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Abstract 
Camera networks are often used in visual 

surveillance systems for wide-range monitoring. In this 
paper, we present a novel method for calibrating a 
camera network, which uses the trajectory of a bouncing 
ball as the calibration data.  An important feature of our 
method is the use of the parabolic property of a ball’s 
bouncing trajectory. This parabolic trajectory will lie on 
a plane, called the parabolic trajectory plane (PT-plane), 
so that the relationship between the trajectory’s points 
and their corresponding image points is a homography. 
Combining the vertical velocity determined by the earth’s 
gravity and the horizontal velocity calculated from the 
homography, we can compute the 2D coordinates of the 
trajectory points on the PT-plane. By throwing the ball 
multiple times, we obtain calibration points on multiple 
planes for calibrating both intrinsic and extrinsic 
parameters of the networked cameras. Experimental 
results have demonstrated the feasibility and accuracy of 
the proposed method. 
 
 
1. Introduction 
 

Camera networks are extensively used in visual 
surveillance systems because they can monitor the 
activities of targets over a lager area than a single camera. 
If a camera network has been calibrated, it can achieve 
cooperative tracking and provide more 3D information. 
Hence, how to calibrate a camera network is an important 
task for visual surveillance systems. 

Camera calibration is a widely used technique in 3D 
computer vision. There are many methods in the 

literature. According to the dimensionality of the 
calibration objects, we can classify those methods into 
four main categories:  

 3D calibration object. Camera calibration is 
performed by using a 3D calibration object whose 
geometry in 3D space is known beforehand with good 
precision. For example, the special property of house 
corners [4], a cuboid structure seen in the camera 
image (or more generally, a parallelepiped structure) 
[3], or a plane undergoing a precisely known 
translation [13] can be used as the reference object to 
infer camera parameters. While this approach can be 
performed very efficiently, it always requires an 
expensive setup before calibration.  

 2D calibration object. Some 2D plane based 
calibration methods only need to observe a planar 
pattern from a few different view points. Maybank’s 
[12] and Zhang’s [14] methods belong to this category. 
The motion of the plane can be unknown, and the 
setup is very easy.  

 1D calibration object. This approach just uses a 1D 
object, but requires one endpoint of the stick to be 
fixed [15]. 

 Self-calibration (also called using 0D features). 
Techniques in this category do not need any known 
calibration objects. Only the image point 
correspondences are required. By moving a camera in 
a static scene, the rigidity of the scene provides two 
constraints [9, 10] for determining the camera 
parameters. Although no calibration objects are 
needed, it is difficult to obtain accurate and robust 
results. 



  

Relative camera poses have to be determined to obtain 
the geometric relationship in a camera network. Usually 
we can use known 3D positions of objects in the world 
coordinate system to calculate the extrinsic parameters in 
closed form [6, 2]. Otherwise, we can use an iteration 
method, such as Church’s method, to solve this problem 
[5, 7]. However, using a fixed calibration object to 
calibrate a camera network always has some difficulties. 
For example, the calibration objects need to be seen by 
more than one camera, therefore the fixed calibration 
objects need to be large enough. Large calibration objects 
are not always easy to use and to take along, or to 
anticipate the proper size in advance.  

In this paper, we proposed a new calibration method 
which uses a 0D object, a ball. When throwing a 
bouncing ball, gravity causes a parabolic trajectory, and 
we can use this property to calibrate a camera network. A 
ball is much easier to take along, and for the purpose of 
being seen by two or more cameras we just have to throw 
a ball to produce a proper trajectory size. In this paper, we 
will discuss three cases for a camera network: the 
intrinsic parameters of all cameras are known, the 
intrinsic parameter of only one camera is known, and the 
intrinsic parameters of all cameras are unknown. We 
show how to use a bouncing ball to perform camera 
calibration in each case. 

The main idea of this work is to utilize gravity to 
estimate camera parameters.  The only similar work that 
we found is the one done by Sturm and Quan [11]. 
However, their method is different from ours in that they 
first estimate the infinite homography [8] between two 
captured images by using corresponding vanishing points 
and lines and then obtain intrinsic parameters and relative 
pose from the estimated infinite homography. Our method 
is more flexible in the following three aspects. First, our 
method can be applied even if there is only one camera, 
while Sturm and Quan’s method needs to use at least two 
cameras. Second, our method can be used to estimate all 
the intrinsic parameters, while Sturm and Quan’s method 
can estimate only a subset of the intrinsic parameters due 
to the insufficient constraints provided by the infinite 
homography. Third, Sturm and Quan’s method will suffer 
from the singularity problem when the optical axes of two 
involved cameras are parallel, while our method does not 
have this problem and is therefore more flexible. 

This paper is organized as follows. In Section 2, we 
describe the basic constraints from observing a trajectory 
plane. In Section 3, we describe how to calibrate a camera 
network using a bouncing ball in three cases. Section 4 
provides the experimental results, using computer 
simulation to validate the proposed technique. Finally, we 
conclude the paper in Section 5. 
 
2. Basic Equations 
 

     Because the parabolic trajectory of a bouncing ball 
must be on one plane, called the parabolic trajectory plane 
(PT-plane), we can examine the constraints of the 
camera’s intrinsic parameters by observing that plane. We 
start with the notation used in this paper. 
 
2.1. Notation 
 
      A 2D point in an image is denoted by Tvum ],[= , and 
a 3D point in word coordinate system is denoted by 

TZYXM ],,[= . We use x~  to denote the homogeneous 
coordinates augmented vector by adding 1 at the last 
element: Tvum ]1,,[~ =  and TZYXM ]1,,,[~ = . Using the 
pinhole camera model the projective geometry of 2D and 
3D points is given by 
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where s  is an arbitrary scale factor, and [R|T] is the 
extrinsic parameters comprising the rotation and 
translation matrix related from the world coordinates 
system to the camera coordinates system. In the intrinsic 
parameter matrix A,α and β defines the scale factors in 
image u and v axes, γ describes the skewness of the two 
axes, and u0, v0 are the coordinates of the principal point.  
In the following, we use the abbreviation A-T for (A-1)T or 
(AT)-1. 
 
2.2. Homography between PT-Plane and Image 
Plane 
 
     When we arbitrarily throw a bouncing ball, we can 
use the camera to capture a sequence of frames. Because 
of gravity the trajectory of the ball must be a parabola 
and on one plane, as shown in Figure 1. Image points of 
the parabolic trajectory are then identified in the 
sequence of frames.  These image points can then be used 
in the following calibration procedure. 
 

 
 

Figure 1. A parabolic trajectory of a bouncing 
ball 



  

 
     Without loss of generality, we assume that the PT-
plane is on Z = 0 of the world coordinate system and 
denote the ith column of the rotation matrix R by ri. From 
(1), we have 
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Because Z is always equal to zero, then TYXM ]1,,[~ = . 
Therefore, a point M on the PT-plane and its point m in 
image is related by a homography H:  

MHms ~~ =    with ][ 21 trrAH = .                (3) 
We set the X axis on the horizontal, set the Y axis on the 
vertical, denote the ith frame’s capture time by Ti, denote 
the horizontal velocity of the bouncing ball by V which is 
unknown previously, and assume we observe the highest 
point of the parabola, denoting it’s capture time by Th. 
Because of the properties of the parabola, every point 
[X,Y]T in the PT-plane can be represented by  

)( ih TTVX −= , 2)(
2
1

ih TTgY −= ,                (4) 

where g is the earth’s gravity equal to 9.8 ms-2. Then we 
denote H = [h1  h2  h3]. By substituting (4) into (2) and 
(3), we have 
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Then we denote H’ = [Vh1  h2  h3] = [h1’  h2  h3] and  
X’ = (Th - Ti) and substitute them into (5). We have  
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Clearly, the 3×3 matrix of the H’ is defined up to a scale 
factor. 
 
2.3. Constraints on Intrinsic Parameters 
 

In equation (6), Y, and X’ are known and [ ]Tvum 1,,~ =  
can be observed from the image. We can estimate the H’ 
by using the estimation method of  homography between 
the model plane and its image, as in [14]. From (3) and H 
= [h1  h2  h3], we have 

[h1  h2  h3] = λA [r1  r2  t],                 (7) 

where λ is an arbitrary scalar. According the knowledge 
that r1 and r2 are orthonormal, we have 
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Substituting (7) into (8) and (9), we have the following 
two constraints: A 
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Furthermore, from the equations [Vh1  h2  h3] = [h1’  h2  
h3], (10), and (11), we can substitute h1’ for h1 and derive 
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Therefore, when we throw a ball one time, we can 
estimate an H’. There are two basic constraints: one for 
the intrinsic parameters and the other for calculating the 
horizontal velocity of the bouncing ball. 
 
3. Calibrating a Camera Network Using a 
Bouncing Ball 
 

      In this paper, we consider calibration of a camera 
network consisting of one or more than one cameras. 
Without loss of generality, we specify the coordinate 
system of the first camera to be the global coordinate 
system. Figure 2 illustrates three common configurations 
of a camera network comprising two cameras. In the first 
configuration, for example, we need a calibration object 
which can be seen concurrently by two cameras pointing 
in the opposite directions. Obviously, 3D calibration 
objects and 2D calibration planes are difficult to be used, 
while 1D calibration object and the bouncing ball used in 
this work are more suitable in this configuration. In the 
second configuration a small calibration object can be 
used because the overlapped area is near the cameras.  In 
the third configuration, however, a large object may be 
required due to the far overlapped area. Hence, it is hard 
to find a general calibration object suitable for many 
camera network configurations. In our method, we 
arbitrarily throw a ball from point A to point B, as shown 
in Figure 2, with a proper trajectory size which can be 
captured by all cameras. Then we can use this trajectory 
to calibrate the camera network. In the following, we 
discuss three cases and propose how to calibrate the 
camera network in each case. 
 
 



  

 

 
 

Figure 2. Three common configurations of a 
camera network and a sample trajectory of a 

bouncing ball thrown from A to B 
 
3.1 Case 1: Intrinsic Parameters of All Cameras 
Are Known 
 
     The first case is that we assume all intrinsic 
parameters of the cameras in the camera network are 
known beforehand. This assumption is reasonable 
because in many visual surveillance systems the cameras’ 
intrinsic parameters have been calibrated before being 
installed. Here we use two cameras, denoted by Cam1 
and Cam2, to demonstrate the calibration procedure for 
extrinsic parameters of a camera network. The calibration 
procedure can be easily applied to configurations with 
more than two cameras. 
     The proposed calibration procedure consists of three 
steps. First, we arbitrarily throw a ball one time in the 
overlapped area, like in Figure 2, where both cameras can 
easily capture the trajectory of the ball. As presented in 
the previous section, we can estimate H1’ for Cam1 and 
H2’ for Cam2 according to the trajectories captured by 
each camera. Because the intrinsic parameters of two 
cameras, denoted by A1 for Cam1 and A2 for Cam2, are 
known and H1’ and H2’ can be estimated, we can 
calculate the V of the bouncing ball by using the equation 
(13). Theoretically, we will get the same V for each 
camera. However, noise always exists thus the estimated 
value of V differs for different cameras. Averaging is a 
simple method to compromise with the discrepancy.  
     Second, without loss of generality, we assume the 
parabolic trajectory is on the plane Z = 0 of the world 
coordinate system. Each point of the trajectory can then 
be represented by [X, Y, 0]T. The coordinates of all points 
on the trajectory can be calculated by (4), after knowing 

the horizontal velocity of the bouncing ball V in the first 
step. We choose three of these points and compute the 
distances between each pair of these three points. The 
three points may be chosen arbitrarily. However, in our 
research we choose the first, the middle, and the last 
points because the distances between them are usually 
larger thus tend to be less sensitive to noise. These three 
points project on each camera, as shown in Figure 3. 
Because we have the intrinsic parameters of each camera 
and the distances between each pair of three points, we 
use Church’s method [5] to calculate the 3D coordinates 
of feature points p1, p2, and p3 in the camera coordinate 
system. 
 

 
 
Figure 3. Three points project to an image plane 

      
     The goal of third step is to estimate the extrinsic 
parameters between Cam1 and Cam2, that is, the rotation 
and translation matrix [R|T] from the coordinate system 
of Cam2 to the coordinate system of Cam1. We specify 
the coordinate system of Cam1 as the global coordinate 
system. By using the method described in the second step, 
we calculate the coordinate pair, v1 = [X1, Y1, Z1]T in the 
coordinate system of Cam1 and v2 = [X2, Y2, Z2]T in the 
coordinate system of Cam2, for each of the three feature 
points.   From each coordinate pair, we have 
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The [R|T] is the extrinsic parameter from Cam2 to Cam1, 
which can be calculated through the least-squares solution 
of [R|T] based on SVD, as proposed by Arun et al. [1].  
 
3.2 Case 2: Intrinsic Parameters of Only One 
Camera Is Known 
 
     In the second case, only one of the cameras in the 
camera network is calibrated in advance. Our basic idea is 
to calibrate the other cameras using the calibrated camera. 
In this case, we also consider a two-camera system. We 
denote the calibrated camera by Cam1 and the other 
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camera by Cam2. Because Cam1 has been calibrated, the 
intrinsic parameters are known, hence, we can estimate 
the horizontal velocity V and the coordinates in the 
coordinate system of Cam1 for a trajectory by using the 
proposed method in Section 3.1. By throwing the ball 
multiple times, we have calibration points on multiple 
planes with known 3D coordinates in the coordinate 
system of Cam1.  Both the intrinsic and extrinsic 
parameters of all other cameras can be calibrated by using 
these calibration points through conventional camera 
calibration procedure [13]. Another way of calibration is 
to use the value of V to calculate the planar coordinates 
for each trajectory. Then, the feature points on multiple 
2D planes can be used to calibrate the cameras with 
Zhang’s method [14].  
 
3.3 Case 3: Intrinsic Parameters of All Cameras 
Are Unknown 
 
     In this case, two methods can be used to calibrate the 
cameras. With the first method, we temporarily employ 
an auxiliary calibrated camera to observe the bouncing 
ball. The case is now reduced to the second case, and all 
the cameras in the network can be calibrated by using the 
proposed method in Section 3.2. 
     If there is no calibrated camera at hand, we still can 
calibrate the camera network by using the following 
closed-form solution. Because the trajectory of a 
bouncing ball is parabolic and it must lie on one plane, 
each trajectory can provide a constraint, the equation (12), 
on the intrinsic parameters, according to our derivation in 
Section 2. Let 
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Note that B is symmetric, so it can be represented by a 6D 
vector 

[ ]TBBBBBBb 332313221211 ,,,,,= . (15) 
Let the ith column vector of H’ be hi’ = [hi1, hi2, hi3]T. 
From the constraint (12), we have 

021 ==′ bwBhh TT ,   (16) 
with w  = 
[ ]Thhhhhhhhhhhhhhhhhh 231323122213231121132212211222112111 ,,,,, +++ . 
     If we throw the ball n times, n trajectories are observed. 
By stacking n such equation as (16), we have 
  0=Wb ,    (17) 

where W is a n × 6 matrix. Obviously, if 5≥n , we have a 
closed-form solution b up to a scale factor. The well-
known solution to (17) is the eigenvector of WTW 
associated with the smallest eigenvalue. After estimating 
the vector b, we can compute all camera intrinsic 
parameters as follows. 
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In practice, the solution of equation (17) may cause 
trouble when the signs of B11 and λ are not the same. 
Hence we use an optimization procedure to calculate the 
intrinsic parameters.  We set the initial value of γ to be 0, 
and set the initial values of (u0, v0) to be the image center. 
Then equation (17) reduces to non-homogeneous 
equation and the values of α  and β  can be easily 
calculated. The intrinsic parameters are then refined 
iteratively. 

Once the intrinsic parameters of all cameras are 
known, this case reduces to the first one and the camera 
network can be calibrated with the method in Section 3.1.  

 
4. Experimental Results 
 
     The proposed methods have been evaluated by using 
computer simulation. In our experiment, the simulated 
trajectories are with different angles and random 
horizontal velocities V ranging from 1 to 3 m/s.  

Consider the first case in Section 3.1 where two 
cameras were mounted in the third configuration, as 
shown in Figure 2.  Each time the ball was thrown, each 
of the two cameras captured 25 frames.  That is, we 
observed 25 points from each parabolic trajectory. In 
practice we often can observe more than 25 points. 
Gaussian noise with zero mean and standard deviation σ 
was added to the projected image points. The calibration 
procedures in Section 3.1 were used to compute [R|T]. To 
assess the accuracy of the estimated [R|T], we arbitrarily 
chose a 3D point in the global coordinate system and then 
projected it to these two cameras. By using the projected 
image points of two cameras and the estimated [R|T], we 
computed the 3D coordinate via triangulation and 
calculated deviation from the ground truth. For each noise 
level varying from 0.2 pixels to 2 pixels, we conducted 
100 independent trials and then averaged the results. In 
addition, we also evaluated the performance of the 
proposed method with respect to the number of 
trajectories ranging from 1 to 16. The results are 
illustrated in Figure 4. We can observe easily that errors 



  

increase with the noise level and decrease with the 
number of trajectories.  
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Figure 4. Distance errors vs. the noise level of 
the image points (T is the number of trajectories). 
 
     Next, we consider the camera network calibration 
when the intrinsic parameters of all cameras are unknown 
without using an auxiliary calibrated camera. Consider a 
camera with the ground-truth intrinsic parameters: α = 
1000, β = 1000, γ = 0, u0 = 319.5, v0 = 239.5. The 
image resolution is 640 × 480. We arbitrarily produced 16 
different simulated trajectories that were projected in the 
field of view of the camera. As in the previous 
experiment, Gaussian noise with zero mean and standard 
deviation σ was added to the projected image points. For 
each noise level ranging from 0.2 pixels to 2 pixels, we 
conducted 100 independent trials and then averaged the 
results. Figure 5 illustrates the average deviation of 
estimatedα and β from their ground-truth values. To 
evaluate the performance of the proposed method with 
respect to the number of points in each trajectory, we 
varied the amount of captured points from 20 to 60, 
which is common in practice when the frame rate of the 
camera is 30Hz. As we can see from Figure 5, errors 
increase proportionally with the noise level and decrease 
with the number of captured points.  
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Figure 5. Average estimation error of intrinsic 
parametersα and β vs. the noise level of the 
image points (P denotes number of  captured 

points) 
 
According to the results of these two experiments, we 

can obtain more accurate camera parameters either by 
increasing the number of times the ball is thrown or by 
increasing the amount of captured points for each 
trajectory. 
 
5. Conclusions 
 
     In this paper, we proposed a new camera calibration 
method using a bouncing ball. Also, we presented how to 
apply this novel method to calibrate a camera network. 
We considered three different cases encountered in 
calibrating a camera network, where the intrinsic 
parameters of all, only one, or none of the cameras are 
known. Calibration procedure for each case was 
discussed. Experimental results have demonstrated the 
feasibility and accuracy of the proposed method. 

Camera calibration has been studied extensively in 
computer vision and photogrammetry. The existing 
techniques include those using 3D objects, 2D objects, 
and 1D calibration objects. To our knowledge, there are 
no calibration methods really use 0D objects. Self-
calibration is sometimes called “using 0D features”. 
However, self-calibration uses image point 
correspondences, which is different from using 0D 
objects. Therefore, this proposed calibration technique 
using 0D objects fills a missing dimension. Besides, 
calibration of a camera network is often not easy because 
of the fixed size of calibration objects. The proposed 
technique is practical, especially for calibrating a camera 
network, because we can simply throw a ball in the 
overlapped area of the cameras.  
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