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Fast Block Matching Algorithm Based on the
Winner-Update Strategy

Yong-Sheng Chen, Yi-Ping Hung, and Chiou-Shann Fuh

Abstract— Block matching is a widely-used method for stereo vision,
visual tracking, and video compression. Many fast algorithms for block
matching have been proposed in the past, but most of them do not guaran-
tee that the match found is the globally optimal match in a search range.
This paper presents a new fast algorithm based on the winner-update strat-
egy which utilizes an ascending lower bound list of the matching error to
determine the temporary winner. Two lower bound lists derived by using
partial distance and by using Minkowski’s inequality are described in this
paper. The basic idea of the winner-update strategy is to avoid, at each
search position, the costly computation of matching error when there ex-
ists a lower bound larger than the global minimum matching error. The
proposed algorithm can significantly speed up the computation of the block
matching because

1) computational cost of the lower bound we use is less than that of the
matching error itself;

2) an element in the ascending lower bound list will be calculated only
when its preceding element has already been smaller than the minimum
matching error computed so far;

3) for many search positions, only the first several lower bounds in the
list need to be calculated.
Our experiments have shown that, when applying to motion vector es-
timation for several widely-used test videos, 92% to 98% of operations
can be saved while still guaranteeing the global optimality. Moreover,
the proposed algorithm can be easily modified either to meet the lim-
ited time requirement or to provide an ordered list of best candidate
matches. Our source codes of the proposed algorithm are available at
http://smart.iis.sinica.edu.tw/html/winup.html.

Index Terms— Block matching, fast algorithm, Minkowski’s inequality,
motion estimation, winner-update strategy.

I. I NTRODUCTION

BLOCK matching technique has been widely used for find-
ing the corresponding points in stereo vision, visual track-

ing, and video compression. In this paper, we focus our dis-
cussion of fast block matching algorithm on its application to
motion vector estimation for video compression. However, the
proposed fast algorithm can be easily applied to other applica-
tions which need block matching.

Video compression is important for efficient transmission and
storage of video data. In order to achieve a high compres-
sion ratio, motion-compensated predictive coding is commonly
used for reducing the temporal redundancy existing in video se-
quences. The value of a pixel in the current image is predicted
as the value of its corresponding pixel in the reference image.
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The displacement between these two corresponding pixels, re-
ferred to as the motion vector, and the prediction residual are
coded in the data stream. Usually, each image is divided into
nonoverlapping blocks. The motion vectors for all the pixels in
one block are treated as one single vector to be estimated. This
kind of block-based motion compensation is widely adopted by
video coding standards [1], [2], [3], [4] due to its simplicity.

The block-based motion vectors can be estimated by using
block matching, which minimizes a measure of matching error.
The matching error between the block at position(x, y) in the
current image,It, and the candidate block at position(x+u, y+
v) in the reference image,It−1, is usually defined as the sum of
absolute difference (SAD)

SAD(x,y)(u, v) ≡
B−1∑
j=0

B−1∑
i=0

|It(x+ i, y + j)−

It−1(x+ u+ i, y + v + j)|, (1)

where the block size isB × B. SAD will be referred to as
the complete matching errorfor its summation over the “com-
plete” block or the “complete” summation set. In this paper, the
best estimate of the motion vector,(û, v̂), is defined to be the
(u, v) which minimizesSAD(x,y)(u, v). This estimate,(û, v̂),
can be obtained by using the full-search (FS) algorithm which
calculates and compares the SADs for all the search positions,
{(x+ u, y + v)}, in the reference image,It−1. That is,

(û, v̂) ≡ arg min
(u,v)∈S

SAD(x,y)(u, v), (2)

where S = {(u, v)| − R ≤ u, v ≤ R and(x + u, y +
v) is a valid position inIt−1} is thesearch setandR is an in-
teger which determines the search range. This straightforward
method takes extremely large amount of computation, although
it can find the motion vector which gives the global minimum of
matching error.

A. Literature Review

In the past, many techniques have been developed to ac-
celerate the block matching process. We classify these tech-
niques into three categories. The techniques in the first category
save the computations by reducing the number of the positions
searched. Therefore, the obtained minimum of the matching
error may only be a local minimum within the search set,S.
The techniques in the second category, on the other hand, try
to reduce the computational cost of the matching error for each
search position. Whether this kind of techniques can obtain the
global minimum or not depends on how we compute and com-
pare the matching errors. The techniques in the first and second
categories can be combined to further improve the efficiency and
this kind of hybrid methods are classified as the third category.



CHEN et al.: FAST BLOCK MATCHING ALGORITHM 1213

A.1 Category 1: Partial-Search-Set Techniques

Techniques in this category perform the matching error cal-
culation and comparison within a partial search set,S′, which is
a subset of the complete search set,S, defined in Equation (2).
The efficiency of these techniques depends on the number of the
selected search positions, while the resulted minimum matching
error depends on how the search positions are selected. Conse-
quently, the design issue of these techniques is how to find the
motion vector with small minimum matching error by examin-
ing as smaller number of search positions as possible.

The gradient descent techniques, based on the unimodal error
surface assumption, belong to this category. Starting from the
initial value, the motion vector with the local minimum match-
ing error, SAD, can be found by using pixel-by-pixel search
along the conjugate directions or simply the horizontal and verti-
cal directions [5]. The number of the search positions examined
depends on the distance between the initial position and the “val-
ley” position with the local minimum SAD. The minimum SAD
obtained is sometimes larger than the global minimum SAD be-
cause the search process may be trapped at a local minimum.

Some other gradient descent techniques use the multi-
resolution search space of motion vectors for the coarse-to-fine
search. These techniques divide the search process into several
search steps. Starting from the origin position,(u, v) = (0, 0),
SADs of several coarsely-spaced search positions (i.e., in coarse
resolution) are calculated and the one with the minimum SAD
is selected as the new starting position of the next step. This
procedure is repeated several times with smaller and smaller
spacing between the search positions (i.e., in finer resolution)
until the search positions with spacing of one pixel are exam-
ined. The final search position with the minimum SAD is se-
lected as the search result. Well-known examples of this kind
of techniques include the three-step search (TSS) algorithm [6],
the two-dimensional logarithmic search algorithm [7], and the
cross-search algorithm [8]. The number of the search positions
examined is roughly constant. Thus the computational cost of
motion estimation is also roughly fixed. This is a good feature
especially for on-line video compression applications, for ex-
ample, video conference, which prefer static video compression
speed.

Another important technique in this category is to restrict the
search region in a smaller region determined by the predicted
motion vector. The value of the motion vector can be predicted
from the motion vector of the spatially and temporally adjacent
blocks together with the hierarchical related blocks because the
motion vectors of these blocks are statistically coherent [9].

A.2 Category 2: Partial-Matching-Error Techniques

Techniques in this category accelerate the calculation of
matching error for each search position. Instead of calculat-
ing the complete matching error, SAD, the technology in this
category calculates apartial matching errorwhich needs less
computation than SAD and whose value is less than or equal to
SAD. From Equation (1), for example, we can define the partial
sum of absolute difference (PSAD) ofl pixels,l = 1, 2, . . . , B2,

as

PSADl
(x,y)(u, v) ≡

l−1∑
m=0

|It(x+ i(m), y + j(m))−

It−1(x+ u+ i(m), y + v + j(m))|, (3)

where{(i(m), j(m))|m = 0, . . . , B2−1} is the index set of all
the pixels in the block. Here, PSAD can be treated as a partial
matching error. The index set determines the positions and the
order of the pixels in the matching block used for the accumula-
tion of PSAD. Suitable positions and order may be raster scan,
spiral, checkered, or any other predefined order.

One simple technique in this category is to subsample the pix-

els in the matching blocks. For example,PSAD
B2
4

(x,y)(u, v) can
be calculated by using a quarter of pixels regularly subsampled
in each matching block [10]. The motion vector is determined

by choosing the one with minimumPSAD
B2
4

(x,y)(u, v). This kind
of techniques cannot guarantee that the global minimum SAD to
be obtained.

Another technique, called thepartial distance method
[11], [12], can be used for speeding up the computation.
For each search position, the PSADs are calculated from
PSAD1

(x,y)(u, v) to PSADB2

(x,y)(u, v). During the calculation
process, if one of these PSADs is larger than the minimum
matching error computed so far (which will be referred to as the
so-far-minimum matching error), the calculation for this search
position can be terminated and the calculation of the PSADs
behind can be saved. If the last PSAD,PSADB2

(x,y)(u, v) (
= SAD(x,y)(u, v) ), is computed and it is still smaller than the
so-far-minimum matching error, the so-far-minimum matching
error will be updated to be thisPSADB2

(x,y)(u, v). All the search
positions are examined one by one and the calculation of many
PSADs can be saved. Obviously, this technique can find the
global minimum matching error.

One variation of the partial distance method is the so-called
early jump-out technique [13]. This technique interrupt the cal-
culation of PSADs for each search position when one of the
PSADs is large enough compared to a threshold sequence in-
stead of the so-far-minimum matching error. In general, this
technique can save more computations than the partial distance
method. However, it can not guarantee the global minimum
matching error.

Another variation of the partial distance method defines a new
kind of partial matching error which utilizes the projections (or
partial sums) of the pixel values instead of the pixel values them-
selves [14], [15], [16]. It can be proved by using Minkowski’s
inequality that the SADs of the projections are smaller than or
equal to the matching error. Hence, the SADs of the projec-
tions can be treated as a partial matching error. This kind of
techniques first calculate the complete matching error at the
predicted position and use it as the initial value of the so-far-
minimum matching error. For each search position other than
the predicted one, the partial matching errors (the SADs of the
projections) are first calculated. The calculation of the com-
plete matching error can be avoided if any one of the partial
matching errors is larger than the so-far-minimum matching er-
ror. Otherwise, the complete matching error is calculated and
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then the so-far-minimum matching error is updated to be this
newly computed matching error if it is indeed smaller than the
so-far-minimum matching error. The major advantage of this
technique is that it guarantees the global optimality. However, if
the predicted position is not accurate enough (for example, when
the image sequences contains objects with abrupt motion), the
initial minimum matching error may be quite large. Hence a
lot of useless calculation of the partial and complete matching
errors will be performed until a position with small complete
matching error is examined. In the worst case, the complete
matching errors are monotonically decreasing with respect to
the visiting order of the search positions. For such case, the
computational cost will even be higher than that of using the FS
algorithm.

A.3 Category 3: Hybrid Techniques

To speed up the block matching, the techniques in Category 1
reduces the number of search positions by choosing a smaller
partial search set. In contrast, the techniques in Category 2
gain their efficiency by reducing the frequency of calculating the
complete matching errors. The techniques in Category 3 com-
bine the techniques in the above two categories, as described
in [10], [17], to further improve the efficiency. Another tech-
nique in this category is the hierarchical method [18] which first
estimates the coarse result of the motion vector in the lower res-
olution image, and then refines the result in the higher resolution
image within a small search region centering at the coarse result.

B. Overview of Our Work

For the application in video compression, the major drawback
of not guaranteeing the global minimum is that the compression
ratio is generally lower due to the higher matching error (which
can be thought of as the prediction residual to be coded). In
this paper, we propose an efficient and simple block matching
algorithm, named the winner-update algorithm. This algorithm,
belonging to Category 2, can accelerate the block matching pro-
cess while still ensuring that the global minimum of the match-
ing error can be obtained. This algorithm utilizes an ascending
lower bound list of the matching error to save the computation.
The two lower bound lists described in this paper are derived
by using the partial distance and by using Minkowski’s inequal-
ity. The cost of computing a lower bound of the matching error
should be less than that of computing the matching error itself.
The basic idea is to avoid, at each search position, the com-
putation of the more costly matching error when there exists
a lower bound larger than the global minimum matching error.
The proposed algorithm uses a comparison strategy, called the
winner-update strategy, to switch the computation among the
search positions depending on the comparison of the updated
partial matching error of the temporary winner with theso-far-
minimum partial matching error. The computational efficiency
of the winner-update algorithm is irrelevant to the visiting order
of the search positions. By using the proposed algorithm, only
a small subset of lower bounds and matching errors are actually
calculated. Consequently, the total computational cost can be
significantly reduced.

For further speedup, the proposed algorithm can be easily
combined with the techniques in Category 1 which reduce the

1P P2 P3 P4 P5

3 12 4 8 6

9 2 13 4

3 10

2

CARD #1

CARD #2

CARD #3

CARD #4

Fig. 1. A simple game for illustrating the concept of the winner-update algo-
rithm. There are five players,P1, ..., P5, and each player is dealt four cards.
PlayerP3 has finished the accumulation of the values in his/her hand and be-
comes the winner. The temporary accumulations of the others are all greater
than the final accumulation result ofP3. Hence their remaining calculation can
be saved.

number of the search positions. The result of the combination
is that the guarantee of global optimality is given up, which is
inevitable for all hybrid techniques. In this paper, we shall also
present the result of combining the winner-update algorithm and
the TSS algorithm, as an example of the combination.

This paper is organized as follows. At first, we introduce the
concept of the winner-update strategy and the proposed algo-
rithm in Section II. Then, the combination of the proposed algo-
rithm and the TSS algorithm is presented in Section III. Section
IV presents the experimental results of the proposed algorithm
as well as some previously developed algorithms and compares
their performance. Finally, some discussions and conclusions
are stated in Sections V and VI.

II. W INNER-UPDATE ALGORITHM

A. Concept

In this section, we use a simple game of poker cards to illus-
trate the concept of the winner-update algorithm. Suppose there
are five players in the game and each player is dealt four cards.
The value of each card ranges from 1 to 13. The penalty score
of each player is the sum of the values of his/her hand and the
player with the minimum penalty score is the winner. The ba-
sic idea is that one does not have to calculate the summation of
all the card values for each player when determining the win-
ner. If the intermediate summation, or the lower bound of the
total penalty score, for one player has already been greater than
the total penalty score of the winner, then he/she has no chance
to win and hence we can stop calculating his/her penalty score
to save some computation. An example is shown in Figure 1.
Of course, the penalty score of the winner is not known in ad-
vance. But the winner-update strategy explained below can help
to solve the problem.

At the beginning, we lay all the cards face down except the
first one of each hand. The lower bound of the penalty score for
each player is initialized as the value of the first card. Among all
the players, only the temporary winner who has the minimum
lower bound is allowed to turn up the face of the next card of
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TABLE I

STEP BY STEP CALCULATION OF THE PENALTY SCORE OF EACH PLAYER.

THE SCORE NUMBERS IN BOLDFACE ARE THE TEMPORARY MINIMA AFTER

EACH STEP.

operation P1 P2 P3 P4 P5

initialize 3 12 4 8 6
turn up CARD #2 ofP1 12 12 4 8 6
turn up CARD #2 ofP3 12 12 6 8 6
turn up CARD #3 ofP3 12 12 9 8 6
turn up CARD #2 ofP5 12 12 9 8 10
turn up CARD #2 ofP4 12 12 9 21 10
turn up CARD #4 ofP3 12 12 11 21 10
turn up CARD #3 ofP5 12 12 11 21 20
chooseP3 as the winner 12 12 11 21 20

12 6

10

20

8

21

3

12

4

6

9

11

START

END

Fig. 2. The winner-update strategy is a special case of the branch-and-bound
strategy with only one branch for each node except the “START” node. This
figure illustrates the search process conducted in Table I.

his/her hand and update (increase) his/her intermediate lower
bound of the penalty score. A new temporary winner is then
selected and this process is repeated until the temporary winner
has no card laid facedown and becomes the final winner. Table I
lists the operations step by step to demonstrate the process for
the example given in Figure 1. This comparison strategy, called
the winner-update strategy, is a special case of the branch-and-
bound strategy [19] (1-branch only) as shown in Figure 2.

In block matching for motion vector estimation, the match-
ing errors between the template block and most of the candidate
matching blocks are usually very large compared with the min-
imum matching error. That is, most of the players hold cards
with relatively large values except the winner and a few tough
competitors. Therefore, by using this winner-update strategy,

the number of the cards laid facedown, which implies the saved
computations, can be enormous.

B. Lower Bound Derived from Partial Accumulation

The process of choosing the winner having the minimum
penalty score in the previously mentioned game resembles the
process of finding the corresponding block having the minimum
matching error in block matching. Each player in the game
stands for a search position and the penalty score is the abso-
lute difference between the values of the corresponding pixels.
Thus, PSAD defined in Equation (3) represents the temporarily
accumulated penalty score. Obviously, the following inequality
relationship holds true (subscript(x, y) is dropped for simplic-
ity):

PSAD1(u, v) ≤ PSAD2(u, v) ≤ · · · ≤ PSADB2
(u, v)

= SAD(u, v).

As a result, the list of the partial accumulation,{PSADl(u, v), l =
1, . . . , B2}, can be used as the lower bound list needed by the
winner-update strategy. That is,

LBl(u, v) = PSADl(u, v), l = 1, . . . ,K,

whereK = B2. This lower bound will be referred to as the
partial-sum lower bound. Notice that the last element in this list,
LBK(u, v), equals the complete matching error,SAD(u, v).
TheseK lower bounds are in ascending order:

LB1(u, v) ≤ LB2(u, v) ≤ · · · ≤ LBK(u, v).

Furthermore, the number of pixels used for summing up these
lower bounds are ascending from 1 toB2.

Next, we use a practical example to give the intuitive feel-
ing of how the computation can be saved with the winner-
update strategy. As shown in Figure 3, the template block
with size16 × 16 in imageIt is matched in the search range
([−16, 16]× [−16, 16]) in imageIt−1. When the optimal match
is found, the number of pixels,l, used for calculating the lower
bound,LBl(u, v), is relatively small for most search positions,
as shown in Figure 4(a). Even with such a small number of
pixels, its lower bound has already been larger than the global
minimum error, as can be seen in Figure 4(b). Consequently,
the block matching process can be terminated and the area be-
tween the dashed and solid lines in Figure 4(a), which implies
the amount of saved computation, can be quite large.

C. General Winner-Update Algorithm

The winner-update algorithm for fast block matching is de-
scribed in this section. Consider a template block at position
(x, y). For each search position(x+ u, y + v), we letLB(u, v)
denote the currently-used lower bound of the matching error be-
tween this template block and the candidate matching block at
position(x + u, y + v) in the reference image. At the begin-
ning,LB(u, v) for each search position is initialized as the first
element in its lower bound list,LB1(u, v). An additional vari-
able,l(u, v), is used to record the index of the element to which
LB(u, v) is assigned. Initially,l(u, v) is set to be1. Let (û, v̂)
be the search position that has the minimalLB(u, v) among all
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Fig. 3. A template block with size16× 16 in imageIt is matched in the search
range ([−16, 16]× [−16, 16]) in imageIt−1.
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Fig. 4. (a) Number of pixels used for calculating the partial matching error (solid
line) and the complete matching error (dashed line). The area between these two
lines implies the amount of saved computation. Only the search positions along
the horizontal search line passing through the best estimate,(û, v̂), are shown
for simplicity. (b) This figure illustrates the complete matching error, SAD,
(dashed line) and the partial matching error, LB, (solid line) computed up to the
moment when the global minimum is found.

search positions. Then the temporary winner,(û, v̂), updates
its lower boundLB(û, v̂) with the next element in the lower
bound list,LBl(û,v̂)+1(û, v̂), and updates the new index num-
ber. A new temporary winner is then chosen, again as the search
position (û, v̂) having the minimalLB(u, v). This process is
repeated untill(û, v̂) of the new winner equalsK, the num-
ber of the last element in the lower bound list. Remember that
the last lower bound,LBK(û, v̂), is actually the matching error
SAD(û, v̂) at position(û, v̂). The block matching process can
now stop because the lower bounds of the matching errors for
other search positions are all larger than the matching error of
the winner.

The proposed algorithm is summarized below:

The Winner-Update Algorithm

Given a template block at position(x, y) in It
begin

for each (u, v) in the search rangedo
begin (initialization)

calculateLB1(u, v)
LB(u, v) := LB1(u, v)
l(u, v) := 1

end
select(û, v̂) having the minimalLB(u, v) to be the temporary

winner
while l(û, v̂) < K do

begin
l(û, v̂) := l(û, v̂) + 1
calculateLBl(û,v̂)(û, v̂)
LB(û, v̂) := LBl(û,v̂)(û, v̂)
select(û, v̂) having the minimalLB(u, v) to be the new

temporary winner
end

output (̂u, v̂)
end

D. Lower Bound Derived from Minkowski’s Inequality

For each search position, the number of lower bounds,
PSADs, defined in Equation (3) isB2. We want to reduce the
number of lower bounds because the winner-update algorithm
has to select a new temporary winner each time when a new
lower bound is calculated. One possibility is to rewrite the cal-
culation of PSAD defined in Equation (3) as follows:

RSADl
(x,y)(u, v) ≡

l−1∑
j=0

B−1∑
i=0

|It(x+ i, y + j)−

It−1(x+ u+ i, y + v + j)|,

for l = 1, . . . , B (instead ofl = 1, . . . , B2). These lower
bounds,RSAD1

(x,y)(u, v), . . ., RSADB
(x,y)(u, v), constitute an-

other ascending lower bound list, which is in fact a partial list
of the original PSAD list. In this lower bound list, thel-th el-
ement,RSADl

(x,y)(u, v), means the sum of absolute difference
of the pixels in the firstl rows. Other kind of lower bound can be
used in the winner-update algorithm. In the following, we will
describe the lower bound derived from Minkowski’s inequality.
This kind of lower bound is proposed by Lee and Chen [16] in
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tI (x,y)3

tI (x,y)0

tI (x,y)1

tI (x,y)2

x x+1 x+2 x+3 x+4 x+5 x+6 x+7 x+8... ...

Fig. 5. Four-level images constructed from an original image, where each level
is of full-resolution. Only one dimension (the x-axis) is shown for simplicity.
Two pyramids at positionsx andx+ 1 are depicted in solid line and dotted line,
respectively.

their block sum pyramid (BSP) algorithm for fast motion vector
estimation. The number of lower bounds for each search posi-
tion is onlylog2B + 1, instead ofB2.

Assume the size of the matching block is2K × 2K , we con-
struct K + 1 levels of images, where each level is of full-
resolution, for each image in the video sequence by using the
following way. Consider a four-level example as illustrated in
Figure 5. For each pixel,It

l(x, y), at levell and at timet, its
value is assigned to be the sum of its four corresponding pixels
at levell + 1:

It
l(x, y) = It

l+1(x, y) + It
l+1(x+ 2K−l−1, y) +

It
l+1(x, y + 2K−l−1) +

It
l+1(x+ 2K−l−1, y + 2K−l−1), (4)

where l is the level number,l = 0, . . . ,K − 1, and It
K is

the original image at timet. Notice that the value of the
pixel It

l(x, y) at level l is in fact the sum of the correspond-
ing 2K−l × 2K−l pixels of the original imageIt

K(x, y). By
using Equation (4) to calculateIt

l(x, y) from level l = K − 1
to 0, we can construct block sum pyramids for all the positions
in the whole image, except for the last2K−l − 1 pixels at each
row and each column due to the boundary condition. Figure 6
shows an example constructed from an image in the Salesman
sequence.

Notice that there is overlap between neighboring block sum
pyramids. Instead of calculating each block sum pyramid in-
dependently, our method can remove the redundant calculation
existing in the construction of overlapping block sum pyramids.
In Equation (4), it costs three operations to calculate the sum-
mation of four pixel values. Consequently, the overall com-
putational cost to construct theK levels of images is about
K × 3 × W × H, whereW andH are the width and height
of the image, respectively. Notice that the computational cost is
about2K×2K−1

3 × 3×W ×H if the block sum pyramids at all
positions in the whole image are calculated independently.

Let the level-l matching error,LSADl
(x,y)(u, v), be the

matching error between the template block at position(x, y)
in image It

l and the candidate matching block at position

level-0 image,I0
t (x, y)

level-1 image,I1
t (x, y)

level-2 image,I2
t (x, y)

level-3 image,I3
t (x, y)

Fig. 6. Construction of the four-level images for the Salesman test sequence.
Notice that the intensity values are normalized to[0, 255] for each image.

(x+ u, y + v) in imageIt−1
l. That is,

LSADl
(x,y)(u, v) ≡

2l−1∑
j=0

2l−1∑
i=0

|Itl(x+ 2K−li, y + 2K−lj)−

It−1
l(x+ u+ 2K−li, y + v + 2K−lj)|, (5)

wherel = 0, . . . ,K.
By using Minkowski’s inequality, the following inequality re-

lationship among the matching errors for different levels can be
derived [16] (subscript(x, y) is dropped for simplicity):

LSAD0(u, v) ≤ LSAD1(u, v) ≤ · · · ≤ LSADK(u, v)
= SAD(u, v). (6)
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Fig. 7. Total number of lower bound (dashed line) and the number of lower
bounds actually calculated (solid line).

The number of pixels used for calculatingLSADl(u, v) at
level l is 2l×2l. More specifically, the number of pixels used for
calculation is1, 4, . . ., and2K×2K at level0, 1, . . ., andK, re-
spectively. As a result, LSAD can be used as the lower bound of
SAD and this kind of lower bound is referred to as thepyramidal
lower bound. In the following, we useLSADl(u, v) as the lower
boundLBl(u, v) because there are onlyK + 1 lower bounds in
each lower bound list. Notice that the index of the first element
in the lower bound list is changed to 0. The initialization process
of the proposed winner-update algorithm has to be modified as
the same. Also, the construction process of multilevel images
has to be inserted into the proposed algorithm.

To give an intuitive feeling of how the computation can be
greatly saved by using the pyramidal lower bound, we show the
number of lower bounds computed with the example used in
Figure 3. For this case,K = 4 (i.e., there are five lower bounds
for each search position), but we can see from Figure 7 that the
number of lower bounds needed to be computed is only one or
two for most search positions. Most importantly, the computa-
tion required for computing the first lower bound is as simple
as one-pixel operation. Consequently, the computational saving
can be enormous.

III. C OMBINATION WITH THE THREE-STEP SEARCH

ALGORITHM

The proposed winner-update algorithm can be easily com-
bined with other fast algorithms for further speedup, but the
guarantee of achieving the global minimum will be sacrificed.
In this section, we shall use the well-known TSS algorithm as an
example, where nine coarsely spaced search positions are exam-
ined at first. Then the position having the minimum matching er-
ror is selected and eight search positions which are less coarsely
spaced around this selected position are examined. The match-
ing errors of these eight positions and the previously selected
position are compared and a new position having the minimum
matching error is selected again. This process is repeated until

the required spacing (one pixel) of the examined search posi-
tions is achieved.

At each iteration, the TSS algorithm needs to calculate and
compare the matching errors of nine or eight search positions.
Meanwhile the winner-update algorithm can be applied to effi-
ciently find the one having the minimum matching error among
these search positions. Because the winner-update algorithm
can find the best matching position at each iteration, the accu-
racy of this combined algorithm is the same as that of the TSS
algorithm while the computational efficiency will be much bet-
ter.

IV. EXPERIMENTS

A. Implementation Issues

A.1 Memory Storage

To utilize the inequality relationship in Equation (6), multi-
level images for both the current and reference images have to
be constructed. If the block size used is2K×2K , then2K more
images need to be stored in memory. Usually, one byte is suf-
ficient to store the original pixel value ranging from 0 to 255.
However, as Equation (4) shows, the value of each pixel in level
l, l = 0, . . . ,K − 1, is the sum of the2K−l × 2K−l pixel val-
ues in the block at levelK. Two or more bytes has to be used
to store the sum value. Thus more memory has to be allocated.
Memory usage can be reduced by using one byte to store the
pixel value at each level if the average, instead of the sum, of
the pixel values in the block is stored. This can be accomplished
by modifying Equations (4) and (5) into:

It
l(x, y) =

1
4

(Itl+1(x, y) + It
l+1(x+ 2K−l−1, y) +

It
l+1(x, y + 2K−l−1) +

It
l+1(x+ 2K−l−1, y + 2K−l−1)), (7)

LSADl
(x,y)(u, v) ≡

2K−l2K−l
2l−1∑
j=0

2l−1∑
i=0

|Itl(x+ 2K−li, y + 2K−lj)−

It−1
l(x+ u+ 2K−li, y + v + 2K−lj)|.

However, this implementation may increase the minimum
matching error a little because of the truncation error induced
from Equation (7). For this reason, we did not use this modifi-
cation in our experiments to ensure the global optimality.

A.2 Minimum Lower Bound Selection

The major overhead of the winner-update algorithm is the se-
lection of the so-far-minimum lower bound at each iteration.
A heap data structure can be used for selecting the minimum,
which requiresO(log2 n) operations to maintain the heap struc-
ture that keeps the element having the smallest lower bound in
the root of the heap tree.

TheO(log2 n) operations for minimum selection can be re-
duced to constant time by using a hashing method instead. If
we use the SAD value as the address of the hashing table, the
table size will be very large because the SAD value ranges from
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0 to 256 × 2K2K . To reduce the size of the hashing table from
256 × 2K2K to 256, the mean absolute difference (MAD) is
used, instead of the SAD, and the pyramidal lower bound is cal-
culated as

LBl(x,y)(u, v) = MADl
(x,y)(u, v) =

1
2K2K

LSADl
(x,y)(u, v).

Notice that the denominator for normalizingLSADl
(x,y)(u, v)

in the above equation is the same for allls. Thus, the increas-
ing order of Equation (6) is preserved. That is, we can divide
Equation (6) by2K2K and obtain the following inequality rela-
tionship:

MAD0(u, v) ≤ MAD1(u, v) ≤ · · · ≤ MADK(u, v)
= MAD(u, v).

BecauseMADl
(x,y)(u, v) ranges from 0.0 to 255.0, we only

need a table of 256 elements and use the integer part of
MADl

(x,y)(u, v) as the table address. Separate chaining is used
in our implementation to resolve the collision. The first element
in the first non-empty table entry is chosen to be the temporary
winner. After updating the lower bound corresponding to this
temporary winner, this element is put back to the correspond-
ing table entry according to its new lower bound if it is not the
minimum anymore. This operation requires only constant time.
Once the element of the so-far-minimum lower bound reaches
levelK, all the remaining elements, if any, with the same table
address (i.e., in the same chain) are examined to determine the
final winner.

The cost of selecting the so-far-minimum lower bound can be
further reduced by reducing the number of competitors. First,
we calculate the complete matching error at the predicted search
position (in our experiments,(u, v) is predicted as(0, 0)). Then,
the other search position can be avoided to be inserted into the
hash table if its first lower bound has already been larger than the
complete matching error calculated at the predicted search po-
sition. The less search positions join the competition, the faster
selection can be obtained.

B. Experimental Results

To evaluate the performance of the winner-update algorithm,
we implemented five algorithms: the full-search (FS) algo-
rithm, the block sum pyramid (BSP) algorithm [16], the pro-
posed winner-update algorithm with the lower bound derived
from Minkowski’s inequality (WinUpMI), the three-step search
(TSS) algorithm [6], and the combination of the winner-update
algorithm and the three-step search algorithm (WinUpTSS). No-
tice that the last two algorithms do not guarantee the global op-
timality. We evaluate the above five algorithms by comparing
three performance indices:

1) the peak signal-to-noise ratio (PSNR) between the recon-
structed motion-compensated image and the original image;

2) the number of absolute operations for calculating the
matching error;

3) the execution time with our implementation and hardware
environment.

These algorithms were implemented in C language on a Sun
Ultra-1 workstation. The execution time includes reading im-
ages, multilevel images construction if necessary, and motion

(a) (b)

(c) (d)

Fig. 8. Salesman test image sequence is shown in Figure 6. The other four test
image sequences are (a) Trevor, (b) Coastguard, (c) Football, and (d) Foreman.

vector estimation. Five commonly-used image sequences, as
shown in Figures 6 and 8, were used for comparing the per-
formance of the algorithms. Each image was divided into
16 × 16 nonoverlapping blocks and the search range was set
to [−16, 16]× [−16, 16].

Table II shows the performance comparison of the above-
mentioned algorithms with the Salesman image sequence which
contains 100 images of size352 × 288. The image in this se-
quence contains complex background as shown in Figure 6 and
the PSNR value is high. Thus, only a few competitors with small
matching error exist and the minimum matching error is small.
Most search positions obtained larger lower bounds than the
small minimum matching error and withdrew from the competi-
tion. Only 2% of the absolute operations are needed to calculate
the matching errors, compared to the absolute operations for the
FS algorithm. Even considering the overhead of constructing
the multilevel images and switching the calculation among dif-
ferent search positions, the total execution time for estimating
the motion vectors with the winner-update algorithm remain to
be very small. Our experiments shows that the WinUpMI algo-
rithm costs only 4% execution time of what the FS algorithm
costs. As for the WinUpTSS algorithm, further speedup can
be achieved without decreasing the PSNR value of the TSS al-
gorithm. The number of the absolute operations decreases from
3.1% to 0.6% and the actual execution time decreases from 3.3%
to 1.6%.

Table III shows the experimental results obtained with the
Trevor image sequence which contains 99 images of size256×
256. As shown in Figure 8(a), the background of the images
contains periodic strips. The blocks in the background area
needed more computation to find the final corresponding block
having the minimum matching error. Thus, higher operation ra-
tio and execution time ratio were obtained compared to those for
the Salesman image sequence.

The experiments described below use three image sequences
containing larger motion. The first image sequence Coastguard
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TABLE II

PERFORMANCE COMPARISON OF FIVE ALGORITHMS WITHSALESMAN

IMAGE SEQUENCE

PSNR Operations Exec. Time
Algorithm (dB) Number % sec. %

FS 35.44 99847168 100.0 533.6 100.0
BSP 35.44 2823837 2.8 30.8 5.8

WinUpMI 35.44 1967831 2.0 21.2 4.0

TSS 35.15 3103744 3.1 17.8 3.3
WinUpTSS 35.15 627416 0.6 8.6 1.6

TABLE III

PERFORMANCE COMPARISON OF FIVE ALGORITHMS WITHTREVOR IMAGE

SEQUENCE

PSNR Operations Exec. Time
Algorithm (dB) Number % sec. %

FS 34.42 62980096 100.0 359.7 100.0
BSP 34.42 2716395 4.3 31.5 8.8

WinUpMI 34.42 2445738 3.9 28.0 7.8

TSS 34.01 1971453 3.1 12.5 3.5
WinUpTSS 34.01 495151 0.8 7.0 2.0

contains 300 images of size360 × 240, the second image se-
quence Football contains 60 images of size352 × 240, and
the third image sequence Foreman contains 400 images of size
360× 288. Tables IV, V, and VI show the experimental results
using the three image sequences. Because of the lower PSNR
value, the efficiency improvement of the WinUpMI algorithm
comparing to the FS algorithm is not as significant as that in
the experiments of Salesman and Trevor image sequences. The
minimum matching errors are larger, on the average, and more
computations are required for most search positions before they
are out of the competition for the winner. It is obvious that the
proposed WinUpMI algorithm outperforms the BSP algorithm
in these experiments because there is a lot of large motion in the
image sequence (which makes it harder to have a good predic-
tion).

Although the TSS algorithm and the WinUpTSS algorithm

TABLE IV

PERFORMANCE COMPARISON OF FIVE ALGORITHMS WITHCOASTGUARD

IMAGE SEQUENCE

PSNR Operations Exec. Time
Algorithm (dB) Number % sec. %

FS 28.51 83206656 100.0 1339.7 100.0
BSP 28.51 16157373 19.4 372.7 27.8

WinUpMI 28.51 6948447 8.4 178.8 13.4

TSS 28.07 2623309 3.2 44.6 3.3
WinUpTSS 28.07 1171328 1.4 37.4 2.8

TABLE V

PERFORMANCE COMPARISON OF FIVE ALGORITHMS WITHFOOTBALL

IMAGE SEQUENCE

PSNR Operations Exec. Time
Algorithm (dB) Number % sec. %

FS 23.86 82258432 100.0 268.1 100.0
BSP 23.86 9649071 11.7 49.5 18.5

WinUpMI 23.86 5796655 7.1 32.1 12.0

TSS 23.10 2573771 3.1 8.8 3.3
WinUpTSS 23.10 1013051 1.2 6.8 2.5

TABLE VI

PERFORMANCE COMPARISON OF FIVE ALGORITHMS WITHFOREMAN

IMAGE SEQUENCE

PSNR Operations Exec. Time
Algorithm (dB) Number % sec. %

FS 31.28 100998144 100.0 2209.1 100.0
BSP 31.28 10891459 10.8 366.8 16.6

WinUpMI 31.28 6456348 6.4 221.8 10.0

TSS 30.02 3169292 3.1 71.6 3.2
WinUpTSS 30.02 1257482 1.3 54.5 2.5

are faster among the five algorithms, they cannot guarantee the
global optimality. From the above experiments, the TSS algo-
rithm and the WinUpTSS algorithm decrease the PSNR values
in a range from 0.29 dB to 1.26 dB. That is, they increase 6.9%
to 33.7% of mean square error. Thus, more compensation effort
is needed in video compression application.

V. D ISCUSSIONS

The major advantages of the winner-update algorithm include
conceptual simplicity, easy implementation, and high efficiency.
Also, it has many variations for adapting to different applica-
tions. For example, in the applications of on-line video com-
pression, such as video conference and video phone, satisfying
the time constraint is more important than acquiring the mini-
mum matching error. For all the fast block matching techniques
which guarantee the global optimality, the computational costs
are all data dependent. When many search positions have the
matching errors close to the minimum one, it needs much effort
to identify the final winner from these tough competitors. This
kind of bad situation occurs when the content of the matching
block has no obvious features. On the other hand, the fast block
matching techniques that examines only a portion but a fixed
number of the search positions can give the motion vector in
constant time, but the matching error may not be the global min-
imum. The winner-update algorithm can be slightly modified
to provide a suboptimal match within a specified time interval.
Once the time limit for performing the computation is met, the
chain at the first non-empty entry of the hash table is checked
and the element whose lower bound has been calculated to the
finest level (i.e., the element(u, v) whoseLBl(u,v)(u, v) has the
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largestl(u, v)) can be chosen as the matching result (i.e., the
up-to-date best match).

In stereo vision and visual tracking applications, the winner-
update algorithm can also be very helpful, but with another kind
of modification. The matching process can be terminated earlier
when the so-far-minimum lower bound has already been larger
than a specified threshold value. The reason is that the matching
result is unreliable (e.g. due to occlusion) and can be ignored.
Moreover, an ordered list of the best candidate matches (thek-
nearest neighbors) can be provided if we continue the match-
ing process after the best match is found and removed from the
search space. Further post-processing can be applied to the set
of candidates for more accurate results.

The winner-update algorithm is suitable for serial computa-
tion. When multiple CPUs or computers are available, the task
of block matching can be divided to enable parallel processing.
In video compression application, for example, the motion vec-
tors have to be estimated for all the blocks in the image. These
blocks can be divided into groups so that each group is processed
by a CPU or a computer. In this way, we can take the advantages
of parallel processing and achieve further speedup.

VI. CONCLUSIONS

In this paper, we have proposed a new fast algorithm, named
the winner-update algorithm, which can speed up the compu-
tation of block matching while still guaranteeing that the mini-
mum matching error can be obtained. According to our exper-
iments, the proposed winner-update algorithm (WinUpMI) can
save 91.6% to 98.0% of the absolute operations needed by the
FS algorithm, depending on which test image sequence is used.
If the global optimum is not required, then the winner-update
algorithm can combine with the TSS algorithm, and boost the
saving up to 98.6% to 99.4% with a small decrease of PSNR
value. The important thing is this combination (WinUpTSS)
will speed up the TSS algorithm without decrease its PSNR
value. When comparing the execution time of a fast algorithm,
overhead needs to be considered. It is true that the WinUpMI
algorithm requires a preprocessing overhead to construct multi-
level images. Also, additional operations are needed to switch
among the search positions. However, after including all the
overhead, the efficiency of the winner-update algorithm (Win-
UpMI) remains still very good. According to our experiments,
86.6% to 96.0% of the execution time can be saved, compared
to that of using the FS algorithm. Moreover, the proposed al-
gorithm can be easily modified either to meet the limited time
requirement or to provide an ordered list of the best candidate
matches. Our source codes of the proposed algorithm are avail-
able at http://smart.iis.sinica.edu.tw/html/winup.html.

In addition to block matching, we are currently investigat-
ing a fast algorithm fork-nearest neighbor search by using the
winner-update strategy. In this case, preprocessing is allowed
and the overhead of constructing the multilevel images can be
ignored. Another our research direction is to adopt Haar wavelet
transform, instead of block sum pyramid method, to construct
the multilevel images.
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