The
heat map summarizes the dots and connecting lines at the bottom
court and can avoid visual clutter when a large amount of data are
presented. Specifically, we partition the bottom-side court into an
8× 8 regular grid and denote each local quad by qi, j, where i and
j are the row and column indexes, respectively. For each quad qi, j ,
we fill a color to represent where players will land shuttles at shot
t +1 if they move from qi, j at shot t−2 to the filtering lens (at shot
t) for returning shuttles. The color corresponds to the six sectors on

the top court, and a high saturation color indicates the high degree
of tendency (Figure 4).

To determine the color of each quad qi, j, we compute ps
i, j to rep-

resent the probability of the hitting sector s that the target player
would land shuttles if he or she plays shot t−2 at quad qi, j, where
∑s ps

i, j = 1. Since each court sector s has its own color Cs, we col-
orize the quad using Cs if ps

i, j is apparently higher than pr
i, j,∀r 6= s.

In this study, we consider that a high degree of tendency is sup-
ported by more samples and lower entropy of probability ps

i, j in the
dataset. This idea can be implemented using the weighted entropy
and formulated as

Fi, j = S
(

k−b
a

)
×
(
Hmax−H(Pi, j)

)
, (2)

where S is the Sigmoid function, H is the Shannon entropy, Pi, j =

{p0
i, j, p1

i, j, ..., p5
i, j}, k is the number of samples at quad qi, j, and

a and b are the user-specified parameters. The larger values of a
and b imply that high reliability demands more samples. We set
a = 2 and b = 4 in our implementation. The low entropy H(Pi, j)
indicates that one of the hitting probabilities ps

i, j is high, and the
others are low. We also consider the one-hop neighbors of quad
qi, j when computing Fi, j to reduce the zone effects caused by the
spatial partition. Apparently, the large value of Fi, j implies a high
degree of behavioral tendency because: (1) there are many samples
around qi, j, and (2) the shuttle hitting positions at shot t +1 gather
at a certain court sector. As a consequence, we colorize each quad
qi, j using

Ci, j = αCm +(1−α)W, where α =
Fi, j

Hmax
, (3)

m is the sector with the highest ps
i, j, and W is the white color. In

other words, the heat map only highlights a high degree of behav-
ioral tendencies, and no false color composite would occur. Users
are also allowed to right-click the quad to observe detailed statis-
tics. Our system shows the number of shuttles hitting on the six
court sectors using a bar chart, as demonstrated in Figure 4.

5.3. Highlighting Players’ Behaviors

Users move the filtering lenses and examine shuttle hit distribu-
tions on the badminton courts to visually analyze players’ behav-
iors when using our system. To reduce their manual load, we re-
trieve and highlight two types of events that deserve further investi-
gation: (1) dissimilar players’ behaviors under the same condition,
and (2) the condition that causes tendentious shuttle hitting posi-
tions. We describe the corresponding details as follows.

Dissimilar players’ behaviors under the same condition. The
coach at our university pointed out that comparing players’ be-
haviors is essential for them to develop effective tactics. There-
fore, after users select players for comparison, our system finds
the conditions in which the players’ behaviors are the most dis-
similar. Specifically, the system moves the lenses and computes the
dissimilarity of the shuttle hit distributions. It then sorts the condi-
tions according to the dissimilarity values in descending order and
shows the values in the Distribution Comparison panel (Figure 1
(a)). Users can observe the conditions in which players’ behaviors
are considerably different by clicking the large dissimilarity values.
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Note that the retrieved conditions depend on the radius of the filter-
ing lenses. We let users specify the lens radius (via the distribution
panel) since setting the parameter requires domain knowledge.

Condition that causes tendentious shuttle hitting positions.
Knowing where shuttles will land is particularly beneficial to play-
ers because they can travel in the optimal directions at their pace.
Consequently, we highlight the condition in which one of the six
court sectors has the highest hitting probability. Recall that ps

i, j is
the hitting probability of sector s if the target player hits the shuttle
around quad qi, j at shot t−2. To achieve the goal, given the speci-
fied players and the radius of the filtering lenses, the system moves
the lenses and determines the highest ps

i, j at each condition. Then,
it sorts the conditions according to the corresponding highest ps

i, j.
Similar to the highlights of dissimilar players’ behaviors, we show
conditions with the highest Fi, j in descending order in the Degree of
Tendency panel. Users can click the values and examine the target
player’s tendencies before they play games.

6. Results and System Evaluation

We implemented the presented method and ran the system on a
desktop PC with Quad-Core Intel Xeon CPUs and 12GB RAM.
The graphics interface is written in JavaScript using the D3 li-
brary [BOH11]. The neural networks used to collect badminton
game data were implemented using Python and Pytorch. Overall,
the network training takes a couple of hours to a day. It depends
on the complexity of the task and the amount of data. The train-
ing time, however, is not a big issue because the networks can be
trained once and then used to process all broadcast videos. We used
the models to process broadcast badminton videos and stored the
extracted game data in the database. Then, coaches can use our
system to explore player behaviors and develop tactics that could
beat the target opponent.

Figure 5 left shows an overall view of the shuttle hitting distribu-
tion played by a professional player. Recall that this target player is
at the bottom side and returns the shuttle at shot t. The dots on the
top-side court indicate where the shuttle would land at shot t + 1.
We set the two filtering lenses to the maximum radius to reveal
data played at all positions on the court. One can easily observe
that most of the dots are close to the periphery of the court. This
is reasonable because players, by default, would defend at the mid-
dle court to reach the shuttle sent by the opponent with the min-
imum distance. The middle court is the opponent’s comfort zone.
Notice that the dots can be roughly partitioned into six groups ac-
cording to their positions. Furthermore, the dot distribution shows
that smashes are primarily located at the regions close to the side-
lines and between short and long service lines (i.e., top-side court)
because dots around the region have long tails. Clears and drops are
located at the back- and front- courts, respectively, and their mean
speeds are often slow. Finally, the heat map shows that the player
exhibits no obvious tendency to land shuttles at a specific position
under this loose condition.

The player’s behavioral tendency appears when users scale down
the filtering lenses (Figure 5 middle). This target player was used
to playing parallel drop shots when he or she moved from the front-
left court to the middle-right court for returning shuttles. By switch-
ing the heat map to the sample dot distribution and clicking a dot on

Accuracy Precision Recall F1
Court-view 97% 100% 94.6% 97.2%
Hit-frame 91% 87% 81% 84.3%

Table 1: This table shows the performance of our court-view de-
tection and hit-frame detection methods on the testing sets.

the court, users can investigate the original (partial) shuttle trajec-
tory under the specified condition. In Figure 5 right, the numbers
adjacent to dots indicate the shot orders. As can be seen, the tar-
get player hit the shuttle at the position with 6. After the opposing
player returned the shuttle from the position with 7 to the position
with 8, the target player moved toward the right sideline and re-
turned the shuttle to the position close to the short service line.

6.1. Design Decisions

Segments vs. Trajectories. The badminton trajectory data was di-
vided into small segments and displayed to show the distribution
of shuttle landing locations based on player positions from the pre-
vious shots. This design was chosen for two reasons: (1) player
behavior is only dependent on recent shots due to the fast pace of
badminton games, and players are unable to make decisions based
on distant shot situations; (2) player behavior is uncertain, and it’s
important to display a sufficient amount of data to avoid presenting
biased information. While complete shuttle trajectories provide all
the information, overlapping lines can make it difficult for users to
identify insights. Therefore, we allow users to focus on the data of
consecutive shots when analyzing player behavior.

Heat maps vs. Dot Distributions. Our heat maps and sample
dot distributions complement each other. The heat map allows users
to quickly spot the high degree of a player’s behavioral tendency,
whereas the sample dot distribution reveals exact shuttle hit posi-
tions. Specifically, when observing the bottom left court of Figure
4 (left) at first glance, users do not have an impression that the
target player would land shuttles in front of the short service line
because of the purple and brown dots. However, the heat map and
the corresponding histogram (Figure 4 middle and right) reveal a
high degree of behavioral tendency since they clearly indicate the
probability is about 80%. On the other hand, the dot distribution
view shows exact shuttle hit positions and partial trajectories of a
game (Figure 5), which allows users to realize why players land
shuttles at certain positions. In short, switching the two views back
and forth helps users examine players’ data efficiently. Users can
discover events of interest from heat maps and then examine de-
tails in sample dot distributions.

6.2. Effectiveness of Automatic Data Extraction

We evaluate the court view classifier by dividing the dataset (con-
sisting of 4268 court view frames and 3714 non-court view frames)
into 8:1:1 training, validation, and testing sets. The neural network
was trained using the training set, and the training was terminated
when the validation loss stopped decreasing for 50 iterations. The
hit frame detection model was similarly evaluated. The dataset con-
sisted of 1085 labeled and 11441 unlabeled samples, with a hit to
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Figure 6: The dot distributions show the different playing styles when the shuttle was sent from the backcourt to the frontcourt. As indicated,
Player 1 and Player 2 exhibited markedly different behaviors when handling diagonal shots from the right side of the backcourt to the left
side of the frontcourt (a) and (b). However, they behaved similarly when left and right were flipped (c) and (d). The heat map and the bar
charts also show that Player 2 tends to play a parallel drop shot when he or she travels from the back-left side to the front-right side of the
court to return shuttles.

non-hit frame ratio of approximately 0.1 among the labeled sam-
ples. We display the performance of both algorithms in Table 1.

Regarding player positions on the court, accurately measuring
the error (Figure 2d) is almost impossible since only broadcast
videos are available. Specifically, from Figure 2 (c) to (d), errors
could occur because of the imperfect player localization (YOLO-v3
[RF18]) and pose detection (OpenPose [CHS∗18]) and numerical
inaccuracy of the homography transformation. Since exact player
positions are unavailable, we could only measure the deviation of
player positions on the court caused by imperfect foot tracking. In
other words, we first transformed the detected and manually anno-
tated feet positions from the video coordinate system to the court
coordinate system and then measured the distance. The root mean
square error is approximately 30 cm. We have discussed this er-
ror with our expert. He mentioned that the error is acceptable since
players are normally higher than 160 cm. The statistics mentioned
above indicate that our system can extract reliable game data from
broadcast badminton videos. Note that the feet could be blurred be-
cause of high moving speeds and occlusions by the net (i.e., the top
side player).

Automatic methods can be imperfect. Specifically, our court
view detector could make mistakes. When a court view shot is mis-
classified as an advertisement, we miss the data that can be col-
lected for visualization. On the other hand, when an advertisement

is misclassified as a court-view shot, the player detector (YOLO-
v3) fails to locate player positions. Users may need to investigate
the error when no players are detected. Regarding the hit frame de-
tector, when it misclassifies hit and non-hit frames, the extracted
shuttle hitting positions would be wrong, and visualizing the con-
nected shuttle trajectories could mislead users. Since each method
takes the result of the previous method as input in the data collec-
tion pipeline, we let users manually correct the results at each stage
to prevent misleading situations.

7. Qualitative Evaluation

7.1. Use Cases

We present three use cases of the proposed approach. In order to
maintain the anonymity of the players, we do not use their real
names. Instead, we refer to them as Player 1 and Player 2 to
demonstrate the insights gained from previous badminton matches.
Note that a basic understanding of badminton games is required to
fully comprehend the results.

Case 1: playing style. Figure 6 shows how the two professional
players played games in previous contests. The scattered dots on
the courts of (a) and (b) show that Player 1 returned the shuttle
back to various corners, whereas Player 2 did not when the oppo-
nent sent the shuttle from the right side of the backcourt to the left
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Player 1

Player 2 Player 1
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Figure 7: The dot distributions show how the players handled diag-
onal drop shots in contests. Player 2 adopted different tactics when
playing with Player 1 and Player 3.

side of the frontcourt. However, by horizontally flipping the filter-
ing lenses, we observed that the two players behaved similarly, as
indicated in (c) and (d). We showed the results to the badminton
coach at our university during the user study. He pointed out that
Player 1’s tactic was to consume the opponent’s physical energy by
forcing him or her to move around the court. In contrast, Player 2 is
left-handed. The player played forehand on the left court and was
aggressive to drop shuttles at the frontcourt. This strategy forced
Player 1 to return a high shot because Player 1 had to travel from
the backcourt to return the shuttle. As a result, Player 2 could smash
the shuttle in the next strike. The coach also mentioned that, in (a),
Player 1 occasionally sent shuttles to the right side of the court be-
cause Player 2 is left-handed, although Player 1’s playing style is
consuming the opponent’s physical energy.

The heat map reveals that Player 2 tends to play parallel drop
shots when he or she travels from the left court to the right court
to return shuttles (d). By contrast, Player 1 has a low tendency to
play parallel drop shots when traveling from the right court to the
left court, as indicated in (a).

Case 2: tactics for different opponents. In badminton, a di-
agonal drop shot is an effective strategy if the two players are on
the same side of the court because it forces the opponent to travel a
longer distance than a parallel drop shot to hit the shuttle. However,
the strategy also is risky because the opponent gets a comfortable
shot if he or she reaches the shuttle in time. The opponent can de-
cide whether to send the shuttle parallel close to the frontcourt or
the backcourt. Both two positions are effective. Figure 7 (a) shows
that Player 1 tends to play drop shots when receiving a parallel
drop shot at the left side of the frontcourt (i.e., most shuttles land
in front of the short service line), and approximately half of them
are diagonal. In contrast, in (b), Player 2 seemed more conserva-
tive and seldom played diagonal drop shots when competing with
Player 1 because there are only three orange dots on the court, and

Player 1 Player 1

Player 1Player 2

Player 2

Player 3

Player 3

Player 1

(a) (b) (c) (d)

Figure 8: The heat maps at the bottom-side show how the players
handled a drop shot when they traveled from different positions.

two of them are quite close to the center line. Instead, the player
frequently sent shuttles close to the back service line. However, af-
ter changing the opponent of Player 2 to Player 3, we found that
Player 2 was not as conservative as when competing with Player
1, as indicated by many orange dots in (c). This means that sending
diagonal drop shots to Player 3 can be an effective strategy.

Case 3: game tempo. Figure 8 shows a condition that opposing
players hit shuttles from the backcourt to the frontcourt. The shuttle
hitting distributions do not reveal substantial information because
most sample dots are around four court corners. The only useful in-
formation could be that Player 2, and Player 3 occasionally played
diagonal drop shots when they competed with Player 1 (i.e., a few
orange dots in (a) and (c)). However, by further examining heat
maps at the bottom side, one can see that shuttle hitting positions
correlated to where the target player traveled from to return shut-
tles. Recall that the colors of the bottom side quads and the top side
dots correspond. Hence, the blue and purple quads and the corre-
sponding dots in (b-d) show that, when target players moved from
the backcourt to the frontcourt to return shuttles, they often played
a clear. This is a defense strategy because clear shots are slow, and
players could gain some time to play the next shot. However, in (a),
since the bottom side quads are close to red and orange, the heat
map reveals that Player 1 frequently dropped shuttles at the front-
court. The strategy forced the opponent to travel but also increased
the game tempo. In other words, Player 1 must be aggressive and
confident in his or her spontaneous response.

The heat maps also reveal that Player 2 tended to play diagonal
shots when he or she traveled parallel from backcourt to frontcourt
to receive left drop shots. On the other hand, Player 1 and Player 3
tended to play parallel shots under this condition.

7.2. Expert Interview Feedback

To demonstrate our approach’s usability and its potential improve-
ment, we interviewed a badminton coach, who has regularly ana-
lyzed badminton data for more than 10 years to instruct teams. We
also interviewed two varsity badminton players, who won several
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national badminton competitions. The goal is to determine whether
our system helps them discover the opponent’s behaviors and de-
velop tactics (G1-G3) and realization of requirements (R1-R5) in
Section 3.

7.2.1. Study Procedure

The interviews for the coach and the players were separate, but the
study procedures were the same. In the beginning, we introduced
our system to the participants, taught them how to interpret the vi-
sual elements and how to interact with the system, and then showed
them several cases that we found during the exploration procedure.
Case 1 in Section 7.1 was one of the cases. We showed the par-
ticipants the cases for the following two reasons: (1) we wanted to
demonstrate an example that shows the feasibility of our system,
and (2) we were interested in the cases and wanted to study their
corresponding insights. The instruction was not a single direction.
The participants also told us what they additionally observed in our
visualization according to their badminton knowledge. As a sec-
ond step, we let the participants freely explore the collected data
by using our system and assisted them if they encountered opera-
tion problems. We explicitly asked the participants to find at least
one exciting event before entering the discussion phase. Case 2 and
Case 3 were discovered by the coach and one of the players, re-
spectively. Overall, each interview was conducted and recorded for
approximately an hour.

7.2.2. Questions in the Interviews

We classified our questions into three topics, followed by an open
comment and suggestion question. In each topic, we began with our
initial questions to trigger the discussion. The coach and the players
first answered our questions and then provided their supplementary
opinions. We summarized the content below.

Full automatic analytics framework – needs and demands.
We are interested in experts’ level of acceptability and comments
in terms of using the visual analytics framework in their daily work.
Our initial questions are as follows:

Q1 Do you agree that an automatic system that extracts features,
such as shuttle position, speed, and type, is helpful in comparison
to manual annotation? If yes, why?
Q2 Do you trust the results annotated by the computers? What is

your expected level of accuracy? Do you think that manual annota-
tion can still achieve better results than computers?
Q3 What do you think are the limitations of an automatic anno-

tation approach?

The coach expressed his strong interest in the machine-assisted
visual analytics framework due to the increasing amount of data
and limited human resources. He stated, “Usually, I need to spare
3− 10 hours to annotate a video, 2− 3 hours to perform analysis,
and 3− 4 hours to discuss it with the player.”. Therefore, he espe-
cially appreciates that the present approach can collect data auto-
matically, which improves and accelerates the traditional analytics
pipeline (G1, R1). With visualization, the data are shown clearly,
which allows the coach to investigate and compare individual play-
ers in a short period of time. “It is a clear improvement from the
traditional analytics approach”, the coach stated (R3). The coach

expected the annotation accuracy to be higher than 80%, and he
was satisfied with our current system because even manual annota-
tion can contain certain errors. One of the players said, “In the be-
ginning, I didn’t know that the data were automatically collected.
The dot distributions and the revealed information look realistic.”
This shows that the integration of data-driven analytics and visu-
alization (G1-G2) markedly improved the traditional analysis pro-
cedure. However, although the modern machine learning approach
can detect player positions, stroke positions, and speed with high
accuracy, some data types still require human judgment. For ex-
ample, the intention of a player when performing a technique, the
variants of a technique accomplished by a player, or if a player is
in an active or passive situation. Such data necessitate observation
of players’ facial expressions and slight body movement changes,
which cannot yet be well detected using modern learning tech-
niques. Since our approach has fulfilled most of their requirements,
more advanced techniques for such challenges are reasonably an-
ticipated.

Shuttle hitting distribution – the requirements and open pos-
sibility. The analysis of shuttle hitting distribution is a relatively
new methodology, and we summarized the needs and the strengths
of using our system.

Q4 Does our system successfully support finding essential stroke
patterns? Could you give us a few examples after experiencing the
system?
Q5 What patterns did you identify by investigating the temporal

aspect of shuttle trajectory using the system?

As described previously, directly extracting a player’s intention
from a video is technically challenging. The present system per-
forms an analysis of stroke types based on shuttle speed and shut-
tle hitting positions. This allows experts to identify such intention
in a rally implicitly. For example, if a player is in an active po-
sition, he or she can be aggressive and often smash a shuttle in
the present rally. This can be detected and classified by the sys-
tem through speed and position detection. However, detailed stroke
patterns, which require observation of the player’s body pose and
movement (e.g., movement of arms, rotation of wrists, etc.), are
still challenging. Alternatively, if the player is not in an aggressive
situation, he or she may perform a clear to force the opponent to
run across the court. “With the current system, I can see the shuttle
distribution, order, speed, and distance of a series of strokes in the
visualization, which allows me to identify which stroke pattern the
player is aiming at.”, explained by the coach (R2). A player said,
“A smash can be slow but sharp. It forces the opponent to return
a high shot for the player to smash again. Without observing the
spatial temporal pattern, users may not understand why the player
did not play a fast straight.”

Potentiality – collaborative discussions and education. In this
topic, we investigate the appropriateness of using our system in
communication and education. Our questions are:

Q6 Do you think that our interactive visualization can present
better information during the discussion in comparison to your tra-
ditional procedure? If yes, in what aspects?

Q7 Do you think that such a system can be used for educational
purposes, such as educating junior players?
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The coach expressed the convenience of using our system. “I
can use the interface to search the shuttle speed according to the
player’s position. I also can visually compare our player with his or
her opponents or the difference between two opponents simultane-
ously.”, described by the coach (R4). The coach highly appreciated
the interactivity of our system since it can be used to present the
core findings that he observed and can quickly switch the content
if a player has concerns or questions (G3, R5). “The system is ca-
pable of showing the stroke patterns and behaviors of professional
players, so I can use it to explain and educate the junior players
visually.”, recommended by the coach. However, the coach stated
“The court view panel shows the shots at different time points. I
have to explain how to interpret the view when I discuss with new
users.” The players agreed that the system could be effectively used
for education. A player remarked, “Novice players do not need
the visualization because they frequently make mistakes in a game.
However, when the players practice and overcome this problem,
they need to seek opportunities to get points. They can use the tool
to find a better strategy.”

Open comments and suggestions. We also asked the coach to
provide open comments about the current system, by explicitly ask-
ing the following questions.

Q8 Do you have any comments or suggestions about our sys-
tem? What interface would you like to add?

Q9 Do you like the system to recommend interesting data pat-
terns to you, as shown in Figure 1 (a), or do you prefer to search
for data patterns by yourself actively?

The coach stated definitively, “The system is fully functional. It pro-
vides me with the essential functionality that I like to perform.” The
only suggestion that the coach offered was to include some external
values, such as the total number of hits, in the distribution compar-
ison panel, although he also mentioned that this is not mandatory.
He said that he liked the distribution control panel, which allows
him to select interesting patterns, as suggested by the system.

7.3. Generalization to Other Net Games

Our data extraction technique has the potential to generalize to
other net games, such as tennis, since the broadcast videos of these
two sports have similar forms. Specifically, they both contain court-
view shots, in which camera positions and orientations are fixed. In
addition, analyzing where players hit balls should also be beneficial
to tactics design. However, considering different rules and tactics
in sports, our current visualization design may be insufficient to
visualize data from other net games. Consulting domain experts
before using our system to visualize such data is needed.

7.4. Limitations

We track player positions and hit frames in broadcast badminton
videos to extract approximate shuttle trajectories. The main short-
coming is the unknown shuttle position when players do not hit the
shuttle. Although the amount of missing data is about 10% (i.e.,
the average length of a rally is approximately 10 shots), this pre-
vents users from analyzing how players lose points and whether a

tactic is effective by using our system. We note that obtaining the
landing position of a shuttle under such a circumstance demands
high-quality shuttle tracking and 3D trajectory reconstruction tech-
niques. While automation is challenging, a possible approach to
overcome this problem is to annotate the positions by leveraging
human resources [DWW∗21]. Second, our automatic data extrac-
tion is imperfect. Users have to correct the extracted data manually
if the automation makes mistakes. Providing them with an intu-
itive interface that can examine the correctness of data efficiently
is demanded. Finally, we currently focus on visualizing shuttle dis-
tributions under specific player positions. Considering that players’
physical and mental conditions are also essential factors in a bad-
minton competition, we plan to visualize the change in player be-
haviors/statistics throughout a game.

8. Conclusion

We have presented a system to extract badminton game data from
broadcast videos and visualize historical data for coaches to explore
player behaviors. Compared to the traditional approach, where
coaches have to spend hours watching videos and analyzing statis-
tics, our system provides them with an integrated interface to thor-
oughly and objectively study game data. By moving the filter-
ing lenses and observing dot distributions and heat maps, coaches
can rapidly determine the opponent players’ weaknesses and de-
velop effective tactics. The system was developed with a badminton
coach at our university and has been demonstrated to a nationally
recognized athlete player and several junior players. They agreed
that our system was highly useful and wanted to utilize it to study
opponent players’ data.

In the future, there could be multiple extensions of our work.
First, we plan to reconstruct 3D shuttle trajectories from broad-
cast videos. The benefits of the 3D trajectories are two folds. (1)
True shuttle landing positions can be determined, particularly when
players fail to return shuttles. (2) Shuttles hit above or below the
net is an important cue for classifying a shot as offense or defense.
Given 3D trajectories, we will also design novel views for further
examining players’ behaviors. In addition, our current system vi-
sualizes extensive amounts of historical game data to reveal player
behaviors. It could be interesting to extend the system for in-situ
sports analytics in the future.
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