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Maximum Contrast Beamformer for
Electromagnetic Mapping of Brain Activity

Yong-Sheng Chen,Member, IEEE,Chih-Yu Cheng, Jen-Chuen Hsieh, and Li-Fen Chen

Abstract— Beamforming technique can be applied to map
the neuronal activities from magneto-/electro- encephalographic
(MEG/EEG) recordings. One of the major difficulties of the
scalar-type MEG/EEG beamformer is the determination of accu-
rate dipole orientation, which is essential to an effective spatial
filter. This paper presents a new beamforming technique which
exploits a maximum contrast criterion to maximize the ratio of
the neuronal activity estimated in a specified active state to the
activity estimated in a control state. This criterion leads to a
closed-form solution of the dipole orientation. Experiments with
simulation, phantom, and finger-lifting data clearly demonstrate
the effectiveness, efficiency, and accuracy of the proposed method.

Index Terms— Maximum contrast beamformer, electromag-
netic brain mapping, MEG, EEG.

I. I NTRODUCTION

M AGNETOENCEPHALOGRAPHY (MEG) and elec-
troencephalography (EEG) are tools for functional

brain imaging that noninvasively measure the magnetic in-
duction and scalp potentials, respectively, produced by the
electrical brain activities. Compared to functional magnetic
resonance imaging (fMRI) that detects the relatively slow
hemodynamic changes which are the correlates of neuronal
activities, MEG and EEG directly measure the neuronal activ-
ities with superior temporal resolution. This advantage enables
MEG/EEG to offer the possibility to penetrate the brain
dynamics and neuronal coupling between cell assemblies.

The electromagnetic field recorded by MEG sensors or
EEG electrodes is the ensemble of neuronal activities within
the whole brain. From the given primary current sources,
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how the external electromagnetic field should appear can be
calculated according to the forward solutions [1], [2]. The
electromagnetic inverse problem is to estimate the neuronal
activities in the brain based on the MEG/EEG recordings
[3], [4]. This kind of inverse problem is inherently ill-posed.
Approximations such as the equivalent current dipole (ECD)
model, assumptions such as a fixed number of dipoles within
an epoch, and constraints such as the anatomical constraint and
the minimum-norm constraint are usually required to obtain
reasonable solutions for the inverse problem.

Dipole fitting is the most widely-used method for solving
the inverse problem. This method assumes that the sources of
brain activity consist of a fixed number of ECDs and estimates
the parameters of the ECDs, including location, orientation,
and strength, by minimizing the squared difference between
the MEG/EEG recordings and the electromagnetic signals
predicted by these ECDs [1], [3]. The major difficulty of the
dipole fitting method is how to determine the a priori number
of sources. Moreover, the involved minimization process may
trap in local minima and result in significant localization errors
if nonlinear simplex or gradient-based search is engaged [5].
As alternatives, MUSIC and its extensions [6]–[8] can avoid
this problem by scanning through the region of interest and
determining the locations with peak projections of forward
models in the signal subspace. Another kind of inverse meth-
ods estimate the brain activities distributed on the cortical
surface, which can be extracted from the magnetic resonance
imaging (MRI) of the head. Each tessellation element of
the surface model is associated with a current dipole, whose
orientation is either set to be on the tangential plane or normal
to the local cortical surface. This anatomical constraint leads
to a linear estimation of dipole strengths distributed on the
cortical surface. However, this estimation problem is usually
underdetermined and regularization such as the minimum-
norm constraint is required to obtain a unique solution [9]–
[11]. This solution, unfortunately, tends to emphasize the
cortical regions closer to the MEG sensors or EEG electrodes
due to the preference of smaller dipole strength [12].

During the past decade, beamforming methods [13], [14],
which are spatial filtering techniques that linearly integrate
information over multiple spatially distributed sensors, have
becoming more and more attractive for the localization of brain
activities [15]–[20]. Beyond the topographic mapping of signal
power at the sensors, we can obtain the tomographic mapping
of source power within the head by using beamforming
methods to scan the head region and reveal locations having
significant neuronal activation. For inter-subject investigation
of brain function, grand-average activation maps or group
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comparison results can be obtained from the individual to-
mographic mappings, after proper statistical flattening [12],
[21].

MEG/EEG beamformer intends to concentrate the array of
MEG sensors or EEG electrodes on the neuronal activities
coming from only one particular position at a time. More
specifically, this beamformer can obtain the activation magni-
tude of the targeted source by imposing the unit-gain constraint
while suppressing the contribution from other sources by
applying the minimum variance criterion. Given a unit dipole
with specified position and orientation, this method can analyt-
ically calculate a spatial filter from the data covariance matrix
and the lead field of this dipole. Filter output at this position
can be obtained by passing the electromagnetic recordings
through the calculated spatial filter. Individually repeating the
above procedure for each position while scanning through the
head region results in a distribution map of brain activity [15],
[16].

There are two types of MEG/EEG beamformers in the liter-
ature. The first one is the vector-type beamformer [15], [17].
This approach decomposes the dipole into three orthogonal
components, each one with a fixed orientation. Three spatial
filters are analytically computed for these three orthogonal
components and then can be used to estimate the output
source power as well as the activity index in the linearly
constrained minimum variance (LCMV) beamformer method
[15]. Another type of MEG/EEG beamformers is the scalar-
type beamformer [16], [22], in which only one spatial filter is
used to estimate the brain activity for each targeted position.
The dipole orientation is involved in the calculation of the
spatial filter to maximize the output pseudo-Z statistic [16].

One of the advantages of the vector beamformer is that
it is efficient to compute the spatial filters because all the
involved procedures are deterministic. Compared to the vector
beamformers, the scalar beamformer benefits from its higher
output signal-to-noise ratio (SNR) and more focal spatial
extent of the estimated brain activity distribution [22], [23].
Notice that it is essential to accurately determine the dipole
orientation in the scalar-type beamforming methods. Only
when the dipole orientation is accurate can result in effective
spatial filter [23], [24]. If the dipole orientation is deviated
from the ground truth, the spatial filter with high specificity
may suppress the contribution from the true source and fail to
reveal the source energy (see Section IV-A for more details).

One way to determine the dipole orientation is to sim-
ply align it to the local cortical surface normal [24], [25].
Unfortunately, surface reconstruction for convoluted cortex is
very difficult and the reconstruction deviation will decrease
the accuracy of the dipole orientation. Hillebrand and Barnes
reported in [24] that the anatomical constraints can be advanta-
geous only when the estimation error of the surface normal is
smaller than ten degrees. In [16], Robinson and Vrba proposed
the synthetic aperture magnetometry (SAM) method in which
the dipole orientation was determined by maximizing the
pseudo-Z statistic. In general, it is computationally infeasible
to obtain the optimal orientation by exhaustively evaluating
all the possible candidates. Nonlinear optimization method is
more efficient, but only can guarantee to find the suboptimal

solution. Recently, Sekihara et al. proposed an optimal solution
to the determination of dipole orientation that maximizes the
output SNR (pseudo-Z statistic) [22]. The dipole orientation
can be calculated very efficiently in a closed-form manner.

In this work, we develop a novel spatial filtering technique,
called the maximum contrast beamformer (MCB), for statisti-
cal mapping of neuronal activities. This MCB method has the
advantages of good output SNR and focal activity distribution
as in scalar beamformers, while the dipole orientation is
determined accurately and efficiently. In addition to the unit-
gain constraint and the minimum-variance criterion, as in the
conventional beamformers, our method exploits a maximum-
contrast criterion that maximizes the ratio of the reconstructed
neuronal activities in the active state to those in the control
state. The maximum-contrast criterion helps to analytically and
accurately determine the dipole orientation in a closed-form
manner. The spatial filter can thus be obtained very efficiently
for each targeted position. Once the activity waveform is
reconstructed in the source space by spatially filtering the elec-
tromagnetic recordings, an F-statistic map can be calculated to
reveal cortical regions with significant difference of activities
between the active and control states. Compared to the pseudo-
Z statistic [16], [22] in which the sensor noise is considered,
F statistic gives the statistical inference between two contrast
states [12]. According to our experiments with simulation and
phantom data, the MCB can estimate the dipole orientation and
then locate the source, efficiently and accurately. When applied
to a finger-lifting study, the F-statistic map computed from the
movement-evoked field clearly identifies the sensorimotor area
with high contrast. In this work, we apply the MCB method
for MEG studies. The same method can also be applied for
EEG source localization.

II. M ETHODS

A. Scalar Beamformer

Consider a unit dipole with parametersθ = {rq,q}, where
rq is the dipole location andq is a unit vector representing the
dipole orientation. Denote theN × 1 column vectorlθ to be
the lead field vector of this unit dipole. The lead field vector
lθ contains the predicted measurements ofN MEG sensors
that can be calculated by

lθ = Lrqq. (1)

Here Lrq is the N × 3 lead field matrix and can be derived
from the forward solution [2], [4]. Now suppose the source
strength of this dipole issθ(t). Let us decompose the MEG
recordingsm(t) into two components:

m(t) = mθ(t) + mn(t), (2)

wheremθ(t) = sθ(t)lθ denotes the predicted magnetic field
originated from the targeted source with parametersθ and
mn(t) denotes the sensor noise plus the magnetic field origi-
nated from all other sources.

For the dipole source with parametersθ, the ultimate goal
of a scalar MEG beamformer is to determine a spatial filter
wθ, anN × 1 column vector, such that the output signaly(t)
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obtained by passing the MEG recordingsm(t) through the
spatial filterwθ,

y(t) = wθ
T m(t), (3)

approximates the source strengthsθ(t) of this dipole. Toward
this goal, the spatial filter can be determined by applying
the unit-gain constraint,wθ

T lθ = 1, and by minimizing the
variance of the filter outputy(t) [15]. Because

y(t) = wθ
T m(t)

= wθ
T mθ(t) + wθ

T mn(t)
= sθ(t)wθ

T lθ + wθ
T mn(t)

= sθ(t) + wθ
T mn(t), (4)

minimization of the variance ofy(t) means the suppression
of the leakage,wθ

T mn(t), contributed from all other sources
and sensor noise, while preserving the magnitude of the source
strengthsθ(t). Therefore, the optimal spatial filter̂wθ can be
obtained by

ŵθ = arg min
wθ

[
E

{
‖y(t)− E {y(t)} ‖2

}
+ α‖wθ‖2

]
subject towθ

T lθ = 1, (5)

where E{·} denotes the expectation value andα is the
parameter of Tikhonov regularization [26] for restricting the
norm of the spatial filterwθ. By substituting Equation (3) into
the above equation and solving the constrained optimization
problem via the method of Lagrange multipliers, we can obtain
the analytical solution ofwθ [15], [16], [27]:

ŵθ = arg min
wθ

wθ
T (C + αI)wθ subject towθ

T lθ = 1

=
(C + αI)−1lθ

lθT (C + αI)−1lθ
, (6)

whereC = E
{
‖m(t)− E {m(t)} ‖2

}
is theN ×N covari-

ance matrix of the MEG measurementsm(t) and I is the
N ×N identify matrix.

B. Statistical Mapping

For each targeted positionrq, the spatial filter for the dipole
with specified orientationq can be calculated by using Equa-
tion (6). Once obtained, the spatial filter estimates the dipole
activity at the targeted positionrq by using Equation (3). By
scanning the head region and performing the above-mentioned
beamforming procedure for each probed position individually,
we obtain the activities of the whole head. Notice that the
norm of the spatial filter is location-dependent. Compared to
a superficial dipole, the lead field norm of a deeper dipole is
smaller [1] and thus its corresponding spatial filter has a larger
norm, as well as a larger response, according to the unit-gain
constraint. There may be strong non-task-related activity in
the filtered outputs. Therefore, the strength of the estimated
activity is not necessarily proportional to the observability of
a task-related source. We need a metric that can normalize
task-related output by non-task-related output.

Beamforming methods provide statistical maps to reveal
the regions having significant neuronal activities [15], [16].
Instead of the source power, we calculate the F statistic which

is the variance ratio of the filtered activity estimated in an
active state to that estimated in a control state. For each dipole
source with parametersθ, we calculate the spatial filterwθ by
using Equation (6) and then calculate the F statistic as

Fθ =
E

{
‖wθ

T ma(t)− E
{
wθ

T ma(t)
}
‖2

}
E {‖wθ

T mc(t)− E {wθ
T mc(t)} ‖2}

=
wθ

T Cawθ

wθ
T Ccwθ

, (7)

whereCa andCc are the covariance matrices estimated from
the MEG measurements in active and control states,ma(t)
andmc(t), respectively. Therefore, the value ofFθ indicates
the significant level that the neuronal activity is stronger in
the active state than that in the control state at the targeted
positionrq with dipole orientationq.

There are three covariance matrices involved in the beam-
forming process so far, that is,C, Ca andCc. The matrixC
is used to calculate the spatial filter and the corresponding
time interval of m(t) should be large enough to contain
meaningful activities. The matrixCa is used to calculate
the F-statistic value within the time interval ofma(t). There
are many options to estimate the covariance matrixCc in
the denominator of Equation (7). For the dual-state MEG
experiments,Cc can be calculated from the MEG recordings
within the time window of the control state. In this case,
the F-statistic map represents the contrast of the neuronal
activation of the brain between the active and control states.
The other way to calculate the covariance matrixCc is to
exploit the empty room MEG signals that can be recorded
for a period of time when there is no subject in the shielding
room. From these signals we calculateCc and keep only the
diagonal part while setting all other elements of this covariance
matrix to be zero. The diagonal part of this covariance matrix
can be regarded as the sensor gains without considering the
correlations among different sensors. The F-statistic map in
this case reveals regions having significant brain activity for
the single-state MEG experiments. In another way, we can
simply setCc to be the identity matrix. This means that the
sensors are assumed to have uniform gain and the sensor noises
are independent and identically distributed.

C. Maximum Contrast Beamformer

The analytical solution of the spatial filter and the following
F-statistic calculation are derived for a dipole with given
parametersθ = {rq,q}. The position parametersrq can be set
to be the sampling positions sequentially. However, the dipole
orientationq is difficult to determine.

Instead of the time-consuming exhaustive search or the sub-
optimal nonlinear search, we propose a closed-form solution
to the determination of dipole orientation in the following.
By substituting Equation (1) into Equation (6), we rewrite the
solution ofwθ as:

ŵθ =
(C + αI)−1Lrqq

qT Lrq
T (C + αI)−1Lrqq

=
Arqq

qT Brqq
, (8)
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where bothArq = (C + αI)−1Lrq and Brq = Lrq
T Arq

depend only on the dipole positionrq. We determine the
optimal dipole orientation̂q as the one that can maximize the
contrast of the source power estimated in the active state to
that estimated in the control state. By substituting Equation (8)
into Equation (7) and maximizing the F statistic, we obtain:

q̂ = arg max
q

(
Arqq

qT Brqq

)T

Ca

(
Arqq

qT Brqq

)
(

Arqq

qT Brqq

)T

Cc

(
Arqq

qT Brqq

)
= arg max

q

qT Arq
T CaArqq

qT Arq
T CcArqq

= arg max
q

qT Prqq
qT Qrqq

, (9)

in which the termqT Brqq in both the numerator and de-
nominator is a scalar and can be eliminated, the3 × 3
matrix Prq = Arq

T CaArq , and the3 × 3 matrix Qrq =
Arq

T CcArq . The solution of q̂ in the above equation is
the eigenvector corresponding to the maximum eigenvalue of
the matrixQrq

−1Prq . Because these two matrices,Qrq and
Qrq

−1Prq , are both3 × 3, we can solve the matrix inverse
problem and the eigenproblem in a closed-form manner [28],
[29]. In practice, we replace the matrixQrq with the matrix
Qrq +βI to avoid the singularity problem, whereβ is another
regularization parameter andI is the3× 3 identity matrix.

Although there is anN ×N matrix inverse process in the
calculation ofPrq andQrq :

Prq = Lrq
T

(
(C + αI)−1

)T
Ca(C + αI)−1Lrq (10)

Qrq = Lrq
T

(
(C + αI)−1

)T
Cc(C + αI)−1Lrq , (11)

these two terms
(
(C + αI)−1

)T
Ca(C + αI)−1 and(

(C + αI)−1
)T

Cc(C + αI)−1 are location-independent
and can be calculated when both the MEG recordings are
available and the time windows are set. Once calculated,
these two terms can be used to derivePrq and Qrq , the
optimal dipole orientationq̂, and the spatial filterŵθ for
each positionrq.

III. E XPERIMENTS

In this work, we performed experiments, including simula-
tions, phantom studies, and a finger movement study, to eval-
uate the accuracy of source localization and dipole orientation
estimation by using the proposed MCB method. The magnetic
signals were recorded from or simulated according to the
204 planar gradiometers of a whole-head neuromagnetometer
(Vectorview system, Neuromag Ltd., Finland). The homoge-
neous spherical model was adopted as the head conductor
model in the calculation of forward solutions.

A. Simulations

Three dipole sources with temporal profiles of sinusoidal
waves were located in the brain, as shown in Figures 1(a) and
1(b). Notice that the structural MRI shown in the simulation
studies is only for visualization purpose. Because the MEG

sensors are much more sensitive to tangential sources than to
radial ones, the orientation of each of the three dipoles in our
simulation was arbitrarily set but lay on the plane tangential
to the head conductor sphere. Strengths of the red, blue, and
green dipoles were all zeros from -1 to 0 second and were
10 nAm, 50 nAm, and 50 nAm, respectively, from 0 to 1
second. Frequencies of the temporal profiles for the red and
blue dipoles were the same, but were different from that for the
green dipole. Zero-mean Gaussian random noise with standard
deviation 5 nAm was added to the temporal profile of the
red dipole. Correlation coefficient of the temporal profiles of
the red and blue dipoles was about0.58. Temporal profile
of the green dipole was not correlated to those of the other
two dipoles (with correlation coefficient values about 0.03 to
the red dipole and 0 to the blue one). In addition to these
three dipoles, 3000 random dipoles were uniformly distributed
throughout the brain region to simulate the non-task-related
activities. The strength of each random dipole was drawn from
a zero-mean Gaussian random number with standard deviation
10 nAm. Based on the forward MEG solutions, the simulated
magnetic signals were then calculated at a 1-ms interval from
-1 second to 1 second. Sensor noises with variance estimated
from the empty room recordings of the MEG system were also
added to the simulated signals. The simulated signals were
then processed by a bandpass filter (1 ∼ 20 Hz) followed by
a baseline correction procedure.

1) Accuracy of Source Localization:The proposed MCB
method was used to calculated the F-statistic map for the
simulated magnetic signals, in which the time windows of the
active and control states were0 ∼ 1 second and−1 ∼ 0
second, respectively. Figure 1(c) illustrates the obtained F-
statistic map overlaid on MRI slices. The scanning proceeded
voxel-by-voxel and the red, blue, and green dipoles were
located in the scanning space when they were used to simulate
the MEG signals. Obviously we can find three sources in the
obtained F-statistic map and the three peak F-value locations
accurately match with the ground-truth locations of these three
dipoles.

Among the three dipoles, the green dipole was the most fo-
cal and significant one revealed in the F-statistic map because
its dipole strength was larger and its temporal waveforms were
not correlated to others. Although the blue dipole had the same
dipole strength as the green one, but it was close to another
correlated source, the red dipole, such that the F statistic for
the blue dipole was smaller than that for the green one, as
discussed in [15]. This phenomenon was even worse for the
red dipole in which the F statistic was diversely distributed, as
shown in Figure 1(c), due to its relative small dipole strength.

2) Accuracy of Dipole Orientation Estimation:The above-
mentioned procedure was repeated to simulate the magnetic
signals for the assessment of dipole orientation estimation
accuracy by using the proposed MCB method. Only the blue
dipole, instead of the three dipoles concurrently, was engaged
in this case. Ninety dipole orientations were regularly sampled
on the tangential plane for the blue dipole to generate ninety
sets of magnetic signals. Figure 2 illustrates the accuracy
performance of orientation estimation by using the proposed
method. The circle, square, and triangle marks indicate the
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Fig. 1. Ground truth and estimated sources of three dipoles in a simulation
study. This figure illustrates (a) the temporal profiles of these three dipole as
well as (b) their positions superimposed on a head MRI. The F-statistic map
calculated by using the proposed MCB method is tomographically shown in
(c) with two regions around the estimated sources enlarged.

results when the regularization parameters were set to be
0.00003, 0.0003, and 0.003 times the maximum eigenvalue of
the active state covariance matrix, respectively. The horizontal
axis represents the levels of sensor noise in the simulated data,
ranging from 0.01 to 1 times the standard deviation of the
empty room measurements. The vertical axis represents the
average of orientation estimation errors for ninety trials. From
this figure, we can see that the average of the orientation esti-
mation errors can be under 2.1 degrees when the regularization
is set appropriately. When the recorded signals are of high
SNR, that is, the sensor noise is low, a smaller regularization
value can achieve better accuracy. Nevertheless, it remains a
challenging issue to determine a proper regularization value
in the beamforming method.

B. Phantom

An MEG phantom (Neuromag Ltd., Finland) was used to
evaluate the localization accuracy of the MCB. Four head
position indicator (HPI) coils fixed on the phantom were
engaged to obtain the position of the phantom with respect
to the sensor device. Sixteen fixed current dipoles located on
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Fig. 2. Illustration of the mean and the standard deviation (SD) of the
orientation estimation error (mean±SD) for different regularization valueα
and varying sensor noise levels.

two orthogonal planes were activated sequentially to generate
the magnetic fields. The current strength of each dipole was set
to be 50 nAm. For each dipole, 50 trials were recorded by the
MEG system at a sampling rate of 1000 Hz and then averaged
according to the activation onset time. The averaged data were
then processed by a bandpass filter (7.5 Hz to 35 Hz) followed
by a baseline correction procedure. We chose the time window
from 30 ms to 90 ms as the active state to calculate the
covariance matrixCa (and C). Empty room measurements
were used to calculated as the control state covariance matrix
Cc. The regularization value was set to be0.0003 times the
maximum eigenvalue of the covariance matrixCa.

The MCB method was applied to calculate the F-statistic
map and the position with peak value was located as the
estimated dipole position. The Euclidean distance between the
ground truth and the estimated position was calculated as the
position estimation error. The average of position estimation
error for the engaged sixteen dipoles was 1.6381 mm with
standard deviation 0.4971 mm, which is similar to those in
the literature [30], [31]. The average of orientation estimation
error was 1.9362 degrees with standard deviation 0.7054
degrees. These results clearly demonstrate the effectiveness
and accuracy of the proposed MCB method.

C. Self-paced Finger Movement

In this study, the movement-evoked magnetic fields of one
right-handed healthy subject were acquired. The subject was
asked to sit in a comfortable chair with eyes open in a magnet-
ically shielded room. The subject performed self-paced, brisk
left/right index finger extension (finger lifting) movements at
irregular time intervals longer than 8 seconds. Finger extension
was immediately followed by brief muscle relaxation. The
commencement of finger movement was registered using an
optical pad and the trigger time was defined as onset time 0
ms.
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F-statistic map of left index finger lifting F-statistic map of right index finger lifting

L RL R

Fig. 3. F-statistic map of the estimated sources of left and right index finger
movement-evoked fields using the MCB method.

Vertical and horizontal electrooculogram (EOG) were
recorded to obtain the EOG-free epochs which were not
contaminated by eye movements and/or blinks. About 100
EOG-free epochs of MEG measurements with a sampling rate
of 250 Hz were acquired and then averaged according to the
trigger onsets followed by bandpass filtering (3 ∼ 35 Hz)
and baseline correction. Four HPI coils, two attached on the
forehead and two behind the ears, were used to locate the
head of the subject as regard to the sensor array before data
recordings.

The MRI volume of size256×256×128 was scanned with
a Siemens MR system where the MR-RAGE pulse sequence
was performed with TR = 1800 ms, TE = 4.38 ms, TI = 1100
ms, and FOV =230×230×192 mm3. The coordinate systems
between the MR volume and MEG device were co-registered
by means of locating three landmarks (left pre-auricular, right
pre-auricular, and nasion points) in both systems.

The proposed method was again employed to map the
sources of movement-evoked fields. The active state was
defined as the duration from -120 ms before onset to 360
ms after onset. The covariance matrix of the control state was
estimated from the empty room recordings of 40 seconds in
order to obtain a large amount of sample data for good estimate
of the covariance matrix. Figure 3 illustrates the calculated F-
statistic map. In this figure, the position of the maximum F-
value locates around the hand area of the primary sensorimotor
cortex in the contralateral hemisphere for both left/right finger
movement tasks.

IV. D ISCUSSION

A. Importance of Accurate Orientation Estimation

Dipole orientation estimation is a critical issue in scalar-type
beamforming methods [22]–[24]. The spatial filter calculated
for a dipole with inaccurate orientation fails to correctly
estimate the neuronal activity, particularly when the specificity
of the spatial filter is high, that is, when the regularization
parameterα is small. In this case, the beamformer may not
reveal the true significance level of task-related activities at
this probed position. Below we discuss this issue theoretically
and experimentally.

The following theorem describes that under certain assump-
tions, the source will be missed by the optimal solution of
the scalar beamformer even when the true source location is
targeted.

Theorem 1:Assume that there is no noise and the MEG
signals are originated from a single source with dipole pa-
rametersθ = {rq,q} in the brain, where the source activity
sθ(t) is with zero mean and non-zero power. Consider the
calculation of a scalar spatial filterwθ′ targeted at the true
source location, whereθ′ = {rq,q′} represents the dipole
with location rq and orientationq′ deviating from the true
source orientationq, q′ 6= q. Then there exists an optimal
solution of the scalar spatial filter̂wθ′ with ultimate spatial
specificity (α = 0), based on the unit-gain constraint and
minimum variance criterion, such that the filter output ofŵθ′

is zero.
Proof: Since there is no noise, the MEG signals can be

measured as

m(t) = sθ(t)lθ = sθ(t)Lrqq. (12)

Because the mean of the source activitysθ(t) andα are both
zeros, Equation (5) can be rewritten as

ŵθ′ = arg min
wθ′

E
{
‖wθ′

T m(t)‖2
}

subject towθ′
T lθ′ = 1

= arg min
wθ′

E
{
‖sθ(t)wθ′

T lθ‖2
}

subject towθ′
T lθ′ = 1

= arg min
wθ′

{
σ2

θwθ′
T lθlθT wθ′

}
subject towθ′

T lθ′ = 1,

whereσ2
θ is the non-zero power of the source activity. Since

the matrix lθlθT is real symmetric,wθ′T lθlθT wθ′ ≥ 0 is
true for all wθ′ ∈ <N . Obviously the vectorwθ′ satisfying
the condition ofwθ′T lθ = 0 achieves the minimum value of
the objective functionE

{
‖wθ′T m(t)‖2

}
. Combined with the

unit-gain constraintwθ′T lθ′ = 1, the vector which satisfies
both the conditions ofwθ′T lθ = 0 and wθ′T lθ′ = 1 is the
optimal solution of the spatial filter,̂wθ′ . As a result, the F
statistic can be calculated as

Fθ′ =
E

{
‖ŵT

θ′m(t)‖2
}

E
{
‖ŵT

θ′mc(t)− E
{
ŵT

θ′mc(t)
}
‖2

}
=

E
{
‖sθ(t)ŵT

θ′ lθ‖2
}

E
{
‖ŵT

θ′mc(t)− E
{
ŵT

θ′mc(t)
}
‖2

}
= 0. (13)

That is, the filter output̂wT
θ′m(t) and F statisticFθ′ are both

zeros.
From the geometric point of view,wθ′T lθ = 0 repre-

sents the hyperplaneπ1 that has the normal vectorlθ and
passes through the originO, as shown in Figure 4. Similarly,
wθ′T lθ′ = 1 represents the hyperplaneπ2 with the normal
vector lθ′ and with distance1/‖lθ′‖ to the origin. Therefore,
the optimal solution ofŵθ′ is the intersection line of these
two hyperplanesπ1 andπ2. This line can be represented by

ŵθ′ = c1n1 + c2n2 + λn1 × n2, (14)

where n1 = lθ/‖lθ‖, n2 = lθ′/‖lθ′‖, c1 =
−cos γ/(‖lθ′‖ sin2 γ), c2 = 1/(‖lθ′‖ sin2 γ), γ is the angle
betweenlθ and lθ′ , andλ is the parameter of the line. Notice
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Fig. 4. Optimal solution of the spatial filter in a special case. Under
the assumptions that there is no noise and the MEG signals are originated
from a single dipole source with lead fieldlθ , the optimal solution of the
ultimate-specificity spatial filter̂wθ′ for dipole θ′ is the intersection of two
hyperplanes,wθ′T lθ = 0 (π1) andwθ′T lθ′ = 1 (π2), wherelθ′ is the lead
field of dipoleθ′.

that this line exists only when the angleγ 6= 0, or equivalently,
q′ 6= q. Figure 4 illustrates the geometric relationship between
these two planes and the optimal solution of the spatial filter.

According to the above theorem, the source will be missed
by an ultimate-specificity scalar beamformer with deviated
dipole orientation when noise-free MEG measurements origi-
nate from a single dipole source. Practically, there exist various
kinds of noise in the MEG measurements, including physiolog-
ical artifacts, instrumentation perturbation, and environment
interference. To accommodate the spatial filter to the influence
of the noise, the regularization parameterα can be used to
control the norm of the spatial filter. Increasing the value of
α will prefer the spatial filter with lower norms, thus can
increase the noise resistance capability of the spatial filter at
the expense of degrading its spatial specificity. Consequently,
the spatial filter does not lie on the intersection line such
that the targeted dipole source will not be totally missed in
this case. However, leakage from the sensor noise and all the
sources other than the targeted one inevitably contribute to
the spatial filter output. Accurate dipole orientation is very
essential to differentiate the response of the targeted source
from those of noise and other sources.

We generated a set of simulation data to investigate the issue
that how the dipole orientation influence the performance of
scalar beamformers. The procedure of generating simulation
data described in Section III-A was repeated to produce the
magnetic signals. The red and blue dipoles were both engaged
and the green dipole was discarded in this case, as shown in
Figure 5(a). The orientation of the red dipole was aligned to
the y axis. The blue dipole was oriented to have included
angles of 54.7 degrees from each of the three coordinate

L R
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x
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MCB

Scalar beamformer
(with inaccurate dipole 
orientation)

(a) (b)

x

y

z

54°

54° 54°

Fig. 5. Effect of dipole orientation on scalar beamformer. Figure (a) depicts
two dipoles for generating the simulated MEG signals. Figure (b) illustrates
the F-statistic map calculated by using the proposed MCB method (top)
and the pseudo-Z statistic map calculated by the scalar beamformer with
orientation specified as the y axis (bottom).

axes. The top and bottom parts of Figure 5(b) show the F-
statistic map calculated by using the proposed MCB method
and the pseudo-Z statistic map calculated by using the scalar
beamformer with dipole orientation specified as the y axis,
respectively. The regularization parameterα was set to be
0.0003 for both methods.

Obviously, the proposed MCB method can accurately es-
timate the dipole orientation and produce two focal distri-
butions that match these two dipole sources. Besides, the
blue dipole has a more focused distribution than the red one
because the former has higher SNR. The scalar beamformer
also obtained strong pseudo-Z statistic around the red dipole
position because the orientation is correctly specified as the
true source orientation, the y axis. However, the activity
distribution around the blue dipole position is not significant
because the specified orientation is largely deviated to the blue
dipole.

B. Comparison with LCMV Beamformer

As noted in [23], the scalar beamformer achieves higher
output SNR than that of the vector beamformer when the
probed dipole orientation is accurately matched to the source
dipole orientation. However, the performance of the scalar
beamformer degrades when the probed dipole orientation
deviates from the source. Because the vector beamformer is
independent of the dipole orientation, we need to evaluate
the performance of the scalar beamformer, relative to that
of the vector beamformer, with respect to the accuracy of
dipole orientation estimation. The experiment for this purpose
is described below.

The procedure of generating simulation data described in
Section III-A was repeated to produce the magnetic signals.
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Fig. 6. Performance comparison between MCB and LCMV methods.
Figure (a) illustrates that the F value obtained by the scalar beamformer
degrades when dipole orientation deviation becomes large, as indicated by
the square marks. It drops below what LCMV beamformer obtains when the
orientation deviation is larger than around six degrees (the dotted line). In our
experiments, the proposed MCB method can achieve around two degrees of
orientation estimation error and thus can obtain superior F values. Figure (b)
illustrates the cross-sectional spatial extents of the source activity estimated by
the MCB (square marks) and LCMV (circle marks) methods and the widths
at half-peak values are 3.02 mm and 3.97 mm, respectively.

In this case, the blue dipole was engaged while the red
and green dipoles were discarded. Targeted at the ground-
truth location, the F values were calculated by the scalar
beamformer and LCMV beamformer whereα was set to be
0.003 times the maximum eigenvalue of the covariance matrix
C. For the scalar beamformer, the F value decreases when
the deviation of the probed dipole orientation becomes large,
as indicated by the square marks in Figure 6(a). When the
dipole orientation deviation is below around six degrees, the
scalar beamformer produces higher F values than the LCMV
method does, as indicated by the dotted line in Figure 6(a).
However, the performance of the scalar beamformer drops
below that of the LCMV method when the dipole orientation
deviation is larger than six degrees. In our simulation and
phantom studies described in Section III, the proposed MCB
method can achieve orientation estimation accuracy around
two degrees, which is much less than the turning point of six
degrees.

Figure 6(b) illustrates the cross-sectional spatial extents
of the source activities estimated by the MCB and LCMV
methods. The horizontal axis represents the displacement
between the true source location and the probed dipole location
along the depth. Targeting at the true source location, the
peak F values estimated by the MCB and LCMV methods are
15.75 and 9.86, respectively. The width at half-peak F value
obtained by the MCB method is 3.02 mm and that obtained
by the LCMV method is 3.97 mm. The width ratio of LCMV
to MCB is 1.31, which is close to that of LCMV to SAM
(which is

√
2), as reported in [23]. These results demonstrate

the the superiority of the MCB method in imaging brain
activities because it can achieve high F value and focal spatial
extent of the estimated brain activity distribution. Notice that
the experiments presented here were performed on a 204-
channel sensor array. Performance of the MCB method will
degrade relative to the LCMV method when the sensor number
increases [23].

C. Influence of Measurements in Control State

The MCB method calculates the F value, which is the
variance ratio of the filtered activity obtained from the active
state to that obtained from the control state. Choices of control
state affect the calculated F value as well as the resulted
distribution of neuronal activation. We performed the follow-
ing experiment by using simulation data to investigate this
issue. The procedure of generating simulation data described
in Section III-A was repeated to produce the magnetic signals.
The blue dipole was engaged with its position depicted in
Figure 1(b). In this case, the blue source dipole was activated
only in the active state (that is, from 0 to 1 second) with
strength 30 nAm. Another engaged source dipole was located
on the same horizontal plane as and at a distance of 7.2 mm of
the blue dipole. This additional dipole with strength 50 nAm
was activated from -1 to 1 second, that is, throughout both the
control and active states.

The simulated MEG recordings in the active and control
states were used to calculate the corresponding covariance
matrices,Ca and Cc, respectively. Then, the F-statistic map
of source activity was calculated by the MCB method where
α was set to be 0.003 times the maximum eigenvalue of
the covariance matrixC. As shown in Figure 7(a), the blue
dipole is clearly revealed because there is significant contrast
of source activity between the active and control states. On
the other hand, the other dipole is not revealed due to its
relatively low activity contrast between active and control
states, compared to the blue one. Therefore, this choice of
control state is useful for dual-state experiments.

If the measurements in the control state only contain the
sensor noises that are independent and identically distributed,
the covariance matrixCc is the identity matrixI times the
variance of the sensor noise. In this case the F value becomes
the output SNR (pseudo-Z statistic) in the method proposed
by Sekihara et al. [22]. As shown in Figure 7(b), two dipoles
are revealed because their activities during the active state are
both large compared to the sensor noise.
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Fig. 7. Statistic maps of source activities estimated with measurements
of different control states. Figure (a) illustrates the F-statistic map of source
activity when the dipole activity contributes to the control-state measurements.
Only the blue dipole is revealed due to its high activity ratio between the active
and control states. Figure (b) illustrates the F-statistic map when the control-
state measurements only contain sensor noise. Two dipoles are revealed
because they both have large activities during the active state compared to
the sensor noise.

D. Computation Time

In addition to its capability of estimating dipole orientation
accurately, the MCB method is also superior in computation
efficiency due to its closed-form solution of dipole orientation.
Only the matrix inverse and eigenproblem for a3× 3 matrix
are involved in the orientation estimation procedure, which
is apparently very efficient. In the SAM method, the dipole
orientation is determined by searching in the solution space
according to the calculated value of pseudo-Z statistic. The
involved optimization procedure is inherently time-consuming
and may trap in the local minimum.

For efficiency comparison, we applied both the MCB and
SAM methods to determine the dipole orientation for the
simulation data set used in Section III-A. We tackled the
search problem of the SAM method by exhaustively probing
the solution space of dipole orientation at an interval of 5
degrees. The solution space can be either restricted on the 2D
tangential plane or the 3D space in general. The comparison
did not include the vector beamformer methods because there
is no orientation determination procedure involved in these
methods.

The comparison was performed on a computer equipped
with an AMD Athlon XP 3000+ CPU (2.17 GHz) and 512
MB RAM. The dipole orientation determination procedure was
repeated100000 times and the total computation time was
measured for each method. The SAM method required4.0
seconds and282.3 seconds to probe36 and2592 candidates on
the 2D plane and in the 3D space, respectively. The proposed
MCB method used only1.3 seconds, which is more than three
times and two hundred times faster than the SAM method in
2D and 3D cases, respectively.

V. CONCLUSIONS

In this work, we have proposed a novel beamforming
approach, the MCB method, for statistically mapping the
brain activity from MEG recordings. Based on the maximum

contrast criterion, the proposed method calculate a spatial filter
that can maximize the significance level, F statistic, indicating
the variance ratio of filtered activities between two specified
time windows. The spatial filter is calculated according to
the dipole orientation, which can be optimally determined
very efficiently in a closed-form manner. According to our
experiments, we have clearly demonstrated the effectiveness,
efficiency, and accuracy of the proposed method.
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[11] K. Uutela, M. Ḧamäläinen, and E. Somersalo, “Visualization of mag-
netoencephalographic data using minimum current estimates,”NeuroIm-
age, vol. 10, no. 2, pp. 173–180, August 1999.

[12] G. R. Barnes and A. Hillebrand, “Statistical flattening of MEG beam-
former images,”Human Brain Mapping, vol. 18, no. 1, pp. 1–12, January
2003.

[13] H. Krim and M. Viberg, “Two decades of array signal processing
research: The parametric approach,”IEEE Signal Processing Magazine,
vol. 13, no. 4, pp. 67–94, July 1996.

[14] H. Cox, R. M. Zeskind, and M. M. Owen, “Robust adaptive beamform-
ing,” IEEE Transactions on Acoustics, Speech, and Signal Processing,
vol. ASSP-35, no. 10, pp. 1365–1376, October 1987.

[15] B. D. Van Veen, W. van Drongelen, M. Yuchtman, and A. Suzuki, “Lo-
calization of brain electrical activity via linearly constrained minimum
variance spatial filter,”IEEE Transactions on Biomedical Engineering,
vol. 44, no. 9, pp. 867–879, September 1997.

[16] S. E. Robinson and J. Vrba, “Functional neuroimaging by synthetic
aperture magnetometry (SAM),” inRecent Advances in Biomagnetism.
Tohoku University Press, Sendai, Japan, 1999, pp. 302–305.

[17] K. Sekihara, S. S. Nagarajan, D. Poeppel, A. Marantz, and Y. Miyashita,
“Reconstructing spatio-temporal activities of neural sources using an
MEG vector beamformer technique,”IEEE Transactions on Biomedical
Engineering, vol. 48, no. 7, pp. 760–771, July 2001.



IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 53, NO. 9, SEPTEMBER 2006 1774
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