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Fast Block Matching Algorithm Based on the
Winner-Update Strategy

Yong-Sheng Chen, Yi-Ping Hung, and Chiou-Shann Fuh

Abstract— Block matching is a widely-used method for stereo vision, The displacement between these two corresponding pixels, re-
visual tracking, and video compression. Many fast algorithms for block  ferred to as the motion vector, and the prediction residual are

matching have been proposed in the past, but most of them do not guaran- . . . .. .
tee that the match found is the globally optimal match in a search range. coded in the data stream. Usua”y’ each Image 1s divided into

This paper presents a new fast algorithm based on the winner-update strat- Nonoverlapping blocks. The motion vectors for all the pixels in
egy which utilizes an ascending lower bound list of the matching error to  one block are treated as one single vector to be estimated. This

determine the temporary winner. Two lower bound lists derived by using ; _ ; i ;
partial distance and by using Minkowski’s inequality are described in this kind of block-based motion compensation is widely adopted by

paper. The basic idea of the winner-update strategy is to avoid, at each Vid€0 coding standards [1], [2], [3], [4] due to its simplicity.
search position, the costly computation of matching error when there ex-  The block-based motion vectors can be estimated by using

ists a lower bound larger than the global minimum matching error. The  p|gck matching which minimizes a measure of matching error.
proposed algorithm can significantly speed up the computation of the block '

matching because The ma.tchmg error between 'the block at posn'(qmy) in the
1) computational cost of the lower bound we use is less than that of the Currentimage/;, and the candidate block at positior-u, y +
matching error itself; v) in the reference imagé;_1, is usually defined as the sum of

2) an element in the ascending lower bound list will be calculated only absolute difference (SAD)
when its preceding element has already been smaller than the minimum

matching error computed so far; B—-1B-1
3) for many search positions, only the first several lower bounds in the _ . N
list need to be calculated. SAD () (u,v) = Z Z [1e(z + 4,y +7)
Our experiments have shown that, when applying to motion vector es- j=0 =0
timation for several widely-used test videos, 92% to 98% of operations L q(x+u+i,y+v+j), (1)

can be saved while still guaranteeing the global optimality. Moreover,
the proposed algorithm can be easily modified either to meet the lim- \yhere the block size i8 x B. SAD will be referred to as

ited time requirement or to provide an ordered list of best candidate th let tchi ofor it ti the
matches. Our source codes of the proposed algorithm are available at €complete matching errofor 1ts summation over the “‘com-

http://smart.iis.sinica.edu.tw/html/winup.html. plete” block or the “complete” summation set. In this paper, the
Index Terms—Block matching, fast algorithm, Minkowski's inequality, ~—best estimate of the mation vectdf;, ¢), is defined to be the
motion estimation, winner-update strategy. (u,v) which minimizesSAD, . (u, v). This estimate(a, 0),
can be obtained by using the full-search (FS) algorithm which
I. INTRODUCTION calculates and compares the SADs for all the search positions,

BLOCK matching technique has been widely used for finé-(x +u,y+v)}, inthe reference imagé, -, Thatis,

ing the corresponding points in stereo vision, visual track- (a,0) = arg min SAD(, . (u,v), (2)
ing, and video compression. In this paper, we focus our dis- (u,v)€S
cussion of fast block matching algorithm on its application tQnere § — {(w,0)] = R < w,v < Rand(z + u,y +

motion vector estimation for video compression. However, thg is g valid position inZ,_ } is the search seind R is an in-

proposed fast algorithm can be easily applied to other appliggger which determines the search range. This straightforward
tions which need block matching. method takes extremely large amount of computation, although

Video compression is important for efficient transmission arfcan find the motion vector which gives the global minimum of
storage of video data. In order to achieve a high compregatching error.

sion ratio, motion-compensated predictive coding is commonly
used for reducing the temporal redundancy existing in video &- Literature Review

guences. The vf'ilue of a pixel_in thg current image is pre_dicteoﬁn the past, many techniques have been developed to ac-
as the value of its corresponding pixel in the reference imageerate the block matching process. We classify these tech-
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A.1 Category 1. Partial-Search-Set Techniques as
-1
Techniques in this category perform the matching error cal- pgap! w.v) = Iz +i(m).y + i(m))—

culation and comparison within a partial search §étwhich is @y () n;' tl (m), y +(m))
a subset of the complete search sgtdefined in Equation (2). I - .

o i —1 (T +u+ Y+ v+ , (3
The efficiency of these techniques depends on the number of the i@t utilm)y+otjm)), - G)
selected search positions, while the resulted minimum matchingere{(i(m), j(m))|m = 0, ..., B> — 1} is the index set of all
error depends on how the search positions are selected. Cotisepixels in the block. Here, PSAD can be treated as a partial
quently, the design issue of these techniques is how to find thatching error. The index set determines the positions and the
motion vector with small minimum matching error by examinerder of the pixels in the matching block used for the accumula-
ing as smaller number of search positions as possible. tion of PSAD. Suitable positions and order may be raster scan,

The gradient descent techniques, based on the unimodal efRjFal, checkered, or any oth_er predeflne_d order. _
surface assumption, belong to this category. Starting from the©N€ Simple technique in this category is to sBLLbsampIe the pix-
initial value, the motion vector with the local minimum matchels in the matching blocks. For examp}éSAD(jy) (u,v) can
ing error, SAD, can be found by using pixel-by-pixel searche calculated by using a quarter of pixels regularly subsampled
along the conjugate directions or simply the horizontal and vergir each matching block [10]. The motion vector is determined
cal directions [5]. The number of the search positions examined . . . B2 C
depends on the distance between the initial position and the “\}y_choogng the one with m|n|muﬁ’|SAD(z7y) (u, ”)'_ T,h's kind
ley” position with the local minimum SAD. The minimum saDOf techn_|ques cannot guarantee that the global minimum SAD to
obtained is sometimes larger than the global minimum SAD b€ obtained.

cause the search process may be trapped at a local minimum, Another technique, called theartial distance method
11], [12], can be used for speeding up the computation.

)r each search position, the PSADs are calculated from
e§§ID%mvy) (u,v) to PSADF;y) (u,v). During the calculation

Some other gradient descent techniques use the m
resolution search space of motion vectors for the coarse-to-f

search. These techniques divide the search process into se ) : -
search steps. Starting from the origin position,v) — (0,0), process, if one of these PSADs is larger than the minimum

SADs of several coarsely-spaced search positions (i.e., in cozﬂ%a%cmng error Comput_ed so far (which wil be. referred. to as the
resolution) are calculated and the one with the minimum SATP-ar-minimum matching error), the calculation for this search

is selected as the new starting position of the next step. TH@S't'On can be terminated and the calculauon‘of the PSADs

. 2
procedure is repeated several times with smaller and smalfghind can be saved. If the last PSABSAD(, ., (u.v) (
spacing between the search positions (i.e., in finer resolution)>AD(z.) (u; v) ), is computed and it is still smaller than the
until the search positions with spacing of one pixel are exaife-far-minimum matching error, the so-far-minimum matching
ined. The final search position with the minimum SAD is seror will be updated to be thRSAD(), ) (u,v). All the search
lected as the search result. Well-known examples of this kip@sitions are examined one by one and the calculation of many
of techniques include the three-step search (TSS) algorithm [BFADs can be saved. Obviously, this technique can find the
the two-dimensional logarithmic search algorithm [7], and tr@obal minimum matching error.
cross-search algorithm [8]. The number of the search positiongIne variation of the partial distance method is the so-called
examined is roughly constant. Thus the computational costesirly jump-out technique [13]. This technique interrupt the cal-
motion estimation is also roughly fixed. This is a good featugallation of PSADs for each search position when one of the
especially for on-line video compression applications, for e®SADs is large enough compared to a threshold sequence in-

ample, video conference, which prefer static video compressi@igad of the so-far-minimum matching error. In general, this
speed. technique can save more computations than the partial distance

Another important technique in this category is to restrict tH@ethOd' However, it can not guarantee the global minimum

search region in a smaller region determined by the predict@&mhmg error.

motion vector. The value of the motion vector can be predict dAnother yar|at|on qf the partial Q|stap9e method d.e f|n.es anew
%&nd of partial matching error which utilizes the projections (or

from the motion vector of the spatially and temporally adjacent . . . .
blocks together with the hierarchical related blocks because ﬁ?{t'al sums) of the pixel values instead of the plxel v_alues th?m—
motion vectors of these blocks are statistically coherent [9]. Selves [,14]' [15], [16]. It can be p“?"eo,' by using Minkowski's
inequality that the SADs of the projections are smaller than or
equal to the matching error. Hence, the SADs of the projec-
A.2 Category 2: Partial-Matching-Error Techniques tions can be treated as a partial matching error. This kind of
techniques first calculate the complete matching error at the
Techniques in this category accelerate the calculation mfedicted position and use it as the initial value of the so-far-
matching error for each search position. Instead of calculatinimum matching error. For each search position other than
ing the complete matching error, SAD, the technology in thtke predicted one, the partial matching errors (the SADs of the
category calculates partial matching errorwhich needs less projections) are first calculated. The calculation of the com-
computation than SAD and whose value is less than or equaptete matching error can be avoided if any one of the partial
SAD. From Equation (1), for example, we can define the partiadatching errors is larger than the so-far-minimum matching er-
sum of absolute difference (PSAD) bpixels,l = 1,2,...,B2, ror. Otherwise, the complete matching error is calculated and
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then the so-far-minimum matching error is updated to be this 0 £ () £ )
newly computed matching error if it is indeed smaller than the CARD #4 2

so-far-minimum matching error. The major advantage of this P — I P
technique is that it guarantees the global optimality. However, if

the predicted position is not accurate enough (for example, when CARD#3 - 3 - 10
the image sequences contains objects with abrupt motion), the P — : P, :
initial minimum matching error may be quite large. Hence a

lot of useless calculation of the partial and complete matching CARD #2 i L 2 E/ 4

errors will be performed until a position with small complete . —
match!ng error is examined. _In the worst case, _the complete CARD#1 | 3 12 4 8 6

matching errors are monotonically decreasing with respect to

the visiting order of the search positions. For such case, the
computational cost will even be higher than that of using the FS

algorithm. ] ) ) . .
Fig. 1. A simple game for illustrating the concept of the winner-update algo-

. : : rithm. There are five players?y, ..., Ps, and each player is dealt four cards.
A3 Category 3 Hybl’ld TeChmqueS Player P; has finished the accumulation of the values in his/her hand and be-

To speed up the block matching, the techniques in Categor es thg winner. The'temporary accumulatio_ns of the_ others are all greater
L. . an the final accumulation result #%. Hence their remaining calculation can
reduces the number of search positions by choosing a sma&"lzaved_
partial search set. In contrast, the techniques in Category 2
gain their efficiency by reducing the frequency of calculating the
complete matching errors. The techniques in Category 3 comumber of the search positions. The result of the combination
bine the techniques in the above two categories, as descriksethat the guarantee of global optimality is given up, which is
in [10], [17], to further improve the efficiency. Another techinevitable for all hybrid techniques. In this paper, we shall also
nique in this category is the hierarchical method [18] which firptresent the result of combining the winner-update algorithm and
estimates the coarse result of the motion vector in the lower réise TSS algorithm, as an example of the combination.
olution image, and then refines the result in the higher resolutioriThis paper is organized as follows. At first, we introduce the
image within a small search region centering at the coarse restidincept of the winner-update strategy and the proposed algo-
. rithm in Section Il. Then, the combination of the proposed algo-
B. Overview of Our Work rithm and the TSS algorithm is presented in Section Ill. Section
For the application in video compression, the major drawbat¥ presents the experimental results of the proposed algorithm
of not guaranteeing the global minimum is that the compressiaa Well as some previously developed algorithms and compares
ratio is generally lower due to the higher matching error (whidheir performance. Finally, some discussions and conclusions
can be thought of as the prediction residual to be coded). arg¢ stated in Sections V and VI.
this paper, we propose an efficient and simple block matching
algorithm, named the winner-update algorithm. This algorithm, I1. WINNER-UPDATE ALGORITHM
belonging to Category 2, can accelerate the block matching p
cess while still ensuring that the global minimum of the match-
ing error can be obtained. This algorithm utilizes an ascendingln this section, we use a simple game of poker cards to illus-
lower bound list of the matching error to save the computatiofiate the concept of the winner-update algorithm. Suppose there
The two lower bound lists described in this paper are derivage five players in the game and each player is dealt four cards.
by using the partial distance and by using Minkowski’s inequalhe value of each card ranges from 1 to 13. The penalty score
ity. The cost of computing a lower bound of the matching err@f each player is the sum of the values of his/her hand and the
should be less than that of computing the matching error itsgifayer with the minimum penalty score is the winner. The ba-
The basic idea is to avoid, at each search position, the co$it idea is that one does not have to calculate the summation of
putation of the more costly matching error when there exisadl the card values for each player when determining the win-
a lower bound larger than the global minimum matching errarer. If the intermediate summation, or the lower bound of the
The proposed algorithm uses a comparison strategy, called i@l penalty score, for one player has already been greater than
winner-update strategy, to switch the computation among ttfee total penalty score of the winner, then he/she has no chance
search positions depending on the comparison of the updat@avin and hence we can stop calculating his/her penalty score
partial matching error of the temporary winner with g@far- to save some computation. An example is shown in Figure 1.
minimum partial matching errorThe computational efficiency Of course, the penalty score of the winner is not known in ad-
of the winner-update algorithm is irrelevant to the visiting ordefance. But the winner-update strategy explained below can help
of the search positions. By using the proposed algorithm, oritysolve the problem.
a small subset of lower bounds and matching errors are actuallyAt the beginning, we lay all the cards face down except the
calculated. Consequently, the total computational cost canfiyst one of each hand. The lower bound of the penalty score for
significantly reduced. each player is initialized as the value of the first card. Among alll
For further speedup, the proposed algorithm can be easi players, only the temporary winner who has the minimum
combined with the techniques in Category 1 which reduce thlaver bound is allowed to turn up the face of the next card of

. Concept
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TABLE the number of the cards laid facedown, which implies the saved
STEP BY STEP CALCULATION OF THE PENALTY SCORE OF EACH PLAYER Computations, can be enormous.

THE SCORE NUMBERS IN BOLDFACE ARE THE TEMPORARY MINIMA AFTER

EACH STER B. Lower Bound Derived from Partial Accumulation
The process of choosing the winner having the minimum
operation P | P | P3| Py | Ps penalty score in the previously mentioned game resembles the
initialize 3112 4 | 8| 6 process of finding the corresponding block having the minimum
turtnup CARD #2o0fP, | 12 | 12| 4 | 8 | 6 matching error in block matching. Each player in the game
turnup CARD#2ofP; [ 12| 12| 6 | 8 | 6 stands for a search position and the penalty score is the abso-
turnup CARD#3ofP; | 12 [ 12| 9 8 6 lute difference between the values of the corresponding pixels.
turnup CARD#20fP; | 12 | 12| 9 8 | 10 Thus, PSAD defined in Equation (3) represents the temporarily
turnup CARD#2ofP, | 12 | 12| 9 | 21 | 10 accumulated penalty score. Obviously, the following inequality
turnup CARD #4 ofP; | 12 | 12 | 11 | 21 | 10 relationship holds true (subscrifit, y) is dropped for simplic-
turnup CARD #3 ofP5 | 12 | 12 | 11 | 21 | 20 ity):
chooseP; as thewinner| 12 | 12 | 11| 21 | 20 1 9 B2
PSAD" (u,v) < PSAD*(u,v) <--- < PSAD” (u,v)
= SAD(u,v).
As aresult, the list of the partial accumulatig®SAD' (u, v), | =
1,...,B?}, can be used as the lower bound list needed by the
v winner-update strategy. That is,
@ @ 9 @ LB'(u,v) = PSAD' (u,v),l =1,..., K,

where X = B2. This lower bound will be referred to as the

partial-sum lower bound. Notice that the last element in this list,
@ <6> @ @@ LBX (u,v), equals the complete matching erréAD (u,v).

TheseK lower bounds are in ascending order:

LB (u,v) < LB?(u,v) < --- < LB¥ (u,v).

<9> @ Furthermore, the number of pixels used for summing up these
lower bounds are ascending from 1/3.

Next, we use a practical example to give the intuitive feel-
ing of how the computation can be saved with the winner-
update strategy. As shown in Figure 3, the template block
with size16 x 16 in imagel; is matched in the search range

et
i! ([-16,16] x [—16,16]) in imagel;_;. When the optimal match

is found, the number of pixel$, used for calculating the lower
bound,LBl(u, v), is relatively small for most search positions,

' o . _ " e branchand.b as shown in Figure 4(a). Even with such a small humber of
ey o ot et et e o e, s ower bound has already been largr than the global
figure illustrates the search process conducted in Table I. minimum error, as can be seen in Figure 4(b). Consequently,

the block matching process can be terminated and the area be-
tween the dashed and solid lines in Figure 4(a), which implies
his/her hand and update (increase) his/her intermediate lowe amount of saved computation, can be quite large.
bound of the penalty score. A new temporary winner is then .
selected and this process is repeated until the temporary winfrerG€neral Winner-Update Algorithm
has no card laid facedown and becomes the final winner. Table The winner-update algorithm for fast block matching is de-
lists the operations step by step to demonstrate the processstaibed in this section. Consider a template block at position
the example given in Figure 1. This comparison strategy, callgd y). For each search positide + u,y + v), we letLB(u, v)
the winner-update strategy, is a special case of the branch-adehote the currently-used lower bound of the matching error be-
bound strategy [19] (1-branch only) as shown in Figure 2. tween this template block and the candidate matching block at
In block matching for motion vector estimation, the matctposition (z + u,y + v) in the reference image. At the begin-
ing errors between the template block and most of the candidateg, LB(u, v) for each search position is initialized as the first
matching blocks are usually very large compared with the mialement in its lower bound list,B*(u,v). An additional vari-
imum matching error. That is, most of the players hold card®le,i(u,v), is used to record the index of the element to which
with relatively large values except the winner and a few toudtB(u, v) is assigned. Initially/(u, v) is set to bel. Let (4, v)
competitors. Therefore, by using this winner-update stratedpg the search position that has the minimBI(u, v) among all
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Fig. 3. Atemplate block with sizé6 x 16 in imagel; is matched in the search
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range (—16, 16] x [—16,16]) in imagel;_.
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search positions. Then the temporary winrer,v), updates

its lower boundLB(%, o) with the next element in the lower
bound list, LB/®?*1 (3, 4), and updates the new index num-
ber. A new temporary winner is then chosen, again as the search
position (4, 9) having the minimalLB(u,v). This process is
repeated until (@, o) of the new winner equal¥’, the num-

ber of the last element in the lower bound list. Remember that
the last lower bound,.B* (i, %), is actually the matching error
SAD(4, v) at position(,©). The block matching process can
now stop because the lower bounds of the matching errors for
other search positions are all larger than the matching error of

the winner.

The proposed algorithm is summarized below:

The Winner-Update Algorithm

Given a template block at positidm, y) in I;
begin

for each (u, v) in the search ranggo
begin (initialization)
calculateLB! (u, v)
LB(u,v) := LB (u,v)
l(u,v) :=1
end
select(4, ©) having the minimalL.B(u, v) to be the temporary
winner
while I(a,0) < K do
begin
(4, 0) :==1(a,0)+1
calculateL.B!®%) (4, 9)
LB(a, 0) := LB (4, )
select(4, ©) having the minimaLL.B(u, v) to be the new
temporary winner
end
output (i, 0)

end

D. Lower Bound Derived from Minkowski's Inequality

For each search position, the number of lower bounds,
PSADs, defined in Equation (3) i82. We want to reduce the
number of lower bounds because the winner-update algorithm
has to select a new temporary winner each time when a new
lower bound is calculated. One possibility is to rewrite the cal-
culation of PSAD defined in Equation (3) as follows:

=

-1

oo}

RSAD{, ,(u,v) = e(x + i,y + j)—

J=U1

Lia(z+utiy+o+j),

I
o

for! = 1,...,B (instead ofl = 1,...,B?). These lower
boundsRSAD/{, ,(u,v), ..., RSAD(, (u, v), constitute an-
other ascending lower bound list, which is in fact a partial list

Fig. 4. (a) Number of pixels used for calculating the partial matching error (solisf the original PSAD list. In this lower bound list, theh el-

line) and the complete matching error (dashed line). The area between these
lines implies the amount of saved computation. Only the search positions al

ent,RSADl(xyy) (u,v), means the sum of absolute difference

the horizontal search line passing through the best estirfiaté), are shown Of the pixels in the first rows. Other kind of lower bound can be

for simplicity. (b) This figure illustrates the complete matching error, SADused in the winner-update algorithm. In the following, we will
(dashed line) and the partial matching error, LB, (solid line) computed up to tB‘“escribe the lower bound derived from Minkowski’s inequality.
moment when the global minimum is found.

This kind of lower bound is proposed by Lee and Chen [16] in
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|?(X'y) X @) X
li(xy) oo O eee
If(xy) oo O eee
\ level) image,I? (z, y)
li(xy) eee O eee

X X+1 X+2 X+3 x+4 x+5 x+6 X+7 Xx+8

Fig. 5. Four-level images constructed from an original image, where each leve
is of full-resolution. Only one dimension (the x-axis) is shown for simplicity.
Two pyramids at positions andz + 1 are depicted in solid line and dotted line,
respectively.

their block sum pyramid (BSP) algorithm for fast motion vector
estimation. The number of lower bounds for each search posi
tion is onlylog, B + 1, instead ofB2.

Assume the size of the matching block® x 2%, we con-
struct K + 1 levels of images, where each level is of full-
resolution, for each image in the video sequence by using the
following way. Consider a four-level example as illustrated in
Figure 5. For each pixell;(z, ), at levell and at timet, its
value is assigned to be the sum of its four corresponding pixels
at levell + 1:

level-1 image,I} (z, )

level-2 image,I?(z,y)

Liz,y) = L'M(xy)+ LT (@ +2577y) +
Itl+1($,y+2K_l_l)+
Itl+1($+2K_l_1,y+2K_l_1), (4)

where! is the level number] = 0,...,K — 1, and X

the original image at time¢. Notice that the value of the

pixel Itl(x7y) at level! is in fact the sum of the correspond-

ing 25—t x 25— pixels of the original imagd,™ (z,y). By

using Equation (4) to calculatg’(x,y) from levell = K — 1

to 0, we can construct block sum pyramids for all the positions
l

in the whole image, except for the last ! — 1 pixels at each 6. Construction of the four-level images for the Salesman test sequence.

row and each column due to the boundary condition. F'gurQ\létlce that the intensity values are normalizedt®55] for each image.
shows an example constructed from an image in the Salesman

sequence.
Notice that there is overlap between neighboring block sufm + u, y 4 v) in imagel,_'. Thatis,
pyramids. Instead of calculating each block sum pyramid in-

level-3 image, I} (z, )

dependently, our method can remove the redundant calculation 21201

existing in the construction of overlapping block sum pyramids. LSAD (x y) u,v) Z Z |I (z+2"- i,y + 257 i)—

In Equation (4), it costs three operations to calculate the sum- J=0 =0

mation of four pixel values. Consequently, the overall com- I (x +u+ 287ty + v 4+ 2K (5)

putational cost to construct th& levels of images is about
K x 3 x W x H, whereWW and H are the width and height wherel =0, ..., K.
of the image, respectively. Notice that the computational cost isBy using Minkowski’s inequality, the following inequality re-
about2 2= » 3 » I x H if the block sum pyramids at all lationship among the matching errors for different levels can be
positions in the whole image are calculated independently. derived [16] (subscriptz, y) is dropped for simplicity):
Let the level? matching error,LSADl(x,y)(um), be the o L X
matching error between the template block at positiory) ~ LSAD"(u,v) <LSAD (u,0) <--- < LSAD™(u,v)
in image I,' and the candidate matching block at position = SAD(u,v). (6)
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sty caioaaed | the required spacing (one pixel) of the examined search posi-
tions is achieved.

At each iteration, the TSS algorithm needs to calculate and
compare the matching errors of nine or eight search positions.
Meanwhile the winner-update algorithm can be applied to effi-
ciently find the one having the minimum matching error among
these search positions. Because the winner-update algorithm
can find the best matching position at each iteration, the accu-
racy of this combined algorithm is the same as that of the TSS
algorithm while the computational efficiency will be much bet-
ter.

number of lower bounds
w S

N}

IV. EXPERIMENTS

A. Implementation Issues
A.1 Memory Storage

-1 ~10 = 0 5 10 15 To utilize the inequality relationship in Equation (6), multi-
horizontal search range level images for both the current and reference images have to
be constructed. If the block size use@fs x 2%, then2 K more
ffhages need to be stored in memory. Usually, one byte is suf-
ficient to store the original pixel value ranging from 0 to 255.
However, as Equation (4) shows, the value of each pixel in level
The number of pixels used for calculatiigfAD! (u,v) at 1,1 =0,..., K — 1, is the sum of the® ~! x 2%~ pixel val-
levellis 2 x 2. More specifically, the number of pixels used foties in the block at level’. Two or more bytes has to be used
calculationisl, 4, . . ., and2X x 2K atlevel0, 1, ..., andK, re- to store the sum value. Thus more memory has to be allocated.
spectively. As a result, LSAD can be used as the lower boundemory usage can be reduced by using one byte to store the
SAD and this kind of lower bound is referred to as lyeamidal pixel value at each level if the average, instead of the sum, of
lower bound In the following, we us&SAD' (u, v) as the lower the pixel values in the block is stored. This can be accomplished
boundLB'(u, v) because there are only + 1 lower bounds in by modifying Equations (4) and (5) into:
each lower bound list. Notice that the index of the first element

Fig. 7. Total number of lower bound (dashed line) and the number of low;
bounds actually calculated (solid line).

in the lower bound list is changed to 0. The initialization process I,!(z,y) = 1(Itl“(gr;, y) + LT @ 2K )+

of the proposed winner-update algorithm has to be modified as 4 L P

the same. Also, the construction process of multilevel images L @y + 287 +

has to be inserted into the proposed algorithm. L (4 2811y 4 oK1y, (7)
To give an intuitive feeling of how the computation can be

greatly saved by using the pyramidal lower bound, we show the

number of lower bounds computed with the example used §pAD (g (u,v) =

Figure 3. For this casdy = 4 (i.e., there are five lower bounds 2l—12t—1

for each search position), but we can see from Figure 7 that the 2K oK1 Z Z |1z + 257l y 4 251 —

number of lower bounds needed to be computed is only one or §=0 i=0

two for most search positions. Most importantly, the computa-
tion required for computing the first lower bound is as simple
as one-pixel operation. Consequently, the computational savidgwever, this implementation may increase the minimum
can be enormous. matching error a little because of the truncation error induced
from Equation (7). For this reason, we did not use this modifi-
cation in our experiments to ensure the global optimality.

Ll +u+ 25y + o+ 257)

I1l. COMBINATION WITH THE THREE-STEP SEARCH
ALGORITHM

The proposed winner-update algorithm can be easily coft-2 Minimum Lower Bound Selection
bined with other fast algorithms for further speedup, but the The major overhead of the winner-update algorithm is the se-
guarantee of achieving the global minimum will be sacrificedection of the so-far-minimum lower bound at each iteration.
In this section, we shall use the well-known TSS algorithm as @nheap data structure can be used for selecting the minimum,
example, where nine coarsely spaced search positions are exahieh requires)(log, n) operations to maintain the heap struc-
ined at first. Then the position having the minimum matching ere that keeps the element having the smallest lower bound in
ror is selected and eight search positions which are less coarsletyroot of the heap tree.
spaced around this selected position are examined. The matchiFhe O(log, n) operations for minimum selection can be re-
ing errors of these eight positions and the previously selectdced to constant time by using a hashing method instead. If
position are compared and a new position having the minimume use the SAD value as the address of the hashing table, the
matching error is selected again. This process is repeated uafille size will be very large because the SAD value ranges from
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0 to 256 x 252X To reduce the size of the hashing table from
256 x 252K to 256, the mean absolute difference (MAD) is
used, instead of the SAD, and the pyramidal lower bound is cal-
culated as

1
LBl(xvy) (u7 U) = MADl(z,y) (u7 U) = WLSADZ(Q:,y) (U, U)'

Notice that the denominator for normaliziliﬁﬁADl(m’y)(um)

in the above equation is the same for/all Thus, the increas-
ing order of Equation (6) is preserved. That is, we can divide
Equation (6) by2% 2% and obtain the following inequality rela-

tionship:

MAD®(u,v) < MAD!(u,v) <--- < MAD®(u,v)
MAD(u, v).

(b)

BecauseMADl(w)(u, v) ranges from 0.0 to 255.0, we only B L

need a table of 256 elements and use the integer part of (c) (d)

MADl(w) (u,v) as the table address. Separate chaining is used

in our implementation to resolve the collision. The first e|emeﬁ'tg. 8. Salesman test image sequence is shown in Figure 6. The other four test
in the first non-empty table entry is chosen to be the temporérpfge sequences are (a) Trevor, (b) Coastguard, (c) Football, and (d) Foreman.
winner. After updating the lower bound corresponding to this

temporary winner, this element is put back to the correspondector estimation. Five commonlv-used image Sequences. as
ing table entry according to its new lower bound if it is not thé imation. Fv y-u imag qu '

g . : ; . shown in Figures 6 and 8, were used for comparing the per-
minimum anymore. This operation requires only constant timg. . . Y .
y P q y mance of the algorithms. Each image was divided into

Once the element of the so-far-minimum lower bound reach 16 laoping block d th h ¢
level K, all the remaining elements, if any, with the same tab x nonoveriapping blocks and the search range was se
516, 16] x [~16, 16].

address (i.e., in the same chain) are examined to determine ]
final winner. Table Il shows the performance comparison of the above-

The cost of selecting the so-far-minimum lower bound can lentioned algorithms with the Salesman image sequence which
further reduced by reducing the number of competitors. Fir§ontains 100 images of sizx2 x 288. The image in this se-
we calculate the complete matching error at the predicted seafié#§nCce contains complex background as shown in Figure 6 and
position (in our experimentsy, v) is predicted ag0, 0)). Then, the PSNR value |s_h|gh. Thus, o_n!y afew competitors W!th small
the other search position can be avoided to be inserted into Ftching error exist and the minimum matching error is small.
hash table if its first lower bound has already been larger than f@St search positions obtained larger lower bounds than the
complete matching error calculated at the predicted search gB1ll minimum matching error and withdrew from the competi-
sition. The less search positions join the competition, the fasti&n- Only 2% of the absolute operations are needed to calculate

selection can be obtained. the matching errors, compared to the absolute operations for the
FS algorithm. Even considering the overhead of constructing
B. Experimental Results the multilevel images and switching the calculation among dif-

To evaluate the performance of the winner-update aIgorithFﬁ,rem s_earch positio_ns, the t(_)tal execution time_ for estimgting
we implemented five algorithms: the full-search (FS) algét‘e motion vectors with the winner-update algorithm remain to

rithm, the block sum pyramid (BSP) algorithm [16], the probe very small. Our experiments shows that the WinUpMI algo-

posed winner-update algorithm with the lower bound derivéfM cOSts only 4% execution time of what the FS algorithm
from Minkowski's inequality (WinUpMI), the three-step searctFOStS: As for the WinUpTSS algorithm, further speedup can

(TSS) algorithm [6], and the combination of the winner-upda@e achieved without decreasing the PSNR value of the TSS al-

algorithm and the three-step search algorithm (WinUpTSS). Ng)grithm. The number of the absolute operations decreases from

tice that the last two algorithms do not guarantee the global 0%_1% to 0.6% and the actual execution time decreases from 3.3%

timality. We evaluate the above five algorithms by comparintﬁ 1.6%.

three performance indices: Table Il shows the experimental results obtained with the
1) the peak signal-to-noise ratio (PSNR) between the recokfevor image sequence which contains 99 images of2iigex

structed motion-compensated image and the original image; 256. As shown in Figure 8(a), the background of the images
2) the number of absolute operations for calculating ti@ntains periodic strips. The blocks in the background area

matching error; needed more computation to find the final corresponding block
3) the execution time with our implementation and hardwaf@ving the minimum matching error. Thus, higher operation ra-
environment. tio and execution time ratio were obtained compared to those for

These algorithms were implemented in C language on a Sti§ Salesman image sequence.
Ultra-1 workstation. The execution time includes reading im- The experiments described below use three image sequences
ages, multilevel images construction if necessary, and moticontaining larger motion. The first image sequence Coastguard



1220 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 10, NO. 8, AUGUST 2001

TABLE Il TABLE V
PERFORMANCE COMPARISON OF FIVE ALGORITHMS WITHSALESMAN PERFORMANCE COMPARISON OF FIVE ALGORITHMS WITH-FOOTBALL
IMAGE SEQUENCE IMAGE SEQUENCE

PSNR Operations Exec. Time PSNR Operations Exec. Time

Algorithm (dB) Number % sec. % Algorithm (dB) Number % sec. %
FS 35.44 | 99847168| 100.0 | 533.6 | 100.0 FS 23.86 | 82258432| 100.0 | 268.1| 100.0
BSP 35.44 | 2823837 2.8 | 308 5.8 BSP 23.86 | 9649071 11.7| 49.5| 185
WinUpMI | 35.44 | 1967831 20| 212 4.0 WinUpMI | 23.86 | 5796655 71] 321| 12.0
TSS 35.15| 3103744 3.1| 17.8 3.3 TSS 23.10 | 2573771 3.1 8.8 3.3
WinUpTSS| 35.15 627416 0.6 8.6 1.6 WIinUpTSS| 23.10 | 1013051 1.2 6.8 25

TABLE Il TABLE VI
PERFORMANCE COMPARISON OF FIVE ALGORITHMS WITHTREVOR IMAGE PERFORMANCE COMPARISON OF FIVE ALGORITHMS WITHFOREMAN
SEQUENCE IMAGE SEQUENCE
PSNR Operations Exec. Time
Algorithm | (dB) Number % | sec. % PSNR Operations Exec. Time
FS 34.42 | 62980096] 100.0| 359.7 | 100.0 Algorithm | (dB) Number % sec. %
BSP 34.42 | 2716395 43| 315 8.8 FS 31.28 | 100998144 100.0| 2209.1| 100.0
WinUpMI | 34.42 | 2445738 39| 280 7.8 BSP 31.28 | 10891459| 10.8| 366.8| 16.6
WinUpTSS| 34.01 495151 0.8 7.0 2.0 TSS 30.02 3169292 3.1 71.6 3.2
WinUpTSS | 30.02 1257482 1.3 54.5 25

contains 300 images of siz30 x 240, the second image se-

quence Football contains 60 images of sk x 240, and are faster among the five algorithms, they cannot guarantee the

the third image sequence Foreman contains 400 images of gllabal optimality. From the above experiments, the TSS algo-

360 x 288. Tables IV, V, and VI show the experimental result§ithm and the WinUpTSS algorithm decrease the PSNR values

using the three image sequences. Because of the lower PSNRrange from 0.29 dB to 1.26 dB. That is, they increase 6.9%

value, the efficiency improvement of the WinUpMI algorithnto 33.7% of mean square error. Thus, more compensation effort

comparing to the FS algorithm is not as significant as that isneeded in video compression application.

the experiments of Salesman and Trevor image sequences. The

minimum matching errors are larger, on the average, and more V. Discussions

computations are required for most search positions before theyrhe major advantages of the winner-update algorithm include

are out of the competition for the winner. It is obvious that theonceptual simplicity, easy implementation, and high efficiency.

proposed WinUpMI algorithm outperforms the BSP algorithmiso, it has many variations for adapting to different applica-

in these experiments because there is a lot of large motion in tihs. For example, in the applications of on-line video com-

image sequence (which makes it harder to have a good pregigession, such as video conference and video phone, satisfying

tion). the time constraint is more important than acquiring the mini-
Although the TSS algorithm and the WinUpTSS algorithrmum matching error. For all the fast block matching techniques

which guarantee the global optimality, the computational costs

TABLE IV are all data dependent. When many search positions have the
PERFORMANCE COMPARISON OF FIVE ALGORITHMS WITHCOASTGUARD matChlng error$ CIOS? to the minimum one, it needs mUCh eﬁprt
IMAGE SEQUENCE to identify the final winner from these tough competitors. This

kind of bad situation occurs when the content of the matching
block has no obvious features. On the other hand, the fast block
matching techniques that examines only a portion but a fixed

_ PSNR Operations Exec. Time | number of the search positions can give the motion vector in
Algorithm [ (dB) Number % sec. % | constant time, but the matching error may not be the global min-
FS 28.51 | 83206656| 100.0 | 1339.7| 100.0 | imum. The winner-update algorithm can be slightly modified

BSP 28.51 | 16157373 19.4| 372.7| 27.8]| to provide a suboptimal match within a specified time interval.
WinUpMI | 28.51 | 6948447| 8.4 | 178.8| 13.4| Once the time limit for performing the computation is met, the

TSS 28.07 | 2623309 3.2 44.6 3.3 | chain at the first non-empty entry of the hash table is checked
WinUpTSS| 28.07 | 1171328 1.4 37.4 2.8 | and the element whose lower bound has been calculated to the
finest level (i.e., the elemefit, v) whoseLB' ) (u, v) has the
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largesti(u,v)) can be chosen as the matching result (i.e., the px64 kbit/s,” Mar. 1993.
up-to-date best match). ITU-T Recommendation H.263, “Video coding for low bit rate communi-

[2
In stereo vision and visual tracking applications, the WinnerEJ cation,” Feb. 1998,

. . . ISO/IEC 11172-2, “Information technology—coding of moving pictures
update algorithm can also be very helpful, but with another ki and associated audio for digital storage media at up to about 1.5 mbit/s -

of modification. The matching process can be terminated earlier part 2: video,” 1993.
when the so-far-minimum lower bound has already been |ar(j@r ISO/IEC 13818-2 and ITU-T Recommendation H.262, “Information

. : .~ technology—generic coding of moving pict d iated audio in-
than a specified threshold value. The reason is that the matching fgfm’;?i;?:yvidge%’?? ;'gcgcﬁ? 1 o moving picttes and assoclated audio in

result is unreliable (e.g. due to occlusion) and can be ignores]. rRam Srinivasan and K. R. Rao, “Predictive coding based on efficient mo-
Moreover, an ordered list of the best candidate matcheskfthe tion estimation,” IEEE Transactions on Communication®l. COM-33,
nearest neighbors) can be provided if we continue the match- " & pp- 888-896,1985. . o

. . T. Koga, K. linuma, A. Hirano, Y. lijima, and T. Ishiguro, “Motion-
ing process after the best match is f(?und and remov_ed from the compensated interframe coding for video conferencing, Prioceedings
search space. Further post-processing can be applied to the setof National Telecommunications Conferenisew York, 1981, vol. 4, pp.

of candidates for more accurate results. G5.3.1-G5.3.5.

. . . . . 7] Jaswant R. Jain and Anil K. Jain, “Displacement measurement and its
Th d I h ble f |
. € Wlnner-up ate algorithm is suitable for Se.r'a computa- application in interframe image codinglEEE Transactions on Commu-
tion. When multiple CPUs or computers are available, the task nications vol. COM-29, no. 12, pp. 1799-1808, 1981.
of block matching can be divided to enable parallel processirig. M. Ghanbari, “The cross-search algorithm for motion estimatidBEE
In video compression application, for example, the motion veg- 1 ansactions on Communicatignsl. 38, no. 7, pp. 950-953, 1990.

. . . Junavit Chalidabhongse and C.-C. Jay Kuo, “Fast motion vector estima-
tors have to be _e_S“ma_-ted for all the blocks in the Image. ThESe {ion using multiresolution-spatio-temporal correlation$ZEE Transac-
blocks can be divided into groups so that each group is processed tions on Circuits and Systems for Video Technolegy. 7, no. 3, pp. 477-
by 2 CPU or a computer. In this way, we can take the advantages 488, 1997.

. . Bede Liu and Ande Zaccarin, “New fast algorithms for the estimation
of parallel processing and achieve further speedup. of block motion vectors, T EEE Transactions on Circuits and Systems for

Video Technologyol. 3, no. 2, pp. 148-157, 1993.
VI. CONCLUSIONS [11] Chang-Da Bei and Robert M. Gray, “An improvement of the minimum
. . distortion encoding algorithm for vector quantizatiolFEE Transactions
In this paper, we have proposed a new fast algorithm, named on Communications/ol. COM-33, no. 10, pp. 1132-1133, 1985.

the winner-update algorithm, which can speed up the comgi®] Allen Gersho and Robert M. Grayector Quantization and Signal Com-
tation of block matching while still guaranteeing that the minj- _ Pression Kluwer Academic Publishers, London, 1992. _

. . . 13] Ho-Chao Huang and Yi-Ping Hung, “Adaptive early jump-out technique
mum matChmg error can be obtained. ACCOI‘dlng to our exper- for fast motion estimation in video coding@raphical Models and Image
iments, the proposed winner-update algorithm (WinUpMI) can  Processingvol. 59, no. 6, pp. 388-394, 1997.
save 91.6% to 98.0% of the absolute operations needed by [fi4¢ W. Liand E. Salari, “Successive elimination algorithm for motion estima-

FS algorithm, depending on which test image sequence is used. tl'gg% IEEE Transactions on Image Processingl. 4, no. 1, pp. 105-107,

If the global optimum is not required, then the winner-updajgs) vih-Chuan Lin and Shen-Chuan Tai, “Fast full-search block-matching al-
algorithm can combine with the TSS algorithm, and boost the  gorithm for motion-compensated video compressi¢BEE Transactions
saving up to 98.6% to 99.4% with a small decrease of PSNR ©n Communicationsiol. 45, no. 5, pp. 527-531, 1997.

value. The important thing is this combination (WinUpTSS)™) SranHisina Lee and Ling e Chen, A fest moto stimatn algo-
will speed up the TSS algorithm without decrease its PSNR Processingvol. 6, no. 11, pp. 1587-1591, 1997.

value. When comparing the execution time of a fast algorithi47] Y. Q. Shi and X. Xia, *A thresholding multiresolution block matching
overhead needs to be considered. It is true that the WinUpM| ﬁggg;h\%l e g’r%’;sic?f';’_”jllgf‘gg;‘f'ts and Systems for Video Tech-
algorithm requires a preprocessing overhead to construct mylts; kwon Moon Nam, Joon-Seek Kim, Rae-Hong Park, and Young Serk
level images. Also, additional operations are needed to switch Shim, “A fast hierarchical motion vector estimation algorithm using mean
among the search positions. However, after including all the Eéryaﬂf";"f,'éE4T§§s§ffff§§1°”1§§§“"s and Systems for Video Technol-
overhead, the efficiency of the winner-update algorithm (W"fli9] Pat‘rick Hénw W}nstonArtificial‘Intelligence Addison-Wesley, Reading,
UpMI) remains still very good. According to our experiments, = Massachusetts, third edition, 1992.

86.6% to 96.0% of the execution time can be saved, compared

to that of using the FS algorithm. Moreover, the proposed al-

gorithm can be easily modified either to meet the limited time

requirement or to provide an ordered list of the best candidate

matches. Our source codes of the proposed algorithm are avail-

able at http://smart.iis.sinica.edu.tw/html/winup.html.
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REFERENCES ence, Academia Sinica, Taipei, Taiwan. His research

interests include fast template matching, pattern recognition, object detection,
[1] ITU-T Recommendation H.261, “Video codec for audiovisual services atsual tracking, and video surveillance.



1222 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 10, NO. 8, AUGUST 2001

Yi-Ping Hung received his B.S. in electrical engineer-
ing from National Taiwan University in 1982. He
received an M.S. from the Division of Engineering,
an M.S. from the Division of Applied Mathematics,
and a Ph.D. from the Division of Engineering, all at
Brown University, in 1987, 1988 and 1989, respec-
tively. He then joined the Institute of Information
Science, Academia Sinica, Taiwan, and became a re-
search fellow in 1997. He served as the deputy direc-
tor of the Institute of Information Science from 1996

to 1997, and received the Outstanding Young Investi-
gator Award given by Academia Sinica in 1997. He has been teaching in the
Department of Computer Science and Information Engineering at National Tai-
wan University since 1990, where he is now an adjunct professor. Dr. Hung has
published more than 70 technical papers in the fields of computer vision, pattern
recognition, image processing, and robotics. In addition to the above topics,
his current research interests also include visual surveillance, virtual reality, and
human-computer interface.

Chiou-Shann Fuhreceived the B.S. degree in com-
puter science and information engineering from Na-
tional Taiwan University, Taipei, Taiwan, in 1983, the
M.S. degree in computer science from the Pennsylva-
nia State University, University Park, PA, in 1987, and
the Ph.D. degree in computer science from Harvard
University, Cambridge, MA, in 1992. He was with
AT&T Bell Laboratories and engaged in performance
monitoring of switching networks from 1992 to 1993.
He was an associate professor in Department of Com-
puter Science and Information Engineering, National
Taiwan University, Taipei, Taiwan from 1993 to 2000 and then promoted to a
full professor. His current research interests include digital image processing,
computer vision, pattern recognition, and mathematical morphology.




