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Abstract 

In this paper, we propose a fast algorithm for speeding up the process of template matching that uses 

M-estimators for dealing with outliers.  We propose a particular image hierarchy called the 

p-pyramid that can be exploited to generate a list of ascending lower bounds of the minimal matching 

errors when a non-decreasing robust error measure is adopted.  Then, the set of lower bounds can be 

used to prune the search of the p-pyramid, and a fast algorithm is thereby developed in this paper.  

This fast algorithm ensures finding the global minimum of the robust template matching problem in 

which a non-decreasing M-estimator serves as an error measure.  Experimental results demonstrate 

the effectiveness of our method. 

Index Terms —Template matching, robust template matching, M-estimator, fast algorithm.  

I. Introduction 

Finding a pattern or template in a signal is an important problem for signal and image processing.  

This so-called template matching can be applied to many applications such as image and video coding, 

pattern recognition, and visual tracking.  It is usually assumed in template matching that the signal 

segments of interests do not change their appearances very much.  Hence, template matching based 

on the criteria such as the sum of absolute difference (SAD) or the sum of squared difference (SSD) is 

commonly adopted.  The popularity of using template matching for applications of signal or image 

processing is mainly due to its ease of implementation together with the many fast algorithms that can 

be used to speed up the matching process for various applications [1,7-8,13,15,22,25-26,28-29,35,39]. 

In a cluttered environment, however, some outliers such as impulse noises or partial occlusions may 

occur during the matching processes.  In this situation, the SAD and SSD criteria are no longer 

suitable for template matching because they treat the outliers and inliers evenly when calculating the 
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error measures.  One possible remedy for this weakness is to use a robust criterion instead of SAD or 

SSD.  For this, the M-estimator technique [2][16][30][38] is one of the most popular methods to 

solve the problem of robust parameter estimation, and has been applied in many studies 

[3-5,11-12,14,23,31-33,36].  The basic idea of the M-estimator technique is to limit the influence of 

outliers in the matching error.  In principle, the effects of the outlier can be suppressed with the 

M-estimator technique and therefore better estimations are obtained. 

A typical procedure for finding solutions with M-estimators is the iterative-reweight procedure [30].  

In each iteration of this procedure, a weighted least-square problem is solved and then the weights are 

adjusted for the next iteration for further refinement.  Hence, when applying the iterative-reweight 

procedure for robust template matching, in each iteration, another template matching problem must be 

solved based on a weighted SSD error measure, in addition to which, multiple iterations are also 

necessary.  Therefore, the computation of robust error measures is very time-consuming, although 

more accurate results can be obtained by adopting a robust error measure instead of non-robust ones. 
1  In the past, many methods have been proposed to speed up the matching process where the simple 

SAD or SSD criterion is used.  However, to our knowledge, no method has been addressed for 

speeding up the process of template matching where robust error measures are used.  In this paper, 

we propose a fast method for solving this problem.  We will present this method by assuming that a 

2D signal (e.g., an image) is used.  Nevertheless, our algorithm can be easily generalized for any 

d-dimensional signal, d∈ N+. 

On the other hand, there are already many methods for speeding up the process of template matching 

where non-robust error measures are used.   These methods can be divided into two classes.  The 

methods in the first class only find a local minimum while the ones in the second class definitely find 

the global minimum.  In principle, almost all the methods in the first class formulate the template 

matching as a search problem and find a solution by adopting the greedy strategy.  Examples include 

the three-step search algorithm [22], the gradient-descent based method [29] and others [1][8][13][15] 

[28][35][39].  The genetic algorithm-based methods [8][28] or the simulated annealing-based method 

[35] may have chances of finding the global minimum if their parameters are set appropriately to the 

given problems, but can not ensure that it will always be found.  In essence, since these methods do 

not guarantee finding the global minimum, they are generally faster than those ensuring the global 

optimality. 

The methods in the second class guarantee finding the global minimum, and the main idea of this 

class is basically prune and search [26][25][7].  Hence, the main issue of this class of approaches is 

on how to design the search strategies for pruning unnecessary searching branches.  The successive 

elimination algorithm proposed by Li and Salari [26] eliminates impossible sites successively during 
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the searching process by using lower bounds derived from the triangle inequality.  Their method can 

guarantee obtaining the global minimum, as does the full search (FS) method, and it is more efficient.  

In [25], Lee and Chen extended this idea by using a block-sum-pyramid structure, where a set of 

ascending lower bounds can be derived and serve as useful guidelines to prune the search process.  

However, the performance of their method depends on the search order.  Recently, Chen et al. 

further refined it by using a winner-update strategy [7], which is not only irrelevant to the search order 

but is also faster. 

Similar to those methods that ensure finding the global minimum but using non-robust error measures 

introduced above [26][25][7], the method developed in this paper also adopts an inequality in a 

particular image hierarchy to speed up the template-matching process with robust error measures.  In 

essence, a set of ascending lower bounds of the minimal matching error can be generated with our 

method as long as the robust error measure is non-decreasing.  This set of lower bounds can then 

serve as useful guidelines for pruning the redundant branches of the searching process.  In addition, 

our method can ensure finding the global minimum, as the FS method does for robust template 

matching. 

This paper is organized as follows.  Section II introduces the image hierarchy used in this work and 

the associated ascending lower bound list.  Section III presents the search strategies and our main 

algorithm.  Section IV shows some experimental results.  Finally, some discussion and conclusions 

are given in Sections V and VI, respectively. 

II. Problem Formulation, P-pyramid, and Fundamental Inequality  

A. Problem Formulation 

We denote I(i,j) as the intensity at position (i,j) in an image I.  Assume that I1 and I2 are N×N images.  

The sum of robust differences (SRD) between two images I1 and I2 is defined as follows: 

  ( ) ( ) ( )( )∑
−≤≤

−≡
1,0

2121, ,,,,
Nji

jiIjiIIISRD σρσρ
                (1) 

where ρ(⋅,⋅) : R
+
∪{0} × R

+ → R
+
∪{0} is a robust error measure (or a robust loss function) 

[2][16][38] and σ is a parameter controlling the shape of ρ(⋅,⋅). 2  Typically, the robust error measure, 

ρ(⋅,⋅), is selected according to how it reduces the influences of outliers.  Given an image template It 

whose size is N × N and an image F whose size is (2W+N) × (2W+N), the robust template matching 

                                                                                                                                                                                     
1 Another problem of the iterative-reweight procedure is that it can not definitely find the global optimum. 
2 Some common robust error measures will be introduced in Section II. E.  In particular, if ρ(x,σ) = x2 (or x) for all σ, then 
(1) becomes SSD (or SAD). 
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problem is defined as finding the position (u*, v*) with the minimum SRD among all possible search 

positions in the image F. 

   
( ) ( )
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where Fu,v is an N × N image block with its upper-left point being (u,v) in the image F and the number 

of search sites is (2W+1) × (2W+1). 

B. P-feasible 

To simplify the notation of the robust error measures, we define 

τσ(x) = ρ(x,σ) for all x∈R+∪{0},                    (3) 

and abbreviate τσ(x) to be τ(x) for the cases without ambiguity in the following.  

Definition 1 [p-feasible]: A robust error measure τ(⋅) is p-feasible if it satisfies both the following two 

conditions:  

(1) τ(⋅) is non-decreasing, i.e., a1≥a2 implies τ(a1) ≥ τ(a2) for all a1, a2∈R+∪{0}, and  

(2) for each pair of nonnegative values (a1,a2), the following inequality with respect to the 

Lp-norm holds: 

∀a1, a2 ∈ R+∪{0}, τ(a1) + τ(a2) ≥ τ(||a||p)                  (4) 

where a=[a1 a2]T is a 2-D vector and ||a||p=(|a1|p+|a2|p)1/p is the Lp-norm of a, p∈[1 ∞].  In particular, 

||a||∞=max(|a1|,|a2|). 

Some properties associated with the p-feasible defined above are investigated below: 

Property 1: Every non-decreasing τ(⋅) is ∞-feasible. 

pf: This property can be easily derived according to the definitions. 

Property 2: If a robust error measure τ(⋅) is p-feasible, that implies it is also q-feasible for all q∈[p 

∞]. 

pf: See Appendix A. 

If a p-feasible robust error measure is used as the matching criterion, an ascending lower bound list of 

the matching errors can be obtained by constructing an image pyramid with respect to the Lp-norm, as 

described in the following. 
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C.  P-pyramid and Fundamental Inequality 

Assume that N = 2n (n∈N+).  For each N × N image block I = Fu,v (-W ≤ u,v ≤ W) that is contained in 

the image F, a p-pyramid of I is defined as a set of images {I0,p,⋅⋅⋅,Im-1,p,Im,p,⋅⋅⋅, In,p}, where In,p = I and 

the size of Im,p is 2m×2m (0 ≤ m ≤ n, m∈N+∪{0}).  Im,p is referred to as the image on the level m of the 

p-pyramid.  Level 0 and level n are called the highest and the lowest levels of the p-pyramid, 

respectively.  Given an image Im,p on the level m, the image Im-1,p on the level m-1 is constructed 

using the following equation:  

( )
p

pm
ji

pm jiI ,
,

,1 , I=−                              (5) 

where  

( ) ( ) ( ) ( )[ ]Tpmpmpmpmpm
ji jiIjiIjiIjiI  12,12   2,12   12,2   2,2 ,,,,,

, ++++=I and 0≤i,j≤2m-1−1. 

Accordingly, the pyramids from level n to level 0 can be constructed iteratively.  Totally, (2W+1)×

(2W+1) p-pyramids are constructed from the image F.  Figure 1 shows an illustration of the 

pyramids constructed from a 1-D signal. 

Following the notions shown in (1), we define the SRD between I1 and I2 on the level m by 

( ) ( )pmpmpm IISRDIISRD ,
2

,
1,21

,
, ,, σρσρ =  for m = 0, 1, ⋅⋅⋅, n.  Furthermore, we denote SRDτ(I1,I2) =  

SRDρ,σ(I1,I2) if a fixed σ is considered (where τ(⋅) is defined in (3)).  Then, it can be shown that the 

following fundamental inequality holds for the image hierarchy defined above. 

Theorem 1: Given a robust error measure τ(⋅) that is p-feasible, then for all I1, I2, 

( ) ( ) ( )pppnpnpnpn IISRDIISRDIISRD ,0
2

,0
1

,1
2

,1
1

,
2

,
1 ,,, τττ ≥≥≥ −− L           (6) 

pf: See Appendix B. 

Hence, given a image template It and an image block Fu,v (-W ≤ u,v ≤ W), a set of ascending lower 

bounds, ( )tv,u
p,m I,FSRDτ , m=0, 1,⋅⋅⋅, n can be obtained according to Theorem 1. 

Notice that the number of robust differences involved in the computation of each lower bound 

( )tv,u
p,m I,FSRDτ  (0≤m<n) is 2m×2m, which is smaller than 2n×2n, the number of robust differences 

required for ( )tvu
pn IFSRD ,,

,
τ .  Therefore, the lower bounds can be computed more efficiently than 

the sum of robust differences with respect to the original image.  In particular, the higher are the 

levels in a pyramid, the faster are the computations of the associated lower bounds.  In fact, the ratio 
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of the required number of the computations of the robust differences on the level m to that required 

for the level n is 
mn−4

1 .  Accordingly, even when all of the lower bounds are computed, the required 

time is less than ∑
−

=
− ≤

1

1 3
1

4
1n

m
mn

 of that required for the level n, the original image block.  Such an 

ascending lower bound list of the matching error can be used for speeding up the matching process by 

incorporating it into a systematic search strategy, as introduced in Section III. 

Remark 1 [Efficient Construction of the P-pyramids of an Image]: A p-pyramid of each image block 

can be constructed independently by using (5).  However, it is very time-consuming if each pyramid 

is constructed independently.  In fact, the p-pyramids can be constructed more efficiently by 

considering the computation and storage redundancies between neighboring image blocks when 

constructing and storing the p-pyramids.  We introduce this method by using an example, as shown 

in Figure 1.  Considering node A in the first level image of Pyramid 1, as shown in Figure 1, one can 

observe that node A is also contained in Pyramid 3.  Similarly, node B (or C) is shared by Pyramids 

2 and 4 (or Pyramids 3 and 5).  Hence, if each pyramid is constructed independently according to (5), 

the values of nodes A, B, and C will be computed twice, once for each pyramid.  In our work, to 

remove this redundancy and to save computation and storage of the p-pyramids for all the image 

blocks, the method illustrated in Figure 1 is adopted.  That is, I1, the image containing every node of 

the first-level images of all the pyramids, is first constructed based on I2.  Similarly, I0 can be 

constructed based on I1.  After I0 and I1 are constructed, all the pyramids are then available, as shown 

in Figure 1.  More details about efficient construction of pyramids can be found in [7]. 

Remark 2 [Free Sampling]: In the above description, a particular level of the p-pyramid is built with 

the Lp-norm of the 2×2 points from its lower neighbor level, as shown in (5).  We refer to it as the 

2-2 down-sampling in this case.  In general, we can use m-n down-sampling instead of 2-2 

down-sampling for all m, n∈N+, and the associated p-pyramid can be reconstructed in a similar way as 

well.  Similarly, m down-sampling can be used for a 1-D signal and m-n-k down-sampling can be 

used for a 3-D signal, and so on, where k∈N+. 

D. Characterization of P-feasible Robust Error Measures 

In Section II.C, we have shown that if a p-feasible robust error measure is selected for template 

matching, then we can construct an ascending lower bound list associated with a particular image 

hierarchy, the p-pyramid.  Before introducing the search procedure that exploits the series of lower 

bounds in detail, we illustrate an important issue about whether such a lower-bound list can be 

constructed.  In particular, the following problem is worthy to be addressed: 

“Given a robust error measure τ(⋅), under what condition can it be ensured that we can always 
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find a p∈[1 ∞] such that τ(⋅) is p-feasible?” 

In this paper, we tackle this problem in consideration of the class of non-decreasing robust error 

measures.  In fact, Property 1 has shown that if a robust error measure is non-decreasing, it is 

∞-feasible.  Therefore, when the ∞-pyramids are built for both the template and the image blocks, an 

ascending lower bound list can then be constructed according to Theorem 1.  Hence, it ensures that 

every non-decreasing robust error measure is p-feasible for some p because p=∞ is a trivial solution. 
3  In addition to p=∞, let us further investigate the other p values that allow a robust error measure to 

be p-feasible.  Given a non-decreasing robust error measure, τ(⋅), let Γτ, the feasible set associated 

with τ, be defined as the set of values allowing τ(⋅) to be p-feasible: Γτ = {p∈[1 ∞] | τ is p-feasible}.  

By considering the maximal lower bound of Γτ, the following property can be derived: 

Property 3: Given a τ(⋅) that is non-decreasing, there exists a discriminative value p’ such that τ(⋅) is 

p-feasible for all p∈(p' ∞] and is not p-feasible for all p∈[1 p'), where p’ is the maximal lower bound 

of Γτ, the feasible set associated with τ. 

pf: This property can be derived directly from Properties 1 and 2. 

Hence, the feasible set associated with a robust error measure can be clearly specified with its 

discriminative value p’ by further identifying the following two conditions: τ is p’-feasible or τ is not 

p’-feasible.  If τ is p’-feasible, then Γτ = [p' ∞]; otherwise, Γτ = (p' ∞].  After specifying the feasible 

set, another problem worth consideration is 

“Which p contained in the feasible set associated with a non-decreasing robust error measure is a 

better choice for speeding up the process of robust template matching?” 

We investigate the above problem from the implementation point of view.  In practice, to simplify 

the computation, it is better to select p as integers instead of floating-point numbers.  When p is 

restricted to being an integer, the feasible set associated with τ(⋅) can then be uniquely specified by Γτ 

= {n∈N+∪{∞} | n≥n’, n’∈N+∪{∞}}, where n’= ⎡ ⎤p′ .  In particular, we call τ(⋅) to be minimal 

n’-feasible in this case, and n’ is also referred to as the minimal feasible value of τ(⋅).  Note that the 

smaller is n, the less is the computational overhead of the Ln-norm for n∈N+.  Therefore, a better 

choice of n is therefore n=n’. 4 

 
3 How to construct a list of ascending lower bounds for the general class of robust error measures that are not necessary to 
be non-decreasing remains an open problem. 
4 Although the computation of the ∞-norm is also simple since only the absolute values and the max(⋅,⋅) operations are 
involved, we find that in practice its speedup performance is usually worse because the lower bounds associated with an 
∞-pyramid are usually not tight enough.  An example is given in Section IV. A. 
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E.  Minimal Feasible Value of Commonly Used Robust Error Measures 

In the following, we will give a study of the minimal feasible values for some commonly used robust 

error measures.  An interesting phenomenon shown below is that almost all commonly used 

non-decreasing robust error measures are minimal 1-feasible or minimal 2-feasible. 

Given a robust error measure ρ(⋅,⋅), we define Hρ={ρ(⋅,σ)|σ∈R+}.  The Huber's estimator ρ1(⋅,⋅) (see 

Figure 2(a)) has least squares behaviors for small residues, and the more robust least-absolute-values 

behavior for large residues [14][19][31][33]:

  

( )
⎪
⎪
⎩

⎪⎪
⎨

⎧

⎟
⎠
⎞

⎜
⎝
⎛ −

≤
=

otherwise.  
2

, if   
2,

2

1 σσ

σ
σρ

r

rr

r                           (7) 

Property 4: Each member of Huber’s estimators,
1ρH , is minimal 2-feasible. 

pf: See Appendix C. 

The Tukey's estimator ρ2(⋅,⋅) (see Figure 2(b)) has zero weights 5 for the large residues and thus 

improves the outlier rejection properties [4][5][11][14][19][31]. 

( )

⎪
⎪
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⎪

⎨

⎧
≤

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
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⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

=

otherwise.                                  
6

, if            r-1-1
6,

2

322

2

σ

σ
σ

σ

σρ
r

r                    (8) 

The shape of the function ρ2(⋅,⋅) is shown in Figure 2(b).   

Property 5: Each member of Tukey’s estimators,
2ρH , is minimal 2-feasible.   

pf: See [6]. 

Another popular class of the robust error measure is the one proposed by Geman and McClure [12] 

(see Figure 2(c)) as shown below, which was also adopted in [3][4][23][31].   

( ) 22

2

3 ,
σ

σρ
+

=
r

rr                                  (9) 

 
5 In robust statistics, the weight is defined to be an value proportional to the derivatives ofρ. 



 9

Property 6: Each member of Geman and McClures’ estimators,
3ρH , is minimal 2-feasible.   

pf: See [6]. 

The above three robust error measures are popular, and we have shown that all members of their 

ρH s have the minimal feasible value as 2.  In addition, the following three robust error measures are 

also investigated. 

The robust function ρ4(⋅,⋅) [36] (see Figure 2(d)) uses simple truncations to remove outliers, as shown 

in the following: 

( )
⎩
⎨
⎧ ≤

=
otherwise.        

, if          
,4 σ

σ
σρ

rr
r                           (10) 

Another two robust error measures investigated here are Lorentizian's estimator ρ5(⋅,⋅) [19] (see Figure 

2(e)) and the trimmed mean M-estimator ρ6(⋅,⋅) [31] (see Figure 2(f)): 

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛+=

2

5 2
11,

σ
σρ rlogr                              (11) 

( )
⎪
⎪
⎩

⎪⎪
⎨

⎧
≤

=
otherwise.        

2

, if          
2, 2

2

6 σ

σ
σρ

rr

r                            (12) 

Property 7: (i) Each member of
4ρH  is minimal 1-feasible.  (ii) Each member of

5ρH is minimal 

2-feasible.  (iii) Each member of
6ρH is minimal 2-feasible. 

pf: See [6]. 

Notice that all the minimal feasible values of the commonly used non-decreasing robust error 

measures investigated above are 1 or 2, which are indeed small values. 

In the following, we investigate an M-estimator that is not non-decreasing, the triweight M-estimator 

ρ7(⋅,⋅) [32]: 

( )
⎪
⎩

⎪
⎨

⎧

≤<
≤

=
otherwise.                             0

,3 if                           
, if                               

, 2

2

7 σσσ
σ

σρ r
rr

r                      (13) 
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Since each member of 
7ρH  is not non-decreasing, the process of template matching can not be 

speeded up with our approach if ρ7 is selected to be the robust error measure. 

Finally, we investigate the non-decreasing error measure shown as follows, where k∈N+. 

            ( ) krr =σρ ,8 ,                               (14) 

Property 8: Each member of
8ρH is minimal k-feasible. 

pf: Trivial. 

When k=1 (or k=2), ρ8 becomes the SAD (or SSD) error measure.  The SAD and SSD are therefore 

minimal 1-feasible and minimal 2-feasible, respectively.  Hence, our method can also be used to 

speed up the template matching process where SAD or SSD is used as the error measure. 

III. Search Strategy and The Main Algorithm 

A.  Search Strategy 

Once an ascending lower bound list of the matching error is available for every search position (u,v), 

many search strategies [26][25][7] can be used to speed up the process of robust template matching in 

our work.  A brief review of these search strategies is given below.  Without loss of generality, the 

p-pyramid serves as the pyramidal structure for describing these methods.  We refer to p-pyramid as 

pyramid in the following.  Consider a template It and a set of image blocks Fu,v (-W ≤ u,v ≤ W) to be 

matched, where It and Fu,v are both N×N images.  Assume that the associated p-pyramids have been 

constructed for It and all of the Fu,v, -W ≤ u,v ≤ W, respectively. 

In [26], only the highest level and the lowest level of the pyramids were used.  The search order of 

the matching process is fixed and, without loss of generality, assume that the matching process starts 

from F-W,-W and the search is performed in a row-major order.  First, the error SRDτ(F-W,-W, It) is 

computed as a reference value, r.  Then, assume that (u',v') is the next site to be visited in the 

matching order.  We try to find out whether the robust error measure SRDτ(Fu′,v′ , It) is smaller than r.  

We do not compute SRDτ(Fu',v' , It) directly.  Instead, we first compute ( )tvu
p IFSRD ,,

,0
′′τ , the error 

associated with the highest levels of the pyramids of It and Fu',v'.  If ( )tvu
p IFSRD ,,

,0
′′τ  is larger than 

the current reference value r, we do not have to further compute SRDτ(Fu',v', It) because 

( )tvu
p0 IFSRD ,','

,
τ  is a lower bound of SRDτ(Fu',v', It).  Therefore, early in the process we can jump 

out of the process of matching It and Fu',v' and go on to match the next image block in the row-major 
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order.  On the other hand, if ( )tvu
p IFSRD ,,

,0
′′τ  is smaller than the current reference value r, we must 

compute SRDτ(Fu',v', It) and compare it with r.  If SRDτ(Fu',v', It) is smaller than r, the current reference 

value, then r is replaced by SRDτ(Fu',v', It).  The above procedure can be repeated iteratively.  

Remember that the computation complexity of ( )tvu
p0 IFSRD ,','

,
τ  is 

n4
1  of that required for 

SRDτ(Fu',v', It), and thus such an early jump-out effect saves considerable computation time.   

Lee and Chen [25] extended the idea of [26], using not only the highest and the lowest levels, but all 

the levels of the pyramids.  First, the error SRDτ(F-W,-W, It) is also computed as a reference value, r.  

Then, once we begin to match It and Fu',v' for some (u',v') depicted above, not only is ( )tvu
p IFSRD ,,

,0
′′τ  

computed, but a set of increasingly larger lower bounds, ( )tvu
p IFSRD ,,

,0
′′τ , ( )tvu

p IFSRD ,,
,1

′′τ , 

( )tvu
p IFSRD ,,

,2
′′τ , ..., are also computed in turn if necessary.  Once some ( )tvu

pi IFSRD ,,
,

′′τ  (i = 0, 

1, ..., n) is larger than the current reference value r, we have no need to compute all the other 

( )tvu
pj IFSRD ,,

,
′′τ  for j = i+1, ..., n, and the matching process between It and Fu',v' can be terminated.  

We can then jump to another matching process between It and the next image block of Fu',v' in the 

row-major order.  This method can be treated as using a depth-first search procedure in visiting the 

search tree as shown in Figure 3, and pruning the search branches once the computed error associated 

with the tree vertex is larger than the current reference value. 

Recently, Chen et al. [7] extended the above method by exploiting the uniform cost search [34] in the 

tree instead of the depth-first search, so that the search order is not fixed.  First, the smallest value 

among all the errors of the highest level is found: 

( )tvu
p IFSRD ,**,

,0
τ = min(the elements of A), 

where A = { ( )tWW
p IFSRD ,,

,0
−−τ , ( )tWW

p IFSRD ,1,
,0

+−−τ , ..., ( )tWW
p IFSRD ,,

,0
τ } is referred to as the 

active list, and (u*,v*) is referred to as the temporary winner.  Then, the error of the temporary 

winner in its next lower layer, ( )tvu
p IFSRD ,**,

,1
τ , is computed.  Next, the active list is updated by 

replacing ( )tvu
p IFSRD ,**,

,0
τ  with ( )tvu

p IFSRD ,**,
,1

τ : 

A ← A ∪ { ( )tvu
p IFSRD ,**,

,1
τ } \ { ( )tvu

p IFSRD ,**,
,0

τ }, where “\” is the set difference. 

Then, the new minimal value among the elements in the new active list can be found: 

( )tvu
pi IFSRD ,**,

,
11τ  = min(the elements of A) 

where i is now either 0 or 1, and a new temporary winner, (u*,v*) is obtained.  Repeat the above 

procedure of alternately updating the active list and finding the minimal value of the elements 
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contained in it.  Then, the minimal matching error can be found when (u*,v*) reaches the lowest 

level.  In general, this method can prune more unnecessary branches because the uniform cost search 

strategy is used. 

Once the p-pyramids have been constructed for the template and image blocks using the method 

introduced in this paper, it can be incorporated into any of the search strategies introduced above in 

order to speed up the process of robust template matching.  In this work, the search strategy 

developed in [7] is adopted because the experimental results in [7] show that better speedup 

performance can be obtained compared with other approaches for non-robust template matching. 

B.  Main Algorithm 

The algorithm of our approach using the uniform cost search for fast robust template matching is 

given below: 

Step 1.  Initially, set A = { ( )tWW
p IFSRD ,,

,0
−−τ , ( )tWW

p IFSRD ,1,
,0

+−−τ , ..., ( )tWW
p IFSRD ,,

,0
τ }. 

Step 2.  Find (u*, v*) such that ( )tvu
p IFSRD ,**,

,0
τ  is the minimum among all the elements contained 

in A. 

Step 3.  i ← 0. 

Step 4.  While (i≠n) 

4.1.  Compute ( )tvu
pi IFSRD ,**,

,1+
τ . 

4.2.  A ← A ∪ { ( )tvu
pi IFSRD ,**,

,1+
τ } \ { ( )tvu

pi IFSRD ,**,
,

τ } 

4.3.  Find (u*, v*, j) such that ( )tvu
pj IFSRD ,**,

,
τ  is the minimum among all the elements contained 

in A. 

4.4.  i ← j. 

end While 

Step 5. Output (u*, v*). 

The above algorithm applies the “uniform cost search” [34] to the tree illustrated in Figure 3, which 

guarantees to find the global minimum solution as demonstrated in the following.  When the 

algorithm goes to step 5, we know that ( )tvu
pn IFSRD ,**,

,
τ  is the minimum among all the elements 

contained in A.  In addition, from Theorem 1, the matching error computed for any two images on 

the level n is not smaller than that for the other levels.  Assume that A = { ( )tWW
pn IFSRD WW ,,

,,
−−

−−
τ , 

( )tWW
pn IFSRD WW ,1,

,1,
+−−

+−−
τ , …, ( )tWW

pn IFSRD WW ,,
,,

τ }.  Then, ( )tji
pn IFSRD ,,

,
τ  ≥ ( )tji

pn IFSRD ji ,,
,,

τ ≥ 

( )tvu
pn IFSRD ,**,

,
τ  for all ( )tji

pn IFSRD ji ,,
,,

τ ∈ A, or equivalently, for all –W≤i,j≤W, which shows that 
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( )tvu
pn IFSRD ,**,

,
τ  is the global minimal on the level n. 

In fact, instead of from the highest to the lowest levels (i.e., from level 0 to level n), the search process 

can also be performed from an arbitrary middle level, say m (0<m<n), to the lowest level, n.  This 

can simply be achieved by replacing each pSRD ,0
τ  with pmSRD ,

τ  in the Steps 1 and 2 of the main 

algorithm, and further modifying Step 3 to be i = m.  However, in our experience, it is better to 

select the starting level based on the ratio of outliers.  In particular, we find that starting from a 

middle level (instead of the highest level) usually makes the process of robust template matching 

more efficient in practice.  This is because the outliers contained in the template are included in the 

highest level image, although they may not be included in some middle level images.  Some 

experimental results for the speedup versus different combinations of the starting levels and outlier 

ratios are shown in Section IV. 

In practice, some standard methods [30][38][40] can be used to estimate an appropriate value for the 

parameter σ in robust estimation.  For example, the “median absolute deviation” scale estimate, 

which is related to the median of the absolute values of the residuals, is given by 

ii
rmedianpn ⎥⎦

⎤
⎢⎣
⎡

−+= )(
514826.1σ̂ ,                          (15) 

where the constant 1.4826 is a finite sample correction factor, n is the size of the data set, p is the 

dimension of the parameter vector, and ir  is the residual error. 

IV. Experimental Results 

In this section, we present the results of three different experiments, including signal matching, face 

template matching, and motion estimation. 

A. Signal Matching 

In this experiment, we perform a simulation of searching a particular 1-D pattern along a 8192-point 

input signal, ranging from 0 to 255, which is synthesized using a linear regression model.  Four such 

input signals are used for this experiment, and one of them is shown in Figure 4(a).  We first 

randomly extract a 512-point partial segment, which is called the true identity signal, from an input 

signal.  A 512-point test signal can then be generated by adding both Gaussian noise and some 

outliers to the true identity signal, as shown in Figures 4(b), 4(c), and 4(d), respectively.  The outlier 

ratio (i.e., the ratio of the number of outlier points to the length of a test signal, 512) varies from 0 to 

0.15.  Then the test signal is used as a template and we try to find its matching segment in the input 
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signal from which the test signal is extracted.  In fact, this experiment simulates stereo matching (i.e., 

matching along a scan-line or epi-polar line) in computer vision [20].  Here, the SRD is used as the 

matching criterion.  For each input signal and each outlier ratio, we first randomly generate 30 test 

signals and then find their matching segment in the input signal.  The simple-truncation function (10) 

is used in this experiment as a robust error measure to suppress the effects of outliers.  If the 

matching segment is not equal to its true identity signal, a miss occurs.  Otherwise, a hit occurs.  In 

this experiment, high average hit ratios ranging from 99.7% to 99.8% are achieved for all outlier 

ratios tested, which indicates that the M-estimator is very useful for suppressing the outlier effects.  

In the following, we focus on the main issue of this paper, the speedup of robust template matching, 

by comparing the efficiencies of our method with respect to those of the FS method. 

First, we investigate the advantage of our method for the reduction of the major operations involved in 

the SRD computations.  We define a robust operation to be the computation of the robust error 

measure ρ(⋅,⋅), and computing ρ(⋅,⋅) n times is therefore referred to as that n robust operations are 

performed.  The robust operation is generally the most critical part for obtaining an SRD.  The 

efficiency improvement with our method is evaluated by comparing the following two ratios: (1) the 

ratio of robust operations involved in our method to that in the FS method, and (2) the ratio of the 

execution time with our method to that with the FS method.  These two ratios are referred to as the 

operation count ratio and the time consumption ratio, respectively.  Evaluation of the efficiency 

improvement based on the operation count ratios is machine independent, but some additional 

computational overheads such as the construction of the p-pyramids and the switching among the 

search braches can not be reflected by the operation count ratios.  On the other hand, evaluation 

based on the time consumption ratios includes all the overheads, but is machine dependent.  In this 

experiment, both the operation count ratios and time consumption ratios are computed for evaluations 

and comparisons.  In the setting of this experiment, there are a total of 10 levels (level 0 to level 9) in 

the pyramid because the length of the test signal, 512, is equal to 29.  Remember that our algorithm 

can start from any of the middle levels, as described in Section IV.  Therefore, we also compare the 

speedup effect when the matching processes start from different initial levels in this experiment. 

Since the simple truncation function is minimal 1-feasible, the 1-pyramid is constructed for robust 

template matching with our method.  The operation count ratios using 1-pyramid are shown in 

Figure 5(a).  From Figure 5(a), the operation count ratio varies overall from 0.1 to 0.48 when the 

outlier ratio varies from 0 to 0.15, if the middle value of the operation count ratios serves as a 

representative for each outlier ratio.  This shows that our method can successively reduce the number 

of the major operations required for robust template matching, and the smaller the outlier ratio, the 

more reductions are achieved.  An interesting phenomenon is that the best starting level (i.e., the 

starting level associated with the smallest operation count ratio) for each outlier ratio is a middle level.   
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For example, when the outlier ratio lies in [0 0.02], the best starting level is 5; whereas when the 

outlier ratios are increased to be within [0.04 0.08] and [0 .1 0.15], the associated best starting levels 

become 6 and 7, respectively.  The reason for this is that the outliers are easily to be included in the 

accumulation process for building a high level image in the pyramid, and thus almost all the lower 

bounds with respect to a high level image are required to be computed in the search process.  On the 

other hand, when starting from a low level image, the lower bounds may not be tight enough to prune 

the search branches.  Another interesting phenomenon is that the best starting level becomes lower as 

the outlier ratio increases.   

Figure 5(b) shows the time-consumption ratios taking into account not only the major operations but 

all the computational overheads such as pyramid constructions and controlling processes of search.  

The test was performed on a PC with the Visual C++ language, and the middle levels, 5, 6, 7, and 8 

were used as the starting levels, respectively.  From Figure 5(b), the time consumption ratio varies 

overall from 0.4 to 0.6 when the outlier ratio varies from 0 to 0.15, indicating that our method can 

also increase the efficiency of robust template matching in practice.  Similarly, the best starting level 

becomes lower when the outlier ratio increases, and the best time consumption ratio varies from 0.2 to 

0.4.  Hence, if priori knowledge about the outlier ratio of the template matching problem to be 

solved is given in advance, this can serve as a guideline to choose the best (or a better) starting level. 

Notice that the simple truncation is minimal 1-feasible, and it is therefore also p-feasible for all p∈[1 

∞].  In the following, different p-pyramids (1-pyramid, 2-pyramid, and ∞-pyramid) are respectively 

constructed to compare their efficiencies when they are incorporated into our method.  Their average 

operation count and time consumption ratios are summarized in Table 1, showing that the speedup 

performance degrades when either the 2-pyramid or the ∞-pyramid is used.  This matches our claim 

above that the closer is p to its minimal feasible value, the better speedup is achieved when the 

p-pyramid is used.   

A summary of the above experimental results is given below.  First, the hit ratio is high when the 

technique of robust template matching is used, confirming that the SRD can suppress the affection of 

outliers.  Second, from both the operation count and the time consumption ratios, our method is more 

efficient than the FS method.  The amount of speedup achieved depends on many issues such as 

outlier ratios, starting levels, and the p-pyramid being used.  In practice, the starting level should be 

selected according to the outlier ratio.  If an estimation of the outlier is available in advance, the best 

starting level can be chosen according to the corresponding simulation results.  As for which 

p-pyramid is suitable to be adopted in our method for a given robust error measure, it is suggested that 

the closer is p to its minimal feasible value, the more speedup is achieved. 
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Table 1.  Comparisons of average time consumption ratio (tc) and average operation count ratios 
(oc) of our method when 1-pyramid, 2-pyramid, and ∞-pyramid are used. 

 
  1-pyramid 2-pyramid ∞- pyramid 

  oc tc oc tc oc tc 
start from level 8 0.5 0.755 0.5 0.716 0.506 0.696 

start from level 7 0.25 0.441 0.256 0.436 0.291 0.468 

start from level 6 0.13 0.268 0.142 0.297 0.259 0.474 

 
ou

tli
er

 ra
tio

 
0~

0.
4  

start from level 5 0.102 0.250 0.139 0.331 0.314 0.629 

start from level 8 0.5 0.735 0.501 0.715 0.525 0.692 

start from level 7 0.25 0.419 0.269 0.443 0.392 0.595 

start from level 6 0.159 0.292 0.246 0.449 0.462 0.76 

ou
tli

er
 ra

tio
 

0.
5~

0.
9  

start from level 5 0.22 0.458 0.309 0.619 0.536 0.951 

start from level 8 0.5 0.714 0.507 0.707 0.588 0.753 

start from level 7 0.255 0.381 0.353 0.541 0.588 0.828 

start from level 6 0.365 0.582 0.470 0.758 0.730 1.081 

ou
tli

er
 ra

tio
 

0.
10

~0
.1

5  

start from level 5 0.429 0.737 0.533 0.904 0.796 1.234 

 

B. Face Template Matching 

We perform face template matching experiments in a face-only database [27], which can be used for 

the application of finding a particular person in a database.  We use 1000 images of 100 persons, 

where each person has 10 images with distinct poses or expressions per person.  Each image size is 

normalized to be 64x64 and part of this subset is shown in Figure 6(a).  For each person, we 

randomly select one of his (or her) images to be the test image, and the other 9 images remain in the 

database.  Hence, there are a total of 900 images contained in the database in our experiment.  All 

test images are contaminated by pepper-and-salt noise that is used as outliers, with the outlier ratios 

varying from 0 to 0.15.  Figure 6(b) shows the contaminated images of a person with different outlier 

ratios.  Such an experimental setup is similar to that shown in [24], but in our case the templates are 

polluted with outliers.  Given a test image, we match it with the 900 images contained in the 

database and find the most similar one with the least sum of robust differences.  The person with 

respect to the most similar image is then served as the recognized one.  The matching experiment is 

performed for all of the 100 test images, and the average recognition rate (i.e. the hit ratio) is 

recorded. 

Four different robust estimators, Huber’s estimator, Tukey’s estimator, Geman and McClure’s 

estimator, and the trimmed mean M-estimator, are used in this experiment.  Based on (15), the 

parameter σ used in these estimators was determined by performing several random matches to 
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estimate ii
rmedian  in advance.  The associated 2-pyramids are constructed based on these robust 

estimators to speed up the corresponding robust template matching processes.  First, we compare the 

recognition performances of template matching, using the above four robust estimators to that using 

the SSD criterion.  Figures 7(a), 8(a), 9(a), and 10(a) show the comparison results for Huber’s 

estimator, Tukey’s estimator, Geman and McClure’s estimator, and the trimmed mean M-estimator, 

respectively.  From these figures, the hit ratios obtained using SRD are generally better than those 

obtained using SSD, no matter which estimators are used.  In particular, the hit ratios obtained by 

using Tukey’s estimator and Geman and McClure’s estimators consistently perform better than those 

using SSD in all experiments, no matter which outlier ratios are tested.  This observation also 

confirms that the M-estimator can deal with outliers better.   

In the following, we present the speedup performances of our method.  In particular, we focus on the 

time consumption ratios in this experiment.  Since the pyramids of the images contained in the 

database are constructed offline for this application, the pyramid-construction time for the images 

contained the database is not included in the time consumption ratio in this experiment.  However, 

note that the pyramid construction time of the test image has remained to be included in the 

computation of time consumption ratios.  The time consumption ratios of the above four robust 

estimators are shown in Figures 7(b), 8(b), 9(b), and 10(b), respectively.  From these figures, it can 

be seen that our method can increase the efficiencies for the face template matching for different kinds 

of robust estimators.  In essence, the smaller is the outlier ratio, the better speedup is achieved.  In 

particular, the speed performances depend on what kind of robust estimators are used.  For example, 

the speedup performances are better when Huber’s estimator, Tukey’s estimator, and the trimmed 

mean M-estimator are used, than that when Geman and McClure’s estimator is used.  A possible 

reason for this is that the lower bounds derived for the former estimators are tighter than those for the 

latter. 

C. Motion Estimation 

In the last experiment, we use our method for robust motion estimation in a sequence of images. Each 

image in the sequence is segmented into a set of blocks, and we try to find the motion vector for each 

block.  Assume that one image in the sequence is polluted with outliers, and the robust template 

matching technique is used for motion estimation when outliers occur.  The Salesman image 

sequence is used as a test sequence where each frame is of size 352×288.  Two different block sizes 

(16×16 and 32×32) and their corresponding search ranges (about twice as large as the block size, 

[-16,16] × [-16,16] and [-32,32] × [-32,32]) are tested in this experiment.  Given a pair of two 

consecutive frames, where one is polluted as shown in Figure 11, we use the simple truncation (10) as 

the robust error measure for robust template matching to find the motion vectors.  The time 
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consumption ratios (that consider all the computational overheads) and the operation count ratios are 

shown in Figure 12, respectively.  The experimental results show that our method can also improve 

the efficiency for robust motion estimation. 

V. Discussion 

From the experimental results, the efficiency improvement of our method improves if the outlier ratio 

gets smaller.  In fact, the time-consumption ratio may exceed a value of one in our experiment when 

the outlier ratio is too large, which means that our method cannot speed up the matching process in 

this case.  However, since the estimation problem is itself more difficult to solve accurately when the 

outlier ratio is too large, our method can be treated as dealing with common cases of robust template 

matching when M-estimators are used. 

One possible means to allow large outlier ratios is to make the lower bounds tighter.  In fact, the set 

of ascending lower bounds (accompanied with the minimal feasible value and the p-pyramid structure) 

derived in this paper is generally available for all non-decreasing robust error measures.  

Improvement is thus possible by tightening the lower bounds for a particular error measure, although 

the improved set of lower bounds may not be able to be used for other error measures.  To achieve 

this goal, we can take advantage of the specific mathematical form of each of the error measures and 

derive new theoretical bounds and pyramid structures.  Such an improvement remains an open 

problem and to be investigated in the future. 

Our main algorithm was presented to tackle the matching problem with translation.  When dealing 

with a problem with rotation or scaling, a useful strategy is to generate a set of templates by rotating 

and scaling the pattern to be matched in advance [21][37].  In this case, a p-pyramid can be produced 

for each template and our algorithm can then be applied for speeding up the matching process with 

these templates.  Such a pre-transforming/pre-storing process is suitable for applications where 

offline processing is allowed, such as the face-matching task shown in the experimental results of this 

paper.  Another way for dealing with rotation (or illumination variation) is to use rotationally 

invariant (or lighting-invariant) features such as moment invariants [10].  By this way, the templates 

need to be pre-processed to extract their invariant feature vectors.  To our best knowledge, however, 

there is no analysis about the sensitivities of the invariant vectors to outliers, and thus it is possible 

that they are not robust enough for matching with outliers.  Nevertheless, when the noise model is 

Gaussian and a common SSD measure is applied for matching the feature vectors, our method can 

also be used to speed up the matching process by building the 2-pyramids associated with the 

invariant feature vectors in advance. 6  In addition, another widely- used way for dealing with 

 
6  Note that extraction of moment invariants can itself be speeded up with some other fast algorithms [9]. 
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illumination variation is to perform histogram equalization [18]. 

Another issue from the experimental results is that the best starting level becomes lower as the outlier 

ratio gets smaller.  How to determine the best (or a better) starting level in an analytic way when the 

outlier ratio and a particular robust error measure are given also remains an open problem.  In the 

meantime, the best starting level can be determined through a simulation process by taking some 

training examples from the problem to be solved. 

VI. Conclusions 

In this paper, we have developed a systematic method that can be used to speed up the process of 

robust template matching when the error function is non-decreasing.  We proposed the p-feasible 

related theory in Section II, which serves as a basis for constructing a hierarchical structure, the 

p-pyramid.  This pyramid can then be used to generate a set of ascending lower bounds of the 

minimal matching error.  As long as the error function is non-decreasing, there exists a p making this 

function p-feasible.  We have also shown that the smaller is p, the more efficient is the associated 

fast algorithm.  In addition, many commonly used non-decreasing robust estimators are minimal 

2-feasible or minimal 1-feasible, as shown in Section II.E. 

By exploiting the property that the computations of the lower bounds generated with our method are 

more efficient than the computation of the matching errors directly, some fast search strategies can 

thus be used to speed up the matching process, as shown in Section III.A.  In this paper, the uniform 

cost search strategy is adopted, and the experimental results show that our method can successfully 

increase the matching efficiencies when outliers exist. 

A characteristic of our method is that it is easily generalized as not finding only the site with the 

minimal matching error, but a series of sites having the k minimal matching errors.  To compute the 

k minimal matching errors, we do not need to perform our algorithm k times, but continuously execute 

the best-search procedure shown in Section III.B until k leaf nodes have been computed.  Hence, the 

robust k-nearest neighbor problem can be solved in a unique procedure.  Moreover, our method can 

also be used for improving the matching efficiency if a sub-optimal or approximate solution is 

allowed to be generated instead of the solution with the minimal matching error.  This can be 

achieved by using a middle level, instead of the lowest level, as being the level containing the leaf 

nodes. 

To our knowledge, this is the first approach proposed to speed up the process of robust template 

matching.  The method proposed in this paper gives a generally useful scenario for solving this type 
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of problem.  Our method also provides some significant research directions that can be further 

studied, including the investigations of tighter lower bounds, the generalizations to include the error 

measures that are not non-decreasing, and the analytical decisions for best starting levels. 

Appendix A: Proof of Property 2 

Proof: If a robust error measure τ(⋅) is p-feasible, to prove that τ(⋅) is also q-feasible for all q∈[p ∞] is 

equivalent to prove that τ(⋅) satisfies the following inequality for all q∈[p ∞]. 

∀a1,a2∈R+∪{0}, τ(a1)+τ(a2)≥τ(||a||q)                   (A.1) 

We first introduce three lemmas before proving (A.1) for all q∈[p ∞].  In the following, assume that 

x=[x1 x2]t ∈R2.  In addition, we denote, { }1|. ≤=
αα

xxB , to be the unit ball with respect to the Lα 

norm. 

Lemma 1. [ ]
α

α . and  1 If Bx ∈∞∈ , then 1≥|x1|≥0 and 1≥|x2|≥0.  

Proof: trivial. 

Lemma 2. If α,β∈[1 ∞] and β≥α, then
βα .. BB ⊆ . 

Proof:  We prove this lemma by considering the following two cases,α<β andα=β. 

Case 1(α<β): 
α.Bx ∈∀  
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Case 2(α=β):trivial.  

From the above two cases, if α,β∈[1 ∞] and β≥α, then
βα .. BB ⊆ . 

Lemma 3. If α,β∈[1 ∞] and 
βα .. BB ⊂ , then ∀x, ||x||α≥||x||β . 

Proof: see p. 282 in [17]. 

From Lemma 2 and Lemma 3, we know that if α,β∈[1 ∞] and α ≤ β, then ∀x, ||x||α≥||x||β.  Since τ(⋅) 



 21

is p-feasible and ||x||p≥||x||q for all q∈[p ∞], then (A.1) holds for all q∈[p ∞].  Hence, τ(⋅) is also 

q-feasible for all q∈[p ∞]. 

Appendix B: Proof of Theorem 1 

Proof:  Given a robust error measure τ(⋅) that is p-feasible, for all m∈{0,1,…,n-1}, 
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where the first two inequalities are based on constraint (4), and the last inequality is derived from both 

the triangle inequality 7 and the fact that τ(⋅) is non-decreasing. 

Appendix C: Proof of Property 4 

Assume that τ(⋅) belongs to 
1ρH .  To prove that τ(⋅) is minimal 2-feasible is equivalent to showing 

that τ(⋅) is 2-feasible but not 1-feasible.  Since it is trivial that τ(⋅) is both non-decreasing and not 

1-feasible, we focus on the proof of the fact that τ(a1)+τ(a2)≥τ(||a||2) for all a1,a2∈R+∪{0}.  Without 

loss of generality, assume that 0≤ a2≤ a1≤||a||2 , and consider the following four cases: 

 
7 Given two vectors a and b, ||a-b||p≥

pp
ba −  
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 Case 1 (σ ≥||a||2≥ a1≥ a2 ≥0): 

( ) ( ) ( ) 0
222

,,,
2
2

2
1

2
2

2
1

212111 =
+

−+=−+
aaaaaa σρσρσρ a           (C.1) 

 Case 2 (||a||2≥σ ≥ a1≥ a2 ≥0): 

( ) ( ) ( )
222

,,,
2

2
2

2
1

2
2

2
1

212111
σσσρσρσρ ++−+=−+ aaaaaa a .   (C.2) 

Since ( ) 0
2

2
2

2
1

22
2

2
1 ≥+≥

++ aaaa σσ  according to the arithmetic-geometric inequality, (C.2) 

≥0.  

 Case 3 (||a||2≥ a1≥σ ≥ a2 ≥0): 

( ) ( ) ( ) 2
2

2
1

2
2

1212111 2
,,, aaaaaa +−+=−+ σσσρσρσρ a        (C.3) 

Since ( ) ( ) 0
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2
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2
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2
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⎠

⎞
⎜⎜
⎝

⎛
+

aaaaaaaaaaa σσσσσσ and both two 

terms 2
2

2
1

2
2

1  and 
2

aaaa ++ σσ  are nonnegative, (C.3) ≥0. 

 Case 4 ( |a||2≥ a1≥ a2 ≥σ >0):  

( ) ( ) ( ) ⎟
⎠
⎞

⎜
⎝
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,,, 2

2
2
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Since ( ) ( ) ( ) 0
44

2
2

2
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21 >+−+−=+−−=+−⎟
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⎞

⎜
⎝
⎛ −+

σσσσσσσ aaaaaaaaaaaa  and 

both two terms 2
2

2
121  and 

2
aaaa +−+

σ are nonnegative, then (C.4) ≥0.  

The union of the above four cases shows that τ(a1)+τ(a2)≥τ(||a||2) for all a1,a2∈R+∪{0}. 
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Figure 1.  This figure demonstrates the p-pyramid constructed from a 1-d signal where each element 
in higher levels is composed of its two son elements.  Five p-pyramids are depicted in solid or 
dashed lines.  The three black nodes are the ones that are shared between two pyramids. 
 
 

 
Figure 2.  Shapes of commonly used M-estimators with threshold σ=70.  (a) The shape of ρ1.  (b) 
The shape of ρ2.  (c) The shape of ρ3.  (d)The shape of ρ4.  (e)The shape of ρ5.  (f)The 
shape of ρ6.
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Figure 3.  Illustration of the search strategies introduced in Section 3.A.  The Li and Salari method 
[26] only searches the layer 0 and layer n of the tree in a depth-first order.  The Lee and Chen 
method [25] searches the entire tree in a depth-first order.  Both methods prune the search branches 
by comparing the current reference value with the error associated with the vertex.  The Chen et al. 
method [7] uses the uniform cost search [34] (the branch-and-bound strategy) for the entire tree to 
prune the unnecessary search branches. 
 

 
 
Figure 4.  (a) One of the synthetic input signals.  (b),(c) and (d) The process of generating a test 
signal from an input signal. 
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(c) Adding gaussian 
noise 

(b) Extraction of a 
partial segment 

(a) An input signal 

(d) Adding impulse 
noises that serve as 
outliers.  In this case, 
the outlier ratio is 0.05.



 27

 
(a) 

 
(b) 

 
Figure 5.  Comparisons between our method and the FS method for robust template matching in the 
signal matching experiment are shown.  Note that simple truncation and the 1-pyramid are used in 
this experiment.  (a) The operation count ratio vs. outlier ratio.  (b) The time consumption ratio vs. 
outlier ratio. 
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(a)                      (b)                      

Figure 6.  (a) Part of a face-only database used in this paper, showing 100 images from 10 people 
with 10 images for each person (b) Contaminated images of a person with different outlier ratios.  
From left to right, top to bottom, the outlier ratios are set from 0 to 0.1. 
 

 
(a)                                     (b)                   

Figure 7.  Comparisons between the SSD and SRD using Huber's estimator.  (a) The hit ratio vs. 
outlier ratio.  (b) The time consumption ratio vs. outlier ratio.   
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(a)                                    (b)                   

Figure 8.  Comparisons between the SSD and the SRD using Tukey's estimator.  (a) The hit ratio 
vs. outlier ratio.  (b) The time consumption ratio vs. outlier ratio.  
 

 
(a)                                    (b)                   

Figure 9.  Comparisons between the SSD and the SRD using Geman and McClure's estimator.  (a) 
The hit ratio vs. outlier ratio.  (b) The time consumption ratio vs. outlier ratio. 
 

 
(a)                                     (b)                   

Figure 10.  Comparisons between the SSD and the SRD using the trimmed mean M-estimator.  
(a) The hit ratio vs. outlier ratio.  (b) The time consumption ratio vs. outlier ratio. 
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(a)                 (b)                           

Figure 11.   An example of a pair of two consecutive frames for motion estimation. (a) The 
previous frame.  (b) The current frame.  Notice that the outlier ratio in (b) is 10%. 

 
           

 
(a)                                 (b)                        

 
(c)                                (d)                        

Figure 12.  (a) The operation count ratio vs. outlier ratio when the block size is 16×16.  (b) The 
time consumption ratio vs. outlier ratio when the block size is 16×16.  (c) The operation count ratio 
vs. outlier ratio when the block size is 32×32.  (d) The time consumption ratio vs. outlier ratio when 
the block size is 32×32.   
 


