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Maximum Contrast Beamformer for
Electromagnetic Mapping of Brain Activity
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Abstract—Beamforming technique can be applied to map how the external electromagnetic field should appear can be
the neuronal activities from magneto-/electro- encephalographic calculated according to the forward solutions [1], [2]. The
(MEG/EEG) recordings. One of the major difficulties of the  gjactromagnetic inverse problem is to estimate the neuronal

scalar-type MEG/EEG beamformer is the determination of accu- N ; . .
rate dipole orientation, which is essential to an effective spatial activities in the brain based on the MEG/EEG recordings

filter. This paper presents a new beamforming technique which [3], [4]. This kind of inverse problem is inherently ill-posed.
exploits a maximum contrast criterion to maximize the ratio of Approximations such as the equivalent current dipole (ECD)

the neuronal activity estimated in a specified active state to the model, assumptions such as a fixed number of dipoles within
activity estimated in a control state. This criterion leads to a g epoch, and constraints such as the anatomical constraint and

closed-form solution of the dipole orientation. Experiments with th . traint I ired to obtai
simulation, phantom, and finger-lifting data clearly demonstrate € minimum-norm constraint are usually required 1o obtain

the effectiveness, efficiency, and accuracy of the proposed method.Féasonable solutions for the inverse problem.
Dipole fitting is the most widely-used method for solving
Index Terms—Maximum contrast beamformer, electromag- the.inver.sg proble.m. This'method assumes that the sources of
netic brain mapping, MEG, EEG. brain activity consist of a fixed number of ECDs and estimates
the parameters of the ECDs, including location, orientation,
| INTRODUCTION and strength, by minimizing the squared difference_ be’Fween
: the MEG/EEG recordings and the electromagnetic signals
AGNETOENCEPHALOGRAPHY (MEG) and elec- predicted by these ECDs [1], [3]. The major difficulty of the
troencephalography (EEG) are tools for functionalipole fitting method is how to determine the a priori number
brain imaging that noninvasively measure the magnetic i6f sources. Moreover, the involved minimization process may
duction and scalp potentials, respectively, produced by thep in local minima and result in significant localization errors
electrical brain activities. Compared to functional magneti¢ nonlinear simplex or gradient-based search is engaged [5].
resonance imaging (fMRI) that detects the relatively slows alternatives, MUSIC and its extensions [6]-[8] can avoid
hemodynamic changes which are the correlates of neurofi@§ problem by scanning through the region of interest and
activities, MEG and EEG directly measure the neuronal actidetermining the locations with peak projections of forward
ities with superior temporal resolution. This advantage enablggdels in the signal subspace. Another kind of inverse meth-
MEG/EEG to offer the possibility to penetrate the braigds estimate the brain activities distributed on the cortical
dynamics and neuronal coupling between cell assemblies. surface, which can be extracted from the magnetic resonance
The electromagnetic field recorded by MEG sensors fhaging (MRI) of the head. Each tessellation element of
EEG electrodes is the ensemble of neuronal activities withiRe surface model is associated with a current dipo|e, whose
the whole brain. From the given primary current sourcegrientation is either set to be on the tangential plane or normal

) ) ) ) . __to the local cortical surface. This anatomical constraint leads
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comparison results can be obtained from the individual teelution. Recently, Sekihara et al. proposed an optimal solution
mographic mappings, after proper statistical flattening [12h the determination of dipole orientation that maximizes the
[21]. output SNR (pseudo-Z statistic) [22]. The dipole orientation
MEG/EEG beamformer intends to concentrate the array cdin be calculated very efficiently in a closed-form manner.
MEG sensors or EEG electrodes on the neuronal activitiesin this work, we develop a novel spatial filtering technique,
coming from only one particular position at a time. Morealled the maximum contrast beamformer (MCB), for statisti-
specifically, this beamformer can obtain the activation magrdal mapping of neuronal activities. This MCB method has the
tude of the targeted source by imposing the unit-gain constragmtvantages of good output SNR and focal activity distribution
while suppressing the contribution from other sources las in scalar beamformers, while the dipole orientation is
applying the minimum variance criterion. Given a unit dipoleletermined accurately and efficiently. In addition to the unit-
with specified position and orientation, this method can analyain constraint and the minimum-variance criterion, as in the
ically calculate a spatial filter from the data covariance matrbonventional beamformers, our method exploits a maximum-
and the lead field of this dipole. Filter output at this positiogontrast criterion that maximizes the ratio of the reconstructed
can be obtained by passing the electromagnetic recordimgsironal activities in the active state to those in the control
through the calculated spatial filter. Individually repeating thetate. The maximum-contrast criterion helps to analytically and
above procedure for each position while scanning through thecurately determine the dipole orientation in a closed-form
head region results in a distribution map of brain activity [L5manner. The spatial filter can thus be obtained very efficiently
[16]. for each targeted position. Once the activity waveform is
There are two types of MEG/EEG beamformers in the litereconstructed in the source space by spatially filtering the elec-
ature. The first one is the vector-type beamformer [15], [1Afomagnetic recordings, an F-statistic map can be calculated to
This approach decomposes the dipole into three orthogonabeal cortical regions with significant difference of activities
components, each one with a fixed orientation. Three spatistween the active and control states. Compared to the pseudo-
filters are analytically computed for these three orthogonZlstatistic [16], [22] in which the sensor noise is considered,
components and then can be used to estimate the outpugtatistic gives the statistical inference between two contrast
source power as well as the activity index in the linearlgtates [12]. According to our experiments with simulation and
constrained minimum variance (LCMV) beamformer methophantom data, the MCB can estimate the dipole orientation and
[15]. Another type of MEG/EEG beamformers is the scalathen locate the source, efficiently and accurately. When applied
type beamformer [16], [22], in which only one spatial filter igo a finger-lifting study, the F-statistic map computed from the
used to estimate the brain activity for each targeted positionovement-evoked field clearly identifies the sensorimotor area
The dipole orientation is involved in the calculation of thevith high contrast. In this work, we apply the MCB method
spatial filter to maximize the output pseudo-Z statistic [16].for MEG studies. The same method can also be applied for
One of the advantages of the vector beamformer is tHBEG source localization.
it is efficient to compute the spatial filters because all the
involved procedures are deterministic. Compared to the vector I
beamformers, the scalar beamformer benefits from its higher
output signal-to-noise ratio (SNR) and more focal spatidl. Scalar Beamformer

extent of the estimated brain aCtiVity distribution [22], [23] Consider a unit d|po|e with paramet@'s: {rq’ q}, where
Notice that it is essential to accurately determine the dipoj¢ is the dipole location and is a unit vector representing the
orientation in the scalar-type beamforming methods. Onjpole orientation. Denote th& x 1 column vectorl, to be
when the dipole orientation is accurate can result in effectiyge |ead field vector of this unit dipole. The lead field vector

spatial filter [23], [24]. If the dipole orientation is deviated), contains the predicted measurementsNofMEG sensors
from the ground truth, the spatial filter with high specificitthat can be calculated by

may suppress the contribution from the true source and fail to

reveal the source energy (see Section IV-A for more details). lg = Ly q. 1)
One way to determine the dipole orientation is to sim- . ' . .

ply align it to the local cortical surface normal [24], [25].Here L;, is the V x 3 lead field matrix and can be derived

Unfortunately, surface reconstruction for convoluted cortex fgom the forward solution [2], [4]. Now suppose the source

very difficult and the reconstruction deviation will decreas@trength of this _dlpole isg(). Let us decompose the MEG
(t) into two components:

the accuracy of the dipole orientation. Hillebrand and Bamégcordmgan
reported in [24] that the a_nato_m|cal constraints can be advant_a- m(t) = my(t) +m,(t), )
geous only when the estimation error of the surface normal is

smaller than ten degrees. In [16], Robinson and Vrba proposedere mg(t) = s¢(t)ly denotes the predicted magnetic field
the synthetic aperture magnetometry (SAM) method in whidriginated from the targeted source with parameterand

the dipole orientation was determined by maximizing the, (¢) denotes the sensor noise plus the magnetic field origi-
pseudo-Z statistic. In general, it is computationally infeasibleated from all other sources.

to obtain the optimal orientation by exhaustively evaluating For the dipole source with parametetsthe ultimate goal

all the possible candidates. Nonlinear optimization methoda$ a scalar MEG beamformer is to determine a spatial filter
more efficient, but only can guarantee to find the suboptimady, an N x 1 column vector, such that the output signét)

. METHODS
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obtained by passing the MEG recordings(t) through the is the variance ratio of the filtered activity estimated in an
spatial filterwy, active state to that estimated in a control state. For each dipole
y(t) = wol mi(t), (3) source with parameters we calculate the spatial filtavy by
using Equation (6) and then calculate the F statistic as

approximates the source strengy{t) of this dipole. Toward
E {||weTma(t) - FE {Wnga(t)} ||2}

this goal, the spatial filter can be determined by applying

the unit-gain constraintws”1y = 1, and by minimizing the Fo = E{|weTm.(t) — E {weTm.(t)} |}
variance of the filter outpug(¢) [15]. Because woT Coawy @
= 7‘17 7
y(t) = wy'm(t) wyT Cowy
= wylmy(t) + wo m,(t) whereC, andC, are the covariance matrices estimated from

the MEG measurements in active and control states(t)
T andm.(t), respectively. Therefore, the value B} indicates

= so(t) + wo my (1), @) the significant level that the neuronal activity is stronger in
minimization of the variance ofi(t) means the suppressionth® active state than that in the control state at the targeted
of the leakagew,”'m,,(t), contributed from all other sourcesPOSitionrq with dipole orientationg. _
and sensor noise, while preserving the magnitude of the sourcd here are three covariance matrices involved in the beam-
strengthsy (t). Therefore, the optimal spatial filts¥, can be forming process so far, that i€, C, and C... The matrixC

= Sg(t)Wngg + Wngn(t)

obtained by is used to calculate the spatial filter and the corresponding
. ) ) time interval of m(¢) should be large enough to contain
W = argmin [E{lly(t) — E{y(®)} I} + allwa]|?] meaningful activities. The matrixC, is used to calculate

the F-statistic value within the time interval af,(¢). There

are many options to estimate the covariance ma@ix in
where E{-} denotes the expectation value awmdis the the denominator of Equation (7). For the dual-state MEG
parameter of Tikhonov regularization [26] for restricting thexperimentsC. can be calculated from the MEG recordings
norm of the spatial filtew,. By substituting Equation (3) into within the time window of the control state. In this case,
the above equation and solving the constrained optimizatithre F-statistic map represents the contrast of the neuronal
problem via the method of Lagrange multipliers, we can obtad@ttivation of the brain between the active and control states.

subject towy 1y =1, (5)

the analytical solution ofvy [15], [16], [27]: The other way to calculate the covariance mai@x is to
A ) - i - exploit the empty room MEG signals that can be recorded
Wy = argminwg (C+al)wg subjecttowy Iy =1  for 3 period of time when there is no subject in the shielding
(C +al)~ 1 room. From these signals we calcul&e and keep only the

= m, (6) diagqnal part while settin_g all other elemer_1ts of thi_s Covarianc_:e
o 0 matrix to be zero. The diagonal part of this covariance matrix
whereC = E {|m(t) — E{m(t)} ||?} is the N x N covari- can be regarded as the sensor gains without considering the
ance matrix of the MEG measuremenis(t) and I is the correlations among different sensors. The F-statistic map in
N x N identify matrix. this case reveals regions having significant brain activity for
the single-state MEG experiments. In another way, we can
simply setC,. to be the identity matrix. This means that the

B. Statistical Mapping ) . .
» o ) sensors are assumed to have uniform gain and the sensor noises
For each targeted positian, the spatial filter for the dipole 4. independent and identically distributed.
with specified orientatiory can be calculated by using Equa-

tion (6). Once obtained, the spatial filter estimates the dipole )

activity at the targeted position, by using Equation (3). By C- Maximum Contrast Beamformer

scanning the head region and performing the above-mentionedhe analytical solution of the spatial filter and the following
beamforming procedure for each probed position individuallf-statistic calculation are derived for a dipole with given
we obtain the activities of the whole head. Notice that thearameter§ = {r, q}. The position parameters, can be set
norm of the spatial filter is location-dependent. Compared to be the sampling positions sequentially. However, the dipole
a superficial dipole, the lead field norm of a deeper dipole @gientationq is difficult to determine.

smaller [1] and thus its corresponding spatial filter has a largerinstead of the time-consuming exhaustive search or the sub-
norm, as well as a larger response, according to the unit-gawtimal nonlinear search, we propose a closed-form solution
constraint. There may be strong non-task-related activity fo the determination of dipole orientation in the following.
the filtered outputs. Therefore, the strength of the estimatBg substituting Equation (1) into Equation (6), we rewrite the
activity is not necessarily proportional to the observability afolution ofwy as:

a task-related source. We need a metric that can normalize (C—i—ozI)_lquq

task-related output by non-task-related output. Wy = T .
Beamforming methods provide statistical maps to reveal q"Ly,  (C+al)~'Ly q
the regions having significant neuronal activities [15], [16]. _ A,q ®)

Instead of the source power, we calculate the F statistic which q’B.; q’
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where bothA, = (C + ol)"'L,, and B, = LTqTA,.q sensors are much more sensitive to tangential sources than to
depend only on the dipole positiory. We determine the radial ones, the orientation of each of the three dipoles in our
optimal dipole orientatiordy as the one that can maximize thesimulation was arbitrarily set but lay on the plane tangential
contrast of the source power estimated in the active statetdothe head conductor sphere. Strengths of the red, blue, and
that estimated in the control state. By substituting Equation (§)een dipoles were all zeros from -1 to 0 second and were
into Equation (7) and maximizing the F statistic, we obtain:10 nAm, 50 nAm, and 50 nAm, respectively, from 0 to 1
second. Frequencies of the temporal profiles for the red and

A, T A, ) ;
(qTquq) C. (qTB“qq) blue dipoles were the same, but were different from that for the
. rq rq f _ ! :
q = arg mc?x Aq \T A q green dipole. Zero-mean Gaussian random noise with standard
(qTquqq) C. <qTquqq) deviation 5 nAm was added to the temporal profile of the

red dipole. Correlation coefficient of the temporal profiles of

T T
— argmax qTAquCaArqq the red and blue dipoles was abdut8. Temporal profile
9 q Ay, CeArq of the green dipole was not correlated to those of the other
qTPrqq two dipoles (with correlation coefficient values about 0.03 to
— argmax Qr.q’ ©) the red dipole and O to the blue one). In addition to these

_ ) T ) three dipoles, 3000 random dipoles were uniformly distributed
in which the termq” By, q in both the numerator and de-y,roughout the brain region to simulate the non-task-related
nominator is a S(;alar and can be eliminated, the« 3 4civities. The strength of each random dipole was drawn from
matrix Pry = Ar," CoAy,, and thes x 3 matrix Qu, = 3 zero-mean Gaussian random number with standard deviation
Ar,” CcAy . The solution ofq in the above equation is 10 nam. Based on the forward MEG solutions, the simulated
the eigenvector corresponding to the maximum eigenvalue ghgnetic signals were then calculated at a 1-ms interval from
the matrixQx, - Pr,. Because these two matricddy, and .3 second to 1 second. Sensor noises with variance estimated
Qr, Py, are both3 x 3, we can solve the matrix inversefrom the empty room recordings of the MEG system were also
problem and the eigenproblem in a closed-form manner [28lyded to the simulated signals. The simulated signals were
[29]. In practice, we replace the matr@,, with the matrix hen processed by a bandpass filte( 20 Hz) followed by

Q. + 31 to avoid the singularity problem, whergis another 5 paseline correction procedure.

regularization pargmeter afddis the.3 x 3 identity matri>'<. 1) Accuracy of Source LocalizatioriThe proposed MCB

Although there is anV x N matrix inverse process in themethod was used to calculated the F-statistic map for the

calculation ofP, and Qy,: simulated magnetic signals, in which the time windows of the
_ T _I\T _1 active and control states wefe ~ 1 second and-1 ~ 0

Prg = Ing ((C+a1) )TC“(CJFO‘I) Lx, (10) second, respectively. Figure 1(c) illustrates the obtained F-

Q, = quT ((C + aI)*l) C.(C+ aI)*lqu,(ll) statistic map overlaid on MRI slices. The scanning proceeded

T voxel-by-voxel and the red, blue, and green dipoles were
these two terms ((C+al)™')" Co(C + oI)™' and |gcated in the scanning space when they were used to simulate
(C+ aI)‘l)T C.(C + oI)"' are location-independentthe MEG signals. Obviously we can find three sources in the
and can be calculated when both the MEG recordings asbtained F-statistic map and the three peak F-value locations
available and the time windows are set. Once calculateatcurately match with the ground-truth locations of these three
these two terms can be used to deri®g, and Q.,, the dipoles.
optimal dipole orientationg, and the spatial filterty for Among the three dipoles, the green dipole was the most fo-
each positionr,. cal and significant one revealed in the F-statistic map because

its dipole strength was larger and its temporal waveforms were

I1l. EXPERIMENTS not correlated to others. Although the blue dipole had the same

In this work, we performed experiments, including simula(-jipOIe strength as the green one, but it was close to gqother
tions, phantom studies, and a finger movement study, to e grrelated source, the red dipole, such that the F statistic for
blue dipole was smaller than that for the green one, as

uate the accuracy of source localization and dipole orientatiof _ ;

estimation by using the proposed MCB method. The magneﬂtscu,ssed n [151' This phen_omenon was even worse for the
signals were recorded from or simulated according to th d d|pgle in which the Fstat!stlc was d|versely_d|str|buted, as

204 planar gradiometers of a whole-head neuromagnetometaWn in Figure 1(c), due to its relative small dipole strength.

(Vectorview system, Neuromag Ltd., Finland). The homoge- 2) Accuracy of Dipole Orientation Estimatiorthe above-

neous spherical model was adopted as the head Condugggptioned procedure was repeated to simulate the magnetic
model in the calculation of forward solutions signals for the assessment of dipole orientation estimation

accuracy by using the proposed MCB method. Only the blue
) ) dipole, instead of the three dipoles concurrently, was engaged
A. Simulations in this case. Ninety dipole orientations were regularly sampled

Three dipole sources with temporal profiles of sinusoidah the tangential plane for the blue dipole to generate ninety
waves were located in the brain, as shown in Figures 1(a) asets of magnetic signals. Figure 2 illustrates the accuracy
1(b). Notice that the structural MRI shown in the simulatioperformance of orientation estimation by using the proposed
studies is only for visualization purpose. Because the ME@ethod. The circle, square, and triangle marks indicate the
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10 Capability of Maximum Contrast Beamformer to Determine Tangential Source Orientation
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Fig. 2. lllustration of the mean and the standard deviation (SD) of the
orientation estimation error (measD) for different regularization value
and varying sensor noise levels.

two orthogonal planes were activated sequentially to generate
the magnetic fields. The current strength of each dipole was set
to be 50 nAm. For each dipole, 50 trials were recorded by the

MEG system at a sampling rate of 1000 Hz and then averaged
according to the activation onset time. The averaged data were
then processed by a bandpass filter (7.5 Hz to 35 Hz) followed

by a baseline correction procedure. We chose the time window
from 30 ms to 90 ms as the active state to calculate the

Fig. 1. Ground truth and estimated sources of three dipoles in a simulatiggpvariance matrixC, (and C). Empty room measurements

study. This figure illustrates (a) the temporal profiles of these three dipole%re used to calculated as the control state covariance matrix
well as (b) their positions superimposed on a head MRI. The F-statistic m

a L i
calculated by using the proposed MCB method is tomographically shown ﬁ:?c- The regularization value was set to b€003 times the
(c) with two regions around the estimated sources enlarged. maximum eigenvalue of the covariance mait@y.

The MCB method was applied to calculate the F-statistic

map and the position with peak value was located as the
results when the regularization parameters were set to d&imated dipole position. The Euclidean distance between the
0.00003, 0.0003, and 0.003 times the maximum eigenvalueg®bund truth and the estimated position was calculated as the
the active state covariance matrix, respectively. The horizonfysition estimation error. The average of position estimation
axis represents the levels of sensor noise in the simulated dgi@qr for the engaged sixteen dipoles was 1.6381 mm with
ranging from 0.01 to 1 times the standard deviation of th@andard deviation 0.4971 mm, which is similar to those in
empty room measurements. The vertical axis represents Qg |iterature [30], [31]. The average of orientation estimation
average of orientation estimation errors for ninety trials. Frogyror was 1.9362 degrees with standard deviation 0.7054
this figure, we can see that the average of the orientation egiéyrees. These results clearly demonstrate the effectiveness

mation errors can be under 2.1 degrees when the regularizatigyy accuracy of the proposed MCB method.
is set appropriately. When the recorded signals are of high

SNR, that is, the sensor noise is low, a smaller regularizati@n
) ? . C._Self-
value can achieve better accuracy. Nevertheless, it remainS’a

challenging issue to determine a proper regularization valueln this study, the movement-evoked magnetic fields of one
in the beamforming method. right-handed healthy subject were acquired. The subject was

asked to sit in a comfortable chair with eyes open in a magnet-
ically shielded room. The subject performed self-paced, brisk
B. Phantom left/right index finger extension (finger lifting) movements at
An MEG phantom (Neuromag Ltd., Finland) was used toregular time intervals longer than 8 seconds. Finger extension
evaluate the localization accuracy of the MCB. Four heawdas immediately followed by brief muscle relaxation. The
position indicator (HPI) coils fixed on the phantom wereommencement of finger movement was registered using an
engaged to obtain the position of the phantom with respemttical pad and the trigger time was defined as onset time 0
to the sensor device. Sixteen fixed current dipoles located ms.

paced Finger Movement
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F-statistic map of left index finger lifting F-statistic map of right index finger lifting

The following theorem describes that under certain assump-
tions, the source will be missed by the optimal solution of
the scalar beamformer even when the true source location is
targeted.

Theorem 1:Assume that there is no noise and the MEG
signals are originated from a single source with dipole pa-
rametersd = {rq,q} in the brain, where the source activity
sg(t) is with zero mean and non-zero power. Consider the
calculation of a scalar spatial filtew, targeted at the true
source location, wheré@’ = {rq,q'} represents the dipole
with location rq and orientationq’ deviating from the true
source orientatiory, q' # q. Then there exists an optimal
solution of the scalar spatial filteky, with ultimate spatial
specificity (¢ = 0), based on the unit-gain constraint and
Fig. 3. F-statistic map of the estimated sources of left and right index fingreqmlmum variance criterion, such that the filter outputvaf
movement-evoked fields using the MCB method. IS Zero.

Proof: Since there is no noise, the MEG signals can be

) _ measured as
Vertical and horizontal electrooculogram (EOG) were

recorded to obtain the EOG-free epochs which were not m(t) = sg(t)lp = so(t)Lr,q. (12)
contaminated by eye movements and/or blinks. About 10, .o . se the mean of the source activigyt)
EOG-free epochs of MEG measurements with a sampling 3f&os. Equation (5) can be rewritten as
of 250 Hz were acquired and then averaged according to the

trigger onsets followed by bandpass filtering & 35 Hz) Wo = argminE {|wy m(t)||*} subject towy 1y =1
and baseline correction. Four HPI coils, two attached on the e
forehead and two behind the ears, were used to locate the
r:;%?;;ge subject as regard to the sensor array before data — g I‘Efjl {JﬁWe/TleleTWef} subject towy 71y = 1,

The MRI volume of size56 x 256 x 128 was scanned with 9 . :
ghereae is the non-zero power of the source activity. Since

anda are both
= argminE {||sg(t)wg " 1y||*} subject towy 1y =1
Wor

a Siemens MR system where the MR-RAGE pulse sequernge . T : e T )

was performed with TR = 1800 ms, TE = 4.38 ms, Tl = 1108'¢ Matxlolo™ is real symmetric.wy“lply"wy > 0 is

ms, and FOV =230 x 230 x 192 mm?. The coordinate systemst U "o all wor & %T - Obviously the vectomw,, satisfying

between the MR volume and MEG device were co-registeritf condition ofwyr 1y = 0 aﬁh'e"ei the minimum value of

by means of locating three landmarks (left pre-auricular, right<. objective funqnorEivag/ m(1)]*}. Combined with the

pre-auricular, and nasion points) in both systems. unit-gain constraintwy- 10} = 1, the vecto; which satisfies

The proposed method was again employed to map {agth the conditions ofwy "1y = 0 andwp "l = 1 is the

sources of movement-evoked fields. The active state t'.m"?“ solution of the spatial filtenv:. As a result, the F

defined as the duration from -120 ms before onset to 38(USHC ¢an be calculated as

ms after onset. The covariance matrix of the control state was .~ _ E{|wim(t)|}

estimated from the empty room recordings of 40 seconds in v = F {||€v9T,mC(t) —_E {ngc(t)} Hz}

order to obtain a large amount of sample data for good estimate ST (12

: U ) E{|so(t)ywg 1g)?}

of the covariance matrix. Figure 3 illustrates the calculated F- = T —
E{[Whm.(t) ~ B {whm.(0)} 2}
0.

statistic map. In this figure, the position of the maximum F-
value locates around the hand area of the primary sensorimotor (13)

cortex in the contralateral hemisphere for both left/right fingetat is, the filter outputvl, m(t) and F statisticFy, are both

movement tasks. Z€r0S.
V. D From the geometric point of viewwy "1y = 0 repre-
: 'SCQSS'O_N _ . sents the hyperplane; that has the normal vectdy and
A. Importance of Accurate Orientation Estimation passes through the origid, as shown in Figure 4. Similarly,

Dipole orientation estimation is a critical issue in scalar-types*150 = 1 represents the hyperplang with the normal
beamforming methods [22]-[24]. The spatial filter calculatedectorly: and with distancel/||1y| to the origin. Therefore,
for a dipole with inaccurate orientation fails to correctlyfhe optimal solution of&, is the intersection line of these
estimate the neuronal activity, particularly when the specificitywo hyperplanesr; and . This line can be represented by
of the spatial filter is high, that is, when the regularization
parametero is small. In this case, the beamformer may not
reveal the true significance level of task-related activities athere n;y = 1y/||lyl], na = 1lp/|le|l, a1 =
this probed position. Below we discuss this issue theoreticallycos v/(||lo|| sin® ), co = 1/(||lo/| sin®~), ~ is the angle
and experimentally. betweenly andly., and ) is the parameter of the line. Notice

WQ/ = Cc1ny + CoNy + )\nl X g, (14)
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Scalar beamformer
(with inaccurate dipole
orientation)

@) (b)

Fig. 4. Optimal solution of the spatial filter in a special case. Undd¥ig. 5. Effect of dipole orientation on scalar beamformer. Figure (a) depicts
the assumptions that there is no noise and the MEG signals are originaied dipoles for generating the simulated MEG signals. Figure (b) illustrates
from a single dipole source with lead field, the optimal solution of the the F-statistic map calculated by using the proposed MCB method (top)
ultimate-specificity spatial filtesvy, for dipole 6’ is the intersection of two and the pseudo-Z statistic map calculated by the scalar beamformer with
hyperplaneswy: Tlg = 0 (m1) andwg/ Tly, = 1 (m2), wherely. is the lead  orientation specified as the y axis (bottom).

field of dipole ’.

L _ _ axes. The top and bottom parts of Figure 5(b) show the F-
th/at this line exists only when the angle~ 0, or equivalently, gyaistic map calculated by using the proposed MCB method
qa' 7 q. Figure 4 illustrates the geometric relationship betweel y the pseudo-z statistic map calculated by using the scalar
these two planes and the optimal solution of the spatial f'lt%reamformer with dipole orientation specified as the y axis,

. ) . _respectively. The regularization parameterwas set to be
According to the above theorem, the source will be mlss%d0003 for both methods

by an ultimate-specificity scalar beamformer with deviated Obviously, the proposed MCB method can accurately es-
dipole orientation when noise-free MEG measurements Ofigiz, 4o the dipole orientation and produce two focal distri-

nate from a single dipole source. Practically, there exist Varioysiions that match these two dipole sources. Besides, the
kinds of noise in the MEG measurements, including phys'OIOSTue dipole has a more focused distribution than the red one

ical artifacts, instrumentation perturbation, and environmeBIEcause the former has higher SNR. The scalar beamformer
interference. To accommodate the spatial filter to the influengpSO obtained strong pseudo-Z statist.ic around the red dipole

of the noise, the regularlzat!on parametercan be used 10 ,ition because the orientation is correctly specified as the
control the norm of the spatial filter. Increasing the value (E)Fue source orientation, the y axis. However, the activity
a will prefer the spatial filter with lower norms, thus Calistribution around the blue dipole position is not significant

increase the noise res!stance cap_ablhty O_f_ t_he spatial f'lterkﬂatcause the specified orientation is largely deviated to the blue
the expense of degrading its spatial specificity. Consequen Ypole

the spatial filter does not lie on the intersection line suc

that the targeted dipole source will not be totally missed in ) )

this case. However, leakage from the sensor noise and all freComparison with LCMV Beamformer

sources other than the targeted one inevitably contribute toAs noted in [23], the scalar beamformer achieves higher

the spatial filter output. Accurate dipole orientation is vergutput SNR than that of the vector beamformer when the

essential to differentiate the response of the targeted soupcebed dipole orientation is accurately matched to the source

from those of noise and other sources. dipole orientation. However, the performance of the scalar
We generated a set of simulation data to investigate the issigamformer degrades when the probed dipole orientation

that how the dipole orientation influence the performance déviates from the source. Because the vector beamformer is

scalar beamformers. The procedure of generating simulatiodependent of the dipole orientation, we need to evaluate

data described in Section IlI-A was repeated to produce ttie performance of the scalar beamformer, relative to that

magnetic signals. The red and blue dipoles were both engagédhe vector beamformer, with respect to the accuracy of

and the green dipole was discarded in this case, as showrdijpole orientation estimation. The experiment for this purpose

Figure 5(a). The orientation of the red dipole was aligned ts described below.

the y axis. The blue dipole was oriented to have included The procedure of generating simulation data described in

angles of54.7 degrees from each of the three coordinat8ection Ill-A was repeated to produce the magnetic signals.
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Influence of Dipole Orientation on Beamformers
T T T

; ; Figure 6(b) illustrates the cross-sectional spatial extents
7 of the source activities estimated by the MCB and LCMV
methods. The horizontal axis represents the displacement
between the true source location and the probed dipole location
along the depth. Targeting at the true source location, the
peak F values estimated by the MCB and LCMV methods are
15.75 and 9.86, respectively. The width at half-peak F value
obtained by the MCB method is 3.02 mm and that obtained
by the LCMV method is 3.97 mm. The width ratio of LCMV

to MCB is 1.31, which is close to that of LCMV to SAM
(which is v/2), as reported in [23]. These results demonstrate
the the superiority of the MCB method in imaging brain

F value

%5 10 2 » w0 s activities because it can achieve high F value and focal spatial
Dipole orientation deviation (degree) @ extent of the estimated brain activity distribution. Notice that
B A the experiments presented here were performed on a 204-
16 Aty Extent Estimated by MCB and LWV Mefhods channel sensor array. Performance of the MCB method will

degrade relative to the LCMV method when the sensor number
increases [23].

C. Influence of Measurements in Control State

F value

The MCB method calculates the F value, which is the
variance ratio of the filtered activity obtained from the active
state to that obtained from the control state. Choices of control
state affect the calculated F value as well as the resulted
555 distribution of neuronal activation. We performed the follow-
ol ‘ ‘ ‘ ing experiment by using simulation data to investigate this

Displacement (mm) ®  issue. The procedure of generating simulation data described
in Section IlI-A was repeated to produce the magnetic signals.
Fig. 6.  Performance comparison between MCB and LCMV methodg—.he blue dipole was engaged with its position depicted in
Figure (a) illustrates that the F value obtained by the scalar beamfornfeigure 1(b). In this case, the blue source dipole was activated
degrades when dipole orientation deviation becomes large, as indicateddmy in the active state (that is, from 0 to 1 second) with
the square marks. It drops below what LCMV beamformer obtains when th .
orientation deviation is larger than around six degrees (the dotted line). In &ﬁrength 30 nAm. Another engaged source dlpole was located
experiments, the proposed MCB method can achieve around two degree@nfthe same horizontal plane as and at a distance of 7.2 mm of
_orientation estimation error and th_us can obtain superior F vfal_ues. F_igurecfﬁb blue dipole. This additional dipole with strength 50 nAm
illustrates the cross-sectional spatial extents of the source activity estimate bé{ . ) .
the MCB (square marks) and LCMV (circle marks) methods and the widtf¥as activated from -1 to 1 second, that is, throthOUt both the
at half-peak values are 3.02 mm and 3.97 mm, respectively. control and active states.
The simulated MEG recordings in the active and control
states were used to calculate the corresponding covariance
In this case, the blue dipole was engaged while the ré&entrices,C, and C., respectively. Then, the F-statistic map
and green dipoles were discarded. Targeted at the grouaflsource activity was calculated by the MCB method where
truth location, the F values were calculated by the scalarwas set to be 0.003 times the maximum eigenvalue of
beamformer and LCMV beamformer wherewas set to be the covariance matriXC. As shown in Figure 7(a), the blue
0.003 times the maximum eigenvalue of the covariance matdjole is clearly revealed because there is significant contrast
C. For the scalar beamformer, the F value decreases winsource activity between the active and control states. On
the deviation of the probed dipole orientation becomes largbe other hand, the other dipole is not revealed due to its
as indicated by the square marks in Figure 6(a). When tf@latively low activity contrast between active and control
dipole orientation deviation is below around six degrees, tisates, compared to the blue one. Therefore, this choice of
scalar beamformer produces higher F values than the LCM@nNtrol state is useful for dual-state experiments.
method does, as indicated by the dotted line in Figure 6(a).If the measurements in the control state only contain the
However, the performance of the scalar beamformer drogsnsor noises that are independent and identically distributed,
below that of the LCMV method when the dipole orientatiothe covariance matrixC,. is the identity matrixI times the
deviation is larger than six degrees. In our simulation andriance of the sensor noise. In this case the F value becomes
phantom studies described in Section lll, the proposed MQBe output SNR (pseudo-Z statistic) in the method proposed
method can achieve orientation estimation accuracy arouoyl Sekihara et al. [22]. As shown in Figure 7(b), two dipoles
two degrees, which is much less than the turning point of sate revealed because their activities during the active state are
degrees. both large compared to the sensor noise.
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contrast criterion, the proposed method calculate a spatial filter
that can maximize the significance level, F statistic, indicating
the variance ratio of filtered activities between two specified

the

time windows. The spatial filter is calculated according to

dipole orientation, which can be optimally determined

very efficiently in a closed-form manner. According to our
experiments, we have clearly demonstrated the effectiveness,
efficiency, and accuracy of the proposed method.
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Fig. 7.  Statistic maps of source activities estimated with measurements
of different control states. Figure (a) illustrates the F-statistic map of source
activity when the dipole activity contributes to the control-state measurements.
Only the blue dipole is revealed due to its high activity ratio between the activs
and control states. Figure (b) illustrates the F-statistic map when the contr 1]
state measurements only contain sensor noise. Two dipoles are revealed
because they both have large activities during the active state compared 51
the sensor noise. [
(3]

D. Computation Time

In addition to its capability of estimating dipole orientation
accurately, the MCB method is also superior in computatiof¥]
efficiency due to its closed-form solution of dipole orientation.
Only the matrix inverse and eigenproblem foB & 3 matrix [g)
are involved in the orientation estimation procedure, which
is apparently very efficient. In the SAM method, the dipole
orientation is determined by searching in the solution space
according to the calculated value of pseudo-Z statistic. Thigl
involved optimization procedure is inherently time-consuming
and may trap in the local minimum. 7]

For efficiency comparison, we applied both the MCB and
SAM methods to determine the dipole orientation for the[8]
simulation data set used in Section IlI-A. We tackled the
search problem of the SAM method by exhaustively probin
the solution space of dipole orientation at an interval of o
degrees. The solution space can be either restricted on the 2D
tangential plane or the 3D space in general. The comparid®l
did not include the vector beamformer methods because there
is no orientation determination procedure involved in thesg)
methods.

The comparison was performed on a computer equippﬁg]
with an AMD Athlon XP 3000+ CPU (2.17 GHz) and 512
MB RAM. The dipole orientation determination procedure was
repeated100000 times and the total computation time wa
measured for each method. The SAM method requit#éd
seconds an@82.3 seconds to prob&6 and2592 candidates on [14]
the 2D plane and in the 3D space, respectively. The proposed
MCB method used only.3 seconds, which is more than thregis)
times and two hundred times faster than the SAM method in
2D and 3D cases, respectively.

[16]
V. CONCLUSIONS

In this work, we have proposed a novel beamforming?l
approach, the MCB method, for statistically mapping the
brain activity from MEG recordings. Based on the maximum
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