
Fast and Versatile Algorithm for Nearest Neighbor
Search Based on a Lower Bound Tree

Yong-Sheng Chen a,∗, Yi-Ping Hung b,c, Ting-Fang Yen a,
Chiou-Shann Fuh b

aDepartment of Computer Science, National Chiao Tung University, 1001 Ta
Hsueh Road, Hsinchu 300, Taiwan

bDepartment of Computer Science and Information Engineering, National Taiwan
University, 1 Roosevelt Road, Section 4, Taipei 106, Taiwan

cInstitute of Information Science, Academia Sinica, 128 Academia Road,
Section 2, Taipei 115, Taiwan

Abstract

In this paper, we present a fast and versatile algorithm which can rapidly perform
a variety of nearest neighbor searches. Efficiency improvement is achieved by uti-
lizing the distance lower bound to avoid the calculation of the distance itself if
the lower bound is already larger than the global minimum distance. At the pre-
processing stage, the proposed algorithm constructs a lower bound tree (LB-tree)
by agglomeratively clustering all the sample points to be searched. Given a query
point, the lower bound of its distance to each sample point can be calculated by
using the internal node of the LB-tree. To reduce the amount of lower bounds ac-
tually calculated, the winner-update search strategy is used for traversing the tree.
For further efficiency improvement, data transformation can be applied to the sam-
ple and the query points. In addition to finding the nearest neighbor, the proposed
algorithm can also (i) provide the k-nearest neighbors progressively; (ii) find the
nearest neighbors within a specified distance threshold; and (iii) identify neighbors
whose distances to the query are sufficiently close to the minimum distance of the
nearest neighbor. Our experiments have shown that the proposed algorithm can
save substantial computation, particularly when the distance of the query point to
its nearest neighbor is relatively small compared with its distance to most other
samples (which is the case for many object recognition problems).

Key words: Nearest neighbor search; Lower bound tree

∗ Corresponding author. Tel.: +886-3-5131316; fax: +886-3-5724176.
Email addresses: yschen@cs.nctu.edu.tw (Yong-Sheng Chen),

hung@csie.ntu.edu.tw (Yi-Ping Hung), tyen@andrew.cmu.edu (Ting-Fang Yen),
fuh@csie.ntu.edu.tw (Chiou-Shann Fuh).

Preprint submitted to Pattern Recognition 2 December 2005

1 Introduction

Nearest neighbor search has been widely applied in many fields, including
object recognition [1], pattern classification and clustering [2,3], image match-
ing [4,5], data compression [6,7], texture synthesis [8], and information re-
trieval in database systems [9,10]. Depending on the application, each object
(pattern, image block, or other kind of data) can be represented as a multi-
dimensional point. Using a distance function as the measure of dissimilarity,
the nearest neighbor search for the most similar object can be regarded as
the closest point search in a multi-dimensional space. In general, a fixed data
set P of s sample points in a d-dimensional space is given, represented by
P = {pi ∈ Rd|i = 1, . . . , s}. Preprocessing can be performed, if necessary, to
construct a particular data structure. The goal of the nearest neighbor search
is to find in P the point closest to each query point q in the d-dimensional
space. A straightforward way to do so is to exhaustively compute and compare
the distances between the query point and all sample points. This exhaustive
search has the computational complexity of O(s · d), and when one or both of
s, d are large, the process can be very time-consuming.

Many methods have been proposed to speed up the computation of nearest
neighbor search. One category of these methods partitions the data space
into “regions” according to the sample points. Various shapes of region have
been adopted, including hyper-rectangular bucket (the k-d tree method [11]),
bounding rectangle (the R-tree [12] and the SR-tree [13] methods), bound-
ing sphere (the SS-tree [14] and the SR-tree [13] methods), pyramid [15], and
Voronoi cell [16]. A data structure, usually a tree, was used for recording
and indexing these regions. Given a query point, its nearest neighbor can be
found by using the tree structure. For example, Bentley (the k-d tree method
[11]) partitioned the data space into hyper-rectangular buckets, each of which
contains several sample points. Their method for nearest neighbor search is
performed by a binary search for the target bucket followed by a local search
for the desired sample point in the target bucket and its neighboring buckets,
which is very efficient when the dimension of the data space is small. How-
ever, as reported in [16] and [17], when the number of dimensions increases,
its performance degrades exponentially, in an effect known as the curse of di-
mensionality. The main reason for this phenomenon is that more neighboring
buckets must be checked when the dimension is higher. Thus, the number of
sample points to be examined increases dramatically.

Another category of fast nearest neighbor search methods are elimination-
based methods (see [18] for a review). For example, Fukunaga and Narendra
[19] constructed a tree structure for the sample points, and used a branch-
and-bound search strategy to traverse and prune the tree structure in the
query process for efficiently determining the nearest neighbor. To construct

2

the tree structure, a set of sample points is first divided into k subsets using
the k-means clustering algorithm. Each subset is then further divided into k
subsets. This process is repeated thereby creating a tree structure, with each
node in the tree representing a number of sample points. The mean of these
sample points and the farthest distance from the mean to these sample points
are recorded. For a node in the tree, if the distance between its recorded mean
and the query point subtracted by the recorded farthest distance is larger
than the minimum distance obtained so far, the distance computation for all
the sample points represented by this node can be avoided due to the trian-
gle inequality. Brin [20] proposed a method similar to [19]. They constructed
another kind of data structure, called GNAT, by using hierarchical decompo-
sition for the sample points. Each level in the GNAT data structure can have
different numbers of branches. Vidal [21] also utilized the branch-and-bound
search strategy to reduce the distance calculations. Friedman et al. [22] pro-
posed a projection based search algorithm. On the projection coordinate, the
sample points are sorted according to the values of this coordinate. They are
then examined in the order of their distance (on this coordinate) to the query
point. Sample points whose distance to the query point on the projection co-
ordinate is larger than the current minimum distance (on all coordinates) can
be eliminated, thereby speeding up the search process. Soleymani and Morg-
era [23] used an elimination technique similar to [22] where they performed
the elimination test on each coordinate, instead of only on the projection co-
ordinate. Djouadi and Bouktache [24] partitioned the underlying space of the
sample points into a set of cells. By calculating the distances between the
query point and the centers of the cells, the nearest neighbor can be found
efficiently by searching only in those cells in th vicinity of the query point,
rather than the whole space. Lee and Chae [25] also proposed a fast near-
est neighbor search method, which uses a number of anchor sample points to
eliminate many distance calculations based on the triangle inequality. In [26],
McNames presented a fast nearest-neighbor algorithm based on principal axis
trees. This method utilizes depth-first search and distance lower bounds to
eliminate many distance calculations.

Instead of finding the exact nearest neighbor, that is, the global optimum,
another research direction is to find the approximate nearest neighbor. Arya
et al. [27] proposed a fast algorithm to find the (1 + r)-approximate nearest
neighbor within a factor of (1+r) of the distance between the query point and
its exact nearest neighbor. They constructed a balanced box-decomposition
(BBD) tree by hierarchically decomposing the underlying space. A priority
search is then applied to efficiently find the approximate nearest neighbors.

There are some application-dependent issues worth considering for nearest
neighbor search. For example, Faragó et al. [28] presented a fast nearest-
neighbor search algorithm in dissimilarity space in which the triangle inequal-
ity may not hold [29]. In database systems, the obtained query results may

3

have to be checked using some other conditions in addition to the minimum
distance requirement. In this case, the number k of the k-nearest neighbors
cannot be specified beforehand. Hjaltason and Samet [30] proposed a fast
algorithm which can provide k-nearest neighbors progressively (one-by-one)
until the required number of nearest neighbors satisfying other conditions is
obtained. In object recognition applications, the nearest neighbor of a query
object is of interest only when the distance between the query object and its
nearest neighbor is small enough. For this kind of applications, Nene and Na-
yar [17] proposed a fast algorithm for searching the nearest neighbor within
a pre-specified small distance threshold in a high-dimensional space. For each
dimension, their method excludes the sample points whose distances to the
query point at the current dimension are larger than the distance threshold.
The nearest neighbor can then be determined from examining the remaining
candidates. This process may eliminate all the sample points if the distance
threshold is too small. The remedy is to enlarge the distance threshold grad-
ually. For some other applications that utilize audio or image matching, each
multi-dimensional sample or query point represents an autocorrelated signal.
That is, the signal values in consecutive dimensions are correlated. In such
cases, the search process can be accelerated by applying some data trans-
formation to each data point, such as mean pyramid construction [6,31,5] or
wavelet transform [7].

In this paper, a novel algorithm is presented which efficiently searches for
the exact nearest neighbor in Euclidean space. The proposed algorithm first
prepocesses the sample points by constructing a lower bound tree (LB-tree),
in which each leaf node represents a sample point and each internal node
represents a mean point in a space of smaller dimension. For each query point,
a lower bound of its distance to each sample point can be calculated by using
a mean point of an internal node in the LB-tree. Distance calculations can
be avoided for many sample points whose lower bound of the distance to the
query point is larger than the minimum distance between the query point and
its nearest neighbor. The whole search process is accelerated this way because
the computational cost of the lower bounds is less than that of the distance.
In addition to the use of an LB-tree, the following three techniques are further
adopted to reduce lower-bound calculation:

1. Winner-update search To reduce the number of nodes examined, we
apply a winner-update search strategy for traversing the LB-tree. Starting
from the root node of the LB-tree, the node having minimum lower bound is
replaced by its children for the following competition after the lower bounds
of these children having been calculated.

2. Agglomerative clustering When constructing the LB-tree, we use an
agglomerative clustering technique to keep the number of the internal nodes
as small as possible while keeping the lower bound as tight as possible.

3. Data transformation Data transformation, such as the wavelet trans-

4

form or the principal component analysis, is applied to each point so that
the lower bound of an internal node can be further tightened, thus saving
more computation.

Among the above three techniques, both the winner-update search strategy
and the data transformation are performed in the search process. That means,
additional computations are required for each query. Fortunately, the amount
of this increased burden is relatively small compared to the savings gained
by these two techniques and the overall search efficiency can be improved in
most situations (see Section 7). The other technique, agglomerative clustering
for LB-tree construction, can be very time-consuming. However, the LB-tree
is constructed in the preprocessing stage. It is usually worthwhile to obtain a
good data structure at the expense of large amount of computation beforehand
for the sake of high search efficiency. For example, it took about three hours
to construct the LB-tree for 36, 000 sample points in 35-dimensional space
and the search process can be over one thousand times faster by using the
constructed LB-tree in our experiment (see Section 7.3).

Our experiments have shown that the proposed algorithm for nearest neigh-
bor search can save a considerable amount of computation, particularly when
the query point is relatively closer to its nearest neighbor than to most other
samples. Furthermore, the proposed algorithm is versatile because it can deal
with various types of queries. More specifically, this algorithm can speed up
the progressive search for k-nearest neighbors, the search for nearest neigh-
bors within a specified distance threshold, and the search for neighbors whose
distances to the query are sufficiently close to the minimum distance of the
nearest neighbor.

This paper is organized as follows. At first, we introduce the data structure and
the proposed algorithm for nearest neighbor search in Sections 2 and 3, respec-
tively. Next, we present the supplement of the proposed algorithm for other
query types in Section 4. Then, the construction of the LB-tree is described
in Section 5. Two kinds of data transformation are introduced in Section 6.
Section 7 presents the experimental results of the proposed algorithm. Finally,
conclusions are stated in Section 8.

2 Multilevel Structure and LB-Tree

This section introduces the LB-tree used in the proposed algorithm for nearest
neighbor search. We will first describe the multilevel structure of a data point.
The multilevel structures of all the sample points can then be used to construct
the LB-tree. We shall also introduce some properties of the LB-tree, which
reveals the effectiveness of the proposed algorithm.

5

2.1 Multilevel Structure of Each Data Point

For a point p = [p1, p2, . . . , pd] in a d-dimensional Euclidean space, Rd, we
denote its multilevel structure of L + 1 levels by {p0,p1, . . . ,pL}, and define
it in the following. At each level l, pl = [p1, p2, . . . , pdl], which comprises the
first dl dimensions of the point p, is referred to as the level-l projection of p,
for 1 ≤ dl ≤ d, l = 0, . . . , L. A trivial way to construct a d-level structure
is to let dl = l + 1, l = 0, . . . , d − 1. Here, dl is an increasing function of l
because dl = l + 1 < (l + 1) + 1 = dl+1. Notice that the construction method
of multilevel structure for a data point belongs to one kind of telescoping
functions, which can be used to contract and extend feature vectors, proposed
by Lin et al. [32].

In this paper the dimension at level l is set to dl = 2l. Without loss of gener-
ality, we assume that the dimension of the data point space, d, is equal to 2L.
If d is not a power of 2, zero padding can be used to enlarge the dimension
of the underlying space. In this way, an (L + 1)-level structure for point p
can be constructed. Notice that level-L projection, pL, is equivalent to point
p. An example of a 4-level structure, {p0, . . . ,p3}, where d = 8, is shown in
Figure 1.

Given the multilevel structures of points p and q, we can derive the succeeding
inequality property:

Property 1 The Euclidean distance between p and q is larger than or equal
to the Euclidean distance between their level-l projections pl and ql for each
level l. That is,

‖p− q‖2 ≥ ‖pl − ql‖2, l = 0, . . . , L.

Although all the properties shown in this section (and hence the proposed
algorithm) are valid for any lp norm, we adopt l2 norm (Euclidean distance)
here. The reason is that if the data transformation described in Section 6 is
applied, the distance other than l2 norm may change. From Property 1, a lower
bound of the distance ‖p − q‖2 can be considered to be the distance ‖pl −
ql‖2 calculated using the level-l projections. Notice that the computational
complexity of the distance ‖pl − ql‖2 is less than that of the distance ‖p −
q‖2. Specifically, the complexity of calculating the distance between level-l
projections is O(2l) for l = 0, . . . , L.

6

2.2 LB-Tree for the Data Set

This section introduces the LB-tree and some of its properties. To construct
an LB-tree, we require the multilevel structures of all sample points pi, i =
1, . . . , s, in a data set P , where s is the number of the data points in P . The
LB-tree has the same number of levels as the multilevel structure, without
considering the dummy root node, which is considered to have zero dimension.
At level L in the LB-tree, each leaf node contains a level-L projection pi

L,
which is equivalent to the sample point pi. For level 0 to level L−1, the level-l
projections, pi

l, i = 1, . . . , s, of all the sample points can be clustered to form
a hierarchy, as illustrated in Figure 2, where L = 3 and s = 9. More details of
the LB-tree construction will be given in Section 5.

Let sl denote the number of clusters at level l. Let 〈p〉 denote the node contain-
ing the point p in the LB-tree. Each cluster C l

j, j = 1, . . . , sl, is represented
by an internal node 〈ml

j〉 at level l in the LB-tree. The internal node 〈ml
j〉

contains the mean point ml
j, which is the mean of all the level-l projections

of the sample points contained in this cluster, and the associated radius, rl
j,

which is the radius of the smallest 2l-dimensional hyper-sphere centered at
ml

j and covers all the level-l projections in cluster C l
j. An example of an LB-

tree is shown in Figure 3. This smallest hyper-sphere is called the bounding
sphere of C l

j; its radius can be calculated as the maximum distance from the
mean point ml

j to all level-l projections in this cluster. The LB-tree has the
following inequality property:

Property 2 Given a sample point p∗, the distance between its level-l projec-
tion, p∗l, and its level-l ancestor, ml

j∗, is smaller than or equal to the radius
of the bounding sphere of cluster C l

j∗. That is,

‖p∗l −ml
j∗‖2 ≤ rl

j∗ , l = 0, . . . , L.

Notice that a leaf node is equivalent to a cluster of only one point. The radius
is zero and the mean point is the sample point itself in such cases.

Now, given a query point q, we first construct its multilevel structure as de-
scribed in Section 2.1. For a sample point p∗ and its corresponding leaf node
〈p∗〉, its ancestor at level l in the LB-tree is denoted 〈ml

j∗〉. As illustrated in
Figure 4, the following inequality can be derived using the triangle inequality
and Properties 1 and 2:

‖p∗ − q‖2 ≥‖p∗l − ql‖2

≥‖ml
j∗ − ql‖2 − ‖p∗l −ml

j∗‖2

≥‖ml
j∗ − ql‖2 − rl

j∗ . (1)

7

The LB-distance dLB(〈ml
j∗〉,ql) between the internal node 〈ml

j∗〉 and ql, the
level-l projection of the query point q, is defined as:

dLB(〈ml
j∗〉,ql) ≡ ‖ml

j∗ − ql‖2 − rl
j∗ . (2)

We then have the following inequality property:

Property 3 Given a query point q and a sample point p∗, the LB-distance
between the level-l ancestor of p∗ (that is, 〈ml

j∗〉) and the level-l projection of
q is smaller than or equal to the distance between p∗ and q. That is,

dLB(〈ml
j∗〉,ql) ≤ ‖p∗ − q‖2, l = 0, . . . , L.

We know now from the above property that dLB(〈ml
j∗〉,ql) is a lower bound

of the distance ‖p∗ − q‖2. Notice that the LB-distance is not a valid distance
metric. A negative dLB(〈ml

j∗〉,ql) implies that the query point q is located
within the bounding sphere of C l

j∗ centered at ml
j∗ . Also, dLB(〈m0

j∗〉,q0),
dLB(〈m1

j∗〉,q1), . . . , dLB(〈mL
j∗〉,qL) is not necessarily (and not required to

be) an ascending list of lower bounds of the distance between p∗ and q.

The internal node 〈ml
j∗〉 can have a number of descendants. Therefore, besides

being a lower bound on the distance to q for any particular p∗, dLB(〈ml
j∗〉 is

also a lower bound on the distances from all the sample points in cluster C l
j∗

containing p∗ to q. Hence, we have the following property:

Property 4 Let q be a query point and p̂ be a sample point. For any internal
node 〈ml

j〉 of the LB-tree, if

dLB(〈ml
j〉,ql) > ‖p̂− q‖2,

then, for every descendant leaf node 〈p′〉 of 〈ml
j〉, we have

‖p′ − q‖2 > ‖p̂− q‖2.

From Property 4, if the LB-distance of the internal node 〈ml
j〉 is already larger

than the distance between p̂ and q, all the descendant leaf nodes 〈p′〉 of ml
j

can be eliminated in the search, since there is already a better candidate, p̂,
which is closer to q.

8

3 Winner-Update Search Strategy and the Proposed Algorithm

In our algorithm an LB-tree of L+1 levels has to be constructed using data set
P before running the query process. For each query point q, the goal of nearest
neighbor search is to find the sample point p̂ in P such that the Euclidean
distance ‖p̂− q‖2 is minimum. According to Property 4, if at some point the
LB-distance of an internal node 〈ml

j〉 is larger than the minimum distance
between p̂ and q, then the nearest neighbor cannot be in the descendant
samples of node 〈ml

j〉. Hence, the costly calculation of their distances to q
can be all saved by only calculating the less-expensive LB-distance of node
〈ml

j〉.

The above saving requires knowing the value ‖p̂ − q‖2, but it is unknown
beforehand which sample point p̂ is. In fact, p̂ is exactly the nearest neighbor
which we are looking for. To achieve the same calculation saving effect, we
adopt the winner-update search strategy, which computes the lower bounds
from the root node toward the leaf nodes while traversing the LB-tree. The
LB-distances of the internal nodes is calculated starting from the top level
down. Since the computation cost of the LB-distance is smaller at the upper
level, and an upper-level node generally has more descendants, we can save
more distance calculation if the LB-distance of an upper-level node is already
larger than the minimum distance.

We now describe the winner-update search strategy that greatly reduces the
number of LB-distance calculations. First, the LB-distances between q0 and
all the level-0 nodes in the LB-tree are calculated using Equation (2). A heap
data structure is then constructed using these level-0 nodes, 〈m0

1〉, 〈m0
2〉,

. . . , 〈m0
s0〉, with the root node of the heap, 〈p̂〉, being the node having the

minimum LB-distance. Then, we delete the node 〈p̂〉 and insert its children
into the heap, calculating their LB-distances and rearranging the heap to
maintain the heap property. This produces a new root node with the minimum
LB-distance, which becomes the new 〈p̂〉. The procedure of deleting 〈p̂〉 and
inserting its children is repeated until the dimension of 〈p̂〉, dim(〈p̂〉), is equal
to d. At this time, with the node 〈p̂〉 being a leaf node containing a sample
point, we have the minimum distance ‖p̂ − q‖2 in the heap. The nearest
neighbor 〈p̂〉 is thus determined, since the lower bounds of the distances from
all the other sample points to the query point q are already larger than ‖p̂−
q‖2.

Figure 5 illustrates three intermediate stages of the heap that are constructed
during the search process, based on the LB-tree example shown in Figure 3.
Given a query point q, the LB-distances dLB(〈m0

1〉,q0) and dLB(〈m0
2〉,q0)

for nodes 〈m0
1〉 and 〈m0

2〉 at level 0 are first calculated respectively and used
to construct a heap, as shown in Figure 5(a). Suppose dLB(〈m0

1〉,q0) is 6

9

and dLB(〈m0
2〉,q0) is 2. At this point, node 〈m0

2〉 is on top of the heap and
will be replaced by its two children: nodes 〈m1

2〉 and 〈m1
3〉. Next, suppose

dLB(〈m1
2〉,q1) is 8 and dLB(〈m1

3〉,q1) is 3. Then, the heap is rearranged to
maintain the heap property, and node 〈m1

3〉 will pop up to the top of the heap,
as shown in Figure 5(b). Again, the new top node (that is, 〈m1

3〉) is replaced
by its children and the heap is rearranged according to the LB-distances of the
nodes. Figure 5(c) illustrates the heap at this stage, where the LB-distances
of the newly inserted nodes 〈m2

4〉 and 〈m2
5〉 are 9 and 4, respectively.

The proposed algorithm is summarized below:

Proposed Algorithm for Nearest Neighbor Search

/* Preprocessing Stage */
(1) Given a data set P = {pi ∈ Rd|i = 1, . . . , s}
(2) Construct the LB-tree of L + 1 levels for P

/* Nearest Neighbor Search Stage */
(3) Given a query point q ∈ Rd

(4) Construct the (L + 1)-level structure of q
(5) Insert the root node of the LB-tree into an empty heap
(6) Let 〈p̂〉 be the root node of the heap
(7) while dim(〈p̂〉) < d do
(8) Delete node 〈p̂〉 from the heap
(9) Calculate the LB-distances for all the children of 〈p̂〉
(10) Insert all the children of 〈p̂〉 into the heap
(11) Rearrange the heap to maintain the heap property that the root

node is the node having the minimum LB-distance
(12) Update 〈p̂〉 as the root node of the heap
(13) endwhile
(14) Output p̂

For conciseness of the above pseudo code, the heap is initialized as the dummy
root node of the LB-tree, instead of the level-0 nodes. This will not affect the
result since the dummy root node is replaced immediately in the first iteration
of the loop by its children, that is, all the level-0 nodes.

Due to the adoption of the winner-update search strategy, which is actually
the best-first search strategy, the proposed algorithm can be regarded as a
special case of the A∗ algorithm [33]. In our algorithm the path cost term is
always zero and the estimated distance to the goal node is the LB-distance,
which is a lower bound of the distance from a sample point to the query point.

10

4 Other Query Types

With slight modification, the proposed algorithm can also speed up the fol-
lowing three search tasks: (i) the progressive search for k-nearest neighbors,
(ii) the search for k-nearest neighbors within a specified distance threshold,
and (iii) the search for neighbors that are close enough to the query, compared
with the nearest neighbor.

4.1 Progressive Search for k-Nearest Neighbors

When the nearest neighbor is obtained by using the proposed algorithm, there
may be some other candidates in the heap. Distance calculation for these
candidates is partially performed and we can continue the search process to
determine the next nearest neighbor without starting all over again. In general,
we can easily extend the proposed algorithm to find the k-nearest neighbors,
1 < k ≤ s, in the following way. Once the nearest neighbor p̂ is obtained by
using the algorithm described in Section 3, we can delete it from the heap
and continue the process until the second nearest neighbor is obtained. By
repeating the above procedure, one can obtain the third nearest neighbor, the
fourth nearest neighbor, and so on, until all the desired k-nearest neighbors are
obtained. The following pseudo code can be merged into the original algorithm,
in the designated line number order, to provide k-nearest neighbors:

(6.5) for loop = 1, 2, . . . , k

(15) Delete node 〈p̂〉 from the heap
(16) Rearrange the heap to maintain the heap property that the root node

is the node having the minimum LB-distance
(17) Update 〈p̂〉 as the root node of the heap
(18) endfor

Notice that these k-nearest neighbors are provided incrementally. This feature
is particularly useful when additional tests on the obtained nearest neighbors
are required, and hence, the number k cannot be known before the query
process begins. Hjaltason and Samet ascribed the capability of incremental k-
nearest neighbor search to the heap (priority queue) employed in the algorithm
[30]. Arya et al. [27] adopted a similar progressive approach which enumerates
leaf cells of their BBD-tree in increasing order of distance from the query
point and examines data points in the cells. Traditional methods such as [19]
use an array to record the first k candidates of k-nearest neighbors during
the search process. Each newly-computed distance is compared against the
elements in the array and is substituted for the largest element in the array

11

that is larger than the newly-computed distance. After the k-nearest neighbors
are determined and we find that more nearest neighbors are needed, the search
process has to be started all over again with a larger k. As a result, there are
wasteful, duplicated distance calculations.

4.2 Search for k-Nearest Neighbors within a Distance Threshold

In many pattern recognition applications, a query object is considered to be
“recognized with high confidence” only when it is sufficiently close to an object
in the data set. Therefore, the distance between the query point and its nearest
neighbor should be smaller than a pre-specified distance threshold εT . For
further speedup, the proposed algorithm can be easily extended to meet this
requirement by adding the following two lines to the pseudo code of Section 3:

(7.5) if the LB-distance of 〈p̂〉 is larger than εT stop

(13.5) if the LB-distance of 〈p̂〉 is larger than εT stop

When the k-nearest neighbors within the distance threshold εT are needed, the
additional pseudo code for providing k-nearest neighbors, given in Section 4.1,
can also be added.

4.3 Search for Neighbors Close Enough to the Query Compared with the
Nearest Neighbor

In some applications, all the points that are sufficiently close to the query
point, compared with the nearest neighbor, should be considered as good
matches. To achieve this goal, all the points of distance smaller than (1 +
r)‖p̂−q‖2 have to be identified, where p̂ is the nearest neighbor and r is a small
number. Our algorithm can be easily extended to provide this functionality.
After the nearest neighbor p̂ and the minimum distance ‖p̂−q‖2 are obtained,
the methods described in Sections 4.1 and 4.2 can be used to provide all the
points having distance smaller than εT , where k is set to be s and the threshold
εT is set to be (1 + r)‖p̂− q‖2.

5 Construction of LB-Tree

The LB-tree plays an important role in our algorithm. It should be noted that
there exists more than one method for constructing the LB-tree described in
Section 2.2. Although many methods could be chosen for constructing the

12

LB-tree, some lead to better performance than others. Hence, it is desirable
to construct a “good” LB-tree in view of the need for efficiency in nearest
neighbor search. Since construction of the LB-tree is performed in the pre-
processing stage, its computational cost is not a major concern here, hence
the efficiency of the resulting LB-tree is more important than the speed of its
construction.

To construct an LB-tree, the simplest way is to directly use the multilevel
structures of the sample points without clustering. In this case, there are s
nodes at each level l, l = 0, . . . , L, in the LB-tree. Each node 〈ml

i〉, i = 1, . . . , s,
at level l contains exactly one level-l projection of a sample point, say pi

l. Here,
the mean point ml

i equals pi
l and the radius rl

i is set to zero. All the internal
nodes in the LB-tree thus constructed have only one child node, with the
exception of the root, which has s child nodes.

Another method of LB-tree construction is to use k-means clustering method
[3] to hierarchically cluster the sample points, similar to what was done in
[19]. At level 0, all the sample points are partitioned into k disjoint clusters
according to the distances between their level-0 projections. For each cluster
at level 0, the mean point and the radius of the bounding sphere can be
calculated and recorded by using the level-0 projections of the sample points
that belong to the same cluster. Then, these sample points that belong to the
same cluster at level 0 can be further partitioned into k disjoint sub-clusters
according to the distances between their level-1 projections. After partitioning
all the clusters at level 0, all the obtained sub-clusters constitute the nodes at
level 1 of the LB-tree. This process is repeated for the succeeding levels until
level-L is reached. The result is an LB-tree (but maybe not the best one), in
which every internal node has k branches.

From Property 3 as defined in Section 2.2, given a query point q, the LB-
distance for each internal node (that is, the LB-distance between an internal
node and the level-l projection of q) is the lower bound of the distances be-
tween q and all the sample points contained in the descendant leaf nodes
of this internal node. In order to obtain a tighter lower bound and thus,
in order to reduce the number of distance calculations, the LB-distance of
each internal node should be as large as possible, which requires the radius
of the bounding sphere, rl

j, to be as small as possible in consequence, ac-
cording to Equation (2). From this perspective, it is suggestible to adopt the
simplest construction method mentioned before, which directly uses the mul-
tilevel structures of the sample points, since the radius of each internal node
is zero. However, the number of internal nodes is proportional to the amount
of memory storage and computation of the LB-distance required, so we would
also like the number of internal nodes to be as small as possible. Although
the k-means clustering method can construct an LB-tree with fewer internal
nodes, the radius of the bounding sphere may be very large since there is a

13

chance that sample points far away from each other are grouped into one clus-
ter. As a result, the trade-off between the number of internal nodes and the
radii of the associated bounding spheres needs to be taken into consideration
when constructing an LB-tree.

In this work, we use an agglomerative hierarchical clustering technique [3,34]
to construct the LB-tree, in which both the number of internal nodes and the
associated radii can be kept small. Details are given below.

5.1 Multi-Dimensional Case for Each Level

Suppose that the level-l projections of all the sample points have been par-
titioned into sl clusters, C l

j, j = 1, . . . , sl. (For instance, the example shown
in Figure 2 contains three clusters, C1

1, C1
2, and C1

3, at level 1.) Each clus-
ter C l

j at level l is to be further partitioned into sub-clusters independently.
Notice that cluster C l

j is a set of level-l projections. Denote the members
of C l

j as pilj(k)
l, k = 1, 2, . . . , nlj, where nlj is the number of elements in

C l
j. Consider the example shown in Figure 2. For l = 1 and j = 3, we have

C1
3 = {p3

1,p4
1,p7

1} where n13 = 3, i13(1) = 3, i13(2) = 4, and i13(3) = 7.
Then, by using the multilevel structures of pilj(k), k = 1, 2, . . . , nlj, we denote
the set of level-(l + 1) projections {pilj(k)

l+1|k = 1, 2, . . . , nlj} by Sl+1
j. For

the above example (l = 1 and j = 3), we have S2
3 = {p3

2,p4
2,p7

2}. Our
approach is to partition Sl+1

j into clusters by using an agglomerative method.
In the example of Figure 2, S2

3 is then partitioned into C2
4 and C2

5.

The agglomerative method begins with treating each point as a distinct clus-
ter, and successively merges clusters together until a stopping criterion is
satisfied [3]. There are two issues to be determined when adopting the ag-
glomerative method. The first concerns how to choose clusters for merging,
and the other is the stopping criterion. Suppose X and Y are two disjoint
subsets of Sl+1

j. We define the between-cluster distance, dmax
l+1(X, Y), of X

and Y as the maximum Euclidean distance between every pair (xl+1,yl+1) of
level-(l + 1) projections, where xl+1 ∈ X and yl+1 ∈ Y . That is,

dmax
l+1(X, Y) = max

xl+1∈X,yl+1∈Y
‖xl+1 − yl+1‖2.

The pair of clusters with minimum dmax
l+1 is chosen for consideration to be

merged because they are the closest clusters in the sense of dmax
l+1. The radius

of the cluster obtained by merging this pair is more likely to be small.

For the stopping criterion, we use the radius constraint which requires that the
radii of all clusters at level l are smaller than a pre-specified radius threshold
rT

l. When further cluster merging cannot satisfy the radius constraint, the

14

agglomerative procedure is terminated. In this way we can obtain a clustering
result by gradually reducing the number of clusters via merging while the
radius of each cluster gradually increases, approaching the radius threshold. If
we raise the radius threshold, the number of clusters (and the resulted number
of nodes) at level (l+1) will decrease. By specifying a “good” radius threshold,
the number of internal nodes and their associated radii reach a compromise
and a good clustering result can be obtained.

For the set Sl+1
j = {pilj(k)

l+1|k = 1, 2, . . . , nlj}, we initially treat each of
its member as a separate cluster. Then we calculate and sort the between-
cluster distances dmax

l+1 for every pair of clusters. The pair of clusters with
the minimum dmax

l+1 is chosen for consideration of merging. If dmax
l+1 of this

pair is larger than twice the radius threshold rT
l+1, the radius of the bounding

sphere of the merged cluster will definitely be larger than rT
l+1, and so violates

the radius constraint. In this case, clustering can be terminated because no
further merging can satisfy the radius constraint. Otherwise, we tentatively
merge this pair of clusters by computing the mean of the merged cluster and
the radius of its bounding sphere. If the newly-computed radius is indeed
smaller than the radius threshold rT

l+1, this pair of clusters will actually be
merged. The between-cluster distances dmax

l+1 between this merged cluster
and all other clusters must be updated accordingly. If the newly-computed
radius is not smaller than the radius threshold, we do not merge this pair
of clusters and instead choose the pair with the second minimum dmax

l+1 for
consideration. This procedure is repeated until all the pairs are examined or
the dmax

l+1 of the examined pair is larger than twice the radius threshold
rT

l+1.

All sample points whose level-(l + 1) projections are grouped into the same
cluster at level l+1 can be further partitioned at level l+2 by using the same
method presented above. This recursive clustering is applied until the bottom
level is reached, where each sample point is treated as a separate cluster of
zero radius. In this way we can construct an LB-tree satisfying the radius
constraint with a specified radius threshold while trying to make the number
of internal nodes as small as possible.

5.2 One-Dimensional Case for Level 0

If at level 0 the number of sample points, s, is large, the number of between-
cluster distances for every pair of initial clusters can be very large (O(s2)).
Hence, the agglomerative clustering process can be very time-consuming at
level 0. If there is only one dimension at level 0, as in this work, we can reduce
this problem with the following method. The level-0 projections of all the
sample points are first sorted. Then, consider only pairs of neighboring level-

15

0 projections for merging because the minimum dmax
0 appears only between

the neighboring level-0 projections. In this way the number of the cluster pairs
to be considered can be reduced from O(s2) to O(s). When a pair of level-0
projections with minimum dmax

0 is merged, these two level-0 projections are
replaced with their mean in the sorted list. This process is repeated until the
radius of the bounding sphere (or rather, the bounding segment) for the best
merging is larger than the radius threshold rT

0.

5.3 Selection of the Radius Threshold

The radius threshold rT
l for each level has a great influence on the construction

of the LB-tree and the resulting search efficiency. Remember that a tighter LB-
distance can save more distance calculations. Toward the goal of achieving
tighter LB-distances, we have to lower the radius threshold rT

l at level l in
order to obtain smaller radii rl

j for all internal nodes at this level. However,
a smaller radius threshold will in general result in more clusters, which tends
to increase the computational cost of the proposed algorithm (because more
LB-distances have to be calculated). This is the trade-off between choosing a
smaller rl

j and choosing a smaller sl, as mentioned in Section 5.1.

It is difficult to determine a good radius threshold beforehand because the
choice depends on the distribution of the sample points. Therefore, instead of
specifying a radius threshold rT

0, the experiments shown in this paper specify
the number of clusters s0 at level 0, where s0 < s. (For levels other than level
0, we specify radius thresholds as described below instead of specifying the
number of clusters.) Hence, the stopping criterion at level 0 has to be modified
accordingly in the following. All level-0 projections are merged agglomeratively
until the number of clusters equals s0. When the number of clusters reaches
s0, the radius of the latest merged cluster is recorded as rT

∗, and then used to
determine the radius thresholds of the other levels. For each level l other than
level 0, that is, l = 1, . . . , L − 1, the radius threshold rT

l can be determined
based on rT

∗. (Note that there is no need to perform agglomerative clustering
at level L because each cluster contains only one point at this level.) In this
work, we simply use rT

∗ as the radius threshold at each level l, or rT
l = rT

∗,
l = 1, . . . , L− 1.

6 Data Transformation

This section explains how to further improve the efficiency of nearest neighbor
search by applying data transformation. Recall that the Euclidean distance
calculated at level l in the LB-tree is the distance in the subspace of the first

16

2l dimensions. If these dimensions are not discriminative enough, meaning the
projections of the sample points on this subspace are too close to each other,
the distances may be almost identical for different samples calculated in this
subspace, which will not help much in the search for nearest neighbor. To alle-
viate this problem, we apply transformation to the data points, transforming
them into another space so that the anterior dimensions are likely to be more
discriminative than the posterior dimensions. The transformation will affect
efficiency but not the final search result, for the Euclidean distances calculated
in both space should be the same. Moreover, because this transformation is
also applied to the query points during the query process, it should be compu-
tationally inexpensive. The pseudo code for data transformation is as follows,
which is to be joined with the algorithm in Section 3:

(1.5) Transform each sample point pi, i = 1, . . . , s

(3.5) Transform the query point q

Depending on the characteristics of the data, one of the following two types of
data transformation can be used. Wavelet transform with orthonormal basis
[35] is applied when the data point represents an autocorrelated signal, like an
audio signal or an image block. The basis has to be orthonormal to preserve
Euclidean distances. Here we adopt Haar wavelets for transforming the auto-
correlated data, which is then represented in one of its multiple resolutions in
each level in the multilevel structure. Readers are referred to [35] for compu-
tation method of Haar wavelets as well as the proof that Haar wavelets form
an orthonormal basis.

Another type of data transformation is the principal component analysis
(PCA). PCA finds a set of vectors ordered in their ability to account for
the variation of data projected onto those vectors. The data point is trans-
formed onto the space spanned by this set of vectors so that the anterior
dimensions become more discriminative. This transformation is particularly
useful for object recognition where not all features are equally important.

7 Experimental Results

In this section we show some experimental results of four algorithms: the
exhaustive search algorithm (ES), the searching-by-slicing algorithm (SBS)
proposed by Nene and Nayar [17], the BBD tree algorithm (BBDT) proposed
by Arya et al. [27], and the lower bound tree algorithm (LBT) proposed in
this paper. We obtained via FTP the software of the SBS algorithm and the
BBDT algorithm implemented by Nene and Nayar [17] and Arya et al. [27],
respectively. In SBS, the initial distance threshold is set to be 0.1. To guarantee

17

that the nearest neighbor can always be found, this threshold is enlarged
gradually by adding 0.1 each time no point is found, as recommended in [17].
Remember that the BBDT algorithm can find the (1+r)-approximate nearest
neighbor within a factor of (1 + r) of the distance between the query point
and its exact nearest neighbor. To guarantee that the exact nearest neighbor
can be found, we set the parameter r to be 0 in the software. For the the ES
algorithm and the LBT algorithm, we have implemented in C programming
language.

There are three different kinds of data distribution that we used to examine
the efficiency for these algorithms, including a computer-generated set of auto-
correlated data (Section 7.1), a computer-generated set of clustered Gaussian
data (Section 7.2), and a real data set acquired from an object recognition
system (Sections 7.3, 7.4, and 7.5). The experiments were performed on a
PC with a Pentium III 700 MHz CPU. To compare the efficiency of different
algorithms, we use the execution time instead of the number of distances cal-
culated for the following two reasons. First, the insertion and deletion of an
element in the heap, rearranging the heap, and updating node 〈p̂〉 results in
our algorithm having some overhead. Second, the computational cost of the
LB-distance of a node differs at different levels. To be specific, the computa-
tional cost of the LB-distance for nodes increases from the top level to the
bottom level of the LB-tree.

7.1 Experiments on Autocorrelated Data

We now demonstrate the efficiency of the proposed algorithms by showing the
result of three experiments as the following three factors vary: the number of
sample points in the data set, s; the dimensionality of the underlying space,
d; and the average of the minimum distances between query points and their
nearest neighbors, εmin. Autocorrelated data points were randomly generated
to simulate real signals. For each data point, the value of its first dimension
was chosen from a uniform distribution with extent [−1, 1], and the value of
each subsequent dimension was assigned the value of the previous dimension
plus normally distributed noise with zero mean and standard deviation 0.1.
Beyond the extent [−1, 1], the value of each dimension was truncated. In order
to see how data transformation affects the search efficiency for autocorrelated
data, we performed the nearest neighbor search twice for the SBS, BBDT, and
LBT algorithms, with Haar transform applied to each data point only in the
second time. The LB-tree was constructed with its number of clusters at level
0 specified as 45.

In the first experiment, we probed the algorithm efficiency by varying the num-
ber of sample points, s, in the data set. Seven data sets of s sample points,

18

s = 800, 1600, 3200, . . . , 51200, were generated using the random process
described above. The dimension of the underlying space, d, was 32. Construct-
ing the LB-tree spent 0.1, 0.5, 1.6, 7.8, 67.5, 730.8, and 6434 seconds for each
data set, respectively. Another set containing 100, 000 query points were also
generated using the same random process, and nearest neighbor search was
then performed for each query point. Figure 6 shows the mean query time
for each algorithm, where both the Haar transform, if applied, and the search
process were taken into account. It is apparent in Figure 6 that the search
efficiency of the SBS, BBDT, and LBT algorithms (without Haar transform),
i.e., “SBS”, “BBDT”, and “LBT”, can be significantly improved by apply-
ing the Haar transform, as denoted by “SBS+Haar”, “BBDT+Haar”, and
“LBT+Haar”. This clearly demonstrates that the Haar transform can help to
reduce more computational cost when the data set consists of autocorrelated
data. Among all the algorithms in this experiment, the proposed LBT algo-
rithm (the “LBT+Haar” case) is the fastest one, which is 12.2 and 56.2 times
faster than the ES algorithm, when s is 800 and 51, 200, respectively. When
s increases from 800 to 51, 200, there are more sample points scattered in the
fixed space, so the average minimum distance, εmin, decreases from 0.73 to
0.53. When the minimum distance is smaller, the LB-distance is then more
likely to be larger than the minimum distance of the query point q to its near-
est neighbor p̂, according to Property 4. That is, more distance calculations
can be avoided if εmin is smaller, which is why the speedup factor increases as
s increases.

In the second experiment, we vary the dimensionality, d, of the underlying
space. Eight data sets of 10, 000 sample points, where dimension, d = 2, 4,
8, . . . , 256, respectively, were generated. The construction time of the LB-
tree was 3.1, 24.9, 26.7, 27.3, 28.5, 35.5, 37.3, and 51.8 seconds for each data
set, respectively. The same random process was also used to generate eight
corresponding sets of 100, 000 query points, with matched dimensions d =
2, 4, 8, . . . , 256. Figure 7 shows that the Haar transform can improve the search
efficiency, particularly when d is large. The proposed LBT algorithm (the
“LBT+Haar” case) outperforms the other algorithms when d is larger than
4. Interestingly note that our algorithm does not suffer from the curse of
dimensionality for autocorrelated data like the k-dimensional binary search
tree algorithm does, as reported in [17,16]. In fact, the computational speedup
of the proposed algorithm (the “LBT+Haar” case) over the ES algorithm rises
from 5.6 to 64.1 as d increases from 2 to 256. The increase of d also increases
the level number of the multilevel structure and of the constructed LB-tree.
Using the Haar transform causes the anterior dimensions to contain more
significant components of the autocorrelated data, and so the lower bound
of the distance can be tighter when calculated at the upper level. Distance
calculation can therefore be avoided for more sample points by calculating only
the LB-distances of a few of their upper-level ancestors, with exception of a few
tough competitors. Without applying Haar transform (i.e., the “LBT” case),

19

each dimension of the data point is equally significant, and so the LB-distance
at the lower level needs to be calculated to determine the nearest neighbor,
which requires more computation and degrades performance. In addition, data
transformation causes the agglomerative clustering from top to bottom to
be more effective because the anterior dimensions contain more significant
components. There are more internal nodes for the “LBT” case compared to
that of the “LBT+Haar” case, and thus efficiency is reduced. The increase of d
amplifies this phenomenon, which results in the dramatic drop of the speedup
factor for the non-transform case, but not for the transform case.

The third experiment demonstrates the efficiency of the algorithms with re-
spect to εmin. We generated a data set of 10, 000 sample points in a space of
dimension d = 32, where each sample point was then used to generate a query
point by adding a uniformly distributed noise with extent [−e, e] to each coor-
dinate. As a result, when e is large the distance between the query point and its
nearest neighbor tends to be large as well. In this case, the construction time
of the LB-tree is 29.6 seconds. In this experiment eight sets of 10, 000 query
points are generated, with e = 0.01, 0.02, 0.04, . . . , 1.28. The mean query time
versus the mean of the minimum distances, εmin, is compared among different
algorithms in Figure 8. Again, the Haar transform improves the search effi-
ciency and the proposed LBT algorithm (the “LBT+Haar” case) outperforms
the other algorithms. As e increases from 0.01 to 1.28, εmin increases from
0.033 to 3.838. The increase in the computational cost of the LBT algorithm
is due to the fact that when the minimum distance of the nearest neighbor is
already very large, the LB-distance is less likely to be larger than the minimum
distance, so less distance calculation can be saved. The speedup factor of the
LBT algorithm (the “LBT+Haar” case), compared with the ES algorithm,
decreases from 570.4 to 0.63 in this case. Notice that when the speedup factor
becomes 0.63, the noise extent, [−1.28, 1.28], is larger than the data extent,
[−1, 1]. εmin is usually relatively small for most applications, and therefore the
case when the LBT algorithm does not outperform the ES algorithm, shown
on the right part in Figure 8, does not likely happen.

7.2 Experiments on Clustered Gaussian Data

This section shows the experimental results when the sample point set con-
sists of clustered Gaussian data, which was generated to simulate an object
database. We first randomly chose 100 cluster center points in a 32-dimensional
space. For each cluster center point, the value of each dimension was randomly
generated from a uniform distribution with extent [−1, 1]. Then, we generated
100 sample points for each cluster. Each sample point was randomly chosen
from a Gaussian distribution with standard deviation σ around the cluster
center point. That is, the value of each dimension of a sample point was as-

20

signed the value of the corresponding dimension of the cluster center point
added by normally distributed noise with zero mean and standard deviation
σ. We obtained a set of 10, 000 sample points in this way. The LB-tree con-
struction time was 78.7, 80.5, 98.7, 114, and 89.7 seconds, respectively, as σ
ranging from 0.02, 0.04, . . ., up to 0.1.

Around each of the same 100 cluster center points, we randomly chose another
1, 000 data points from the same Gaussian distribution with standard devia-
tion σ. These 100, 000 points constituted the set of query points in the nearest
neighbor search process. We totally generated five sets of sample points and
query points with different standard deviation σ ranging from 0.02 up to 0.1.
Table 1 shows the mean query time of nearest neighbor search by using the
ES, SBS, BBDT, and LBT algorithms. Numbers in parentheses denote the
speedup factor compared with the ES algorithm. Search efficiency of the pro-
posed LBT algorithm is the best, particularly when the clusters are compact
(i.e., σ is small). The reason is that the minimum distance from the query
point to its nearest neighbor tends to be smaller, compares with the distances
from the query to the points in different clusters, when the clusters are more
compact.

7.3 Experiments on an Object Recognition Database

The database adopted in the experiments described here is the same as those
in [1,17], which was generated from 72 images of an object taken at different
poses for a total of 100 objects. Each of these 7, 200 128 × 128 images was
represented in vector form, and each vector was normalized to unit length. An
eigenspace of dimension 35 can be computed from those normalized vectors,
so that by projecting onto the eigenspace, each vector can then be compressed
from 16, 384 dimensions to 35 dimensions. In the eigenspace, the manifold for
each object can be constructed using the 72 vectors belonging to the object.
Each of the 100 manifolds was sampled to obtain 360 vectors, resulting in
a total of s = 36, 000 sampled vectors constituting the data set, where each
sample point has dimension d = 35.

To generate the set of query points, we first uniformly sample the manifolds
by sampling each of the 100 manifolds at 3, 600 equally spaced positions. Then
we add to each coordinate a uniformly distributed noise with extent [−e, e].
This yields a set of 360, 000 query points.

The ES, SBS, BBDT, and LBT algorithms were used to perform the nearest
neighbor search. The initial distance threshold of the SBS algorithm was se-
lected to be 0.035 in this experiment. Table 2 shows the mean query time for
these algorithms when the noise extent e is 0.005, 0.01, and 0.015. Numbers

21

in parentheses denote the speedup factor compared with the ES algorithm. In
this case the proposed LBT algorithm can tremendously speed up the nearest
neighbor search process. When e is 0.005, the LBT algorithm is 1, 088 times
faster than the ES algorithm. This performance is roughly 13 times faster than
the result attained by the SBS algorithm and is roughly 1.7 times faster than
the BBDT algorithm. Furthermore, the speedup factors of the LBT algorithm
compared with the SBS and BBDT algorithms rise as the noise extent e rises.
The construction time of the LB-tree is 11, 679 seconds using those 36, 000
sample points of dimension 35, and the number of clusters, sl, at level l of the
LB-tree are sl = 20, 245, 2456, 4684, 5716, 7019, 36000, l = 0, 1, . . . , 6. In this
case, although the construction time is acceptable, more work should be done
when dealing with a large sample point set to improve the efficiency of the
LB-tree construction. The average of the minimum distances of all the sample
points to their nearest neighbors is 0.017376.

7.4 Experiments for k-Nearest Neighbor Search

This section presents the experiments for k-nearest neighbor search using the
BBDT algorithm and the LBT algorithm modified as described in Section 4.1.
These experiments were performed with the object recognition database de-
scribed in Section 7.3, and the same LB-tree and query point set with the noise
extent e = 0.005 were used. However, instead of searching for only the single
nearest neighbor, we searched for the k-nearest neighbors of each query point.
Table 3 illustrates the mean query time for the k-nearest neighbor search,
k = 2, 4, . . . , 20. As k rises to 20, the mean query time using the LBT al-
gorithm increases to 0.408 ms, which is about 8.9 times larger than that for
1-nearest neighbor search. When the BBDT algorithm is applied, the mean
query time increases to 2.251 ms as k rises to 20. That is, the mean query
time of 20-nearest neighbor search is about 28.5 times larger than that for
1-nearest neighbor search by using the BBDT algorithm. This concludes that
there exists extra advantage if the proposed LBT algorithm is adopted for
k-nearest neighbor search.

7.5 Experiments of Searching for k-Nearest Neighbors within a Distance Thresh-
old

This section presents the experiments for the LBT algorithm that is modified
as described in Section 4.2. Again, the same LB-tree and query point set
described in Section 7.3 were used. For each query point, at most the first 20
of its nearest neighbors within the distance threshold εT were obtained. As εT

rises from 0 to 0.108 (εT = 0 implies the requirement for a perfect match), the

22

mean query time goes from 0.023 ms to 0.193 ms, as shown in Table 4. As can
be expected, larger εT will result in more neighbors obtained, and hence, more
computation time. In this experiment, average number of obtained neighbors
for all query points increases from 0 to 17.4.

8 Conclusions

In this paper we have proposed a fast algorithm for nearest neighbor search.
By creating an LB-tree using the agglomerative clustering technique and then
traversing the tree using the winner-update search strategy, we can efficiently
find the exact nearest neighbor. To further speedup the search process, some
data transformation is applied to sample points and query points, such as Haar
transform (for autocorrelated data) and PCA (for general object recognition
data). Moreover, the proposed algorithm can be easily extended to provide k-
nearest neighbors progressively, nearest neighbors within a specified distance
threshold, and close-enough neighbors compared with the nearest neighbor,
respectively.

From our experiments, the search process is dramatically accelerated using
the proposed algorithm, especially when the distance of the query point to its
nearest neighbor is relatively small compared with its distance to most other
sample points. Our algorithm is particularly advantageous in many object
recognition applications, where a query point of an object is close to the sample
points of the same object, but is far from the sample points of other objects. In
this paper we applied our algorithm to the object recognition database used in
[1,17], and the result is about five hundred to one thousand times faster than
the exhaustive search. In addition, we believe that the proposed algorithm
can be very helpful in applications where each sample point represents an
autocorrelated signal, like applications concerning content-based retrieval from
a large audio, image, or video database, as those in [9,36]. The dimension d
and the number of sample points s in these applications are both large, and
hence, our algorithm will become extremely appealing.

Acknowledgements

The authors would like to thank the helpful comments and suggestions given
by the reviewers. This work was supported in part by the Ministry of Economic
Affairs, Taiwan, under Grants 93-EC-17-A-02-S1-032 and 94-EC-17-A-02-S1-
032.

23

References

[1] Hiroshi Murase and Shree K. Nayar, “Visual learning and recognition of 3-D
objects from appearance,” International Journal of Computer Vision, vol. 14,
pp. 5–24, 1995.

[2] Trevor Hastie and Robert Tibshirani, “Discriminant adaptive nearest
neighbor classification,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 18, no. 6, pp. 607–616, 1996.

[3] Anil K. Jain, M. Narasimha Murty, and Patrick J. Flynn, “Data clustering: A
review,” ACM Computing Surveys, vol. 31, no. 3, pp. 264–323, 1999.

[4] Carlo Tomasi and Roberto Manduchi, “Stereo matching as a nearest-neighbor
problem,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 20, no. 3, pp. 333–340, 1998.

[5] Yong-Sheng Chen, Yi-Ping Hung, and Chiou-Shann Fuh, “Fast block matching
algorithm based on the winner-update strategy,” IEEE Transactions on Image
Processing, vol. 10, no. 8, pp. 1212–1222, Aug. 2001.

[6] Chang-Hsing Lee and Ling-Hwei Chen, “A fast search algorithm for vector
quantization using mean pyramids of codewords,” IEEE Transactions on
Communications, vol. 43, no. 2/3/4, pp. 1697–1702, 1995.

[7] Chaur-Heh Hsieh and Yong-Jzu Liu, “Fast search algorithms for vector
quantization of images using multiple triangle inequalities and wavelet
transform,” IEEE Transactions on Image Processing, vol. 9, no. 3, pp. 321–
328, 2000.

[8] Li-Yi Wei and Marc Levoy, “Fast texture synthesis using tree-structured vector
quantization,” in Proceedings of SIGGRAPH, New Orleans, Louisiana, July
2000, pp. 479–488.

[9] Myron Flickner, Harpreet Sawhney, Wayne Niblack, Jonathan Ashley, Qian
Huang, Byron Dom, Monika Gorkani, Jim Hafner, Denis Lee, Dragutin
Petkovic, David Steele, and Peter Yanker, “Query by image and video content:
The QBIC sytstem,” IEEE Computer, vol. 28, no. 9, pp. 23–32, 1995.

[10] Stefan Berchtold, Christian Böhm, Bernhard Braunmüller, Daniel A. Keim, and
Hans-Peter Kriegel, “Fast parallel similarity search in multimedia databases,”
in Proceedings of the ACM SIGMOD International Conference on Management
of Data, Tucson, Arizona, USA, May 1997, pp. 1–12.

[11] Jon Louis Bentley, “Multidimensional binary search trees used for associative
searching,” Communications of the ACM, vol. 18, no. 9, pp. 509–517, 1975.

[12] Antonin Guttman, “R-trees: A dynamic index structure for spatial searching,”
in Proceedings of the ACM SIGMOD International Conference on Management
of Data, Boston, MA, June 1984, pp. 47–57.

24

[13] Norio Katayama and Shin’ichi Satoh, “The SR-tree: An index structure
for high-dimensional nearest neighbor queries,” in Proceedings of the ACM
SIGMOD International Conference on Management of Data, Tucson, Arizona,
USA, May 1997, pp. 369–380.

[14] David A. White and Ramesh Jain, “Similarity indexing with the SS-tree,” in
Proceedings of the International Conference on Data Engineering, New Orleans,
Louisiana, Feb. 1996, pp. 516–523.

[15] Stefan Berchtold, Christian Böhm, and Hans-Peter Kriegel, “The pyramid-
technique: Towards breaking the curse of dimensionality,” in Proceedings of
the ACM SIGMOD International Conference on Management of Data, Seattle,
Washington, June 1998, pp. 142–153.

[16] Stefan Berchtold, Daniel A. Keim, Hans-Peter Kriegel, and Thomas Seidl,
“Indexing the solution space: A new technique for nearest neighbor search
in high-dimensional space,” IEEE Transactions on Knowledge and Data
Engineering, vol. 12, no. 1, pp. 45–57, 2000.

[17] Sameer A. Nene and Shree K. Nayar, “A simple algorithm for nearest neighbor
search in high dimensions,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 19, no. 9, pp. 989–1003, Sept. 1997.

[18] V. Ramasubramanian and Kuldip K. Paliwal, “Fast nearest-neighbor search
algorithms based on approximation-elimination search,” Pattern Recognition,
vol. 33, no. 9, pp. 1497–1510, 2000.

[19] Keinosuke Fukunaga and Patrenahalli M. Narendra, “A branch and bound
algorithm for computing k-nearest neighbors,” IEEE Transactions on
Computers, vol. 24, pp. 750–753, 1975.

[20] Sergey Brin, “Near neighbor search in large metric spaces,” in Proceedings of
the International Conference on Very Large Data Bases, Zurich, Switzerland,
Sept. 1995, pp. 574–584.

[21] Enrique Vidal, “New formulation and improvements of the nearest-neighbour
approximating and eliminating search algorithm (AESA),” Pattern Recognition
Letters, vol. 15, no. 1, pp. 1–7, Jan. 1994.

[22] Jerome H. Friedman, Forest Baskett, and Leonard J. Shustek, “An algorithm
for finding nearest neighbors,” IEEE Transactions on Computers, vol. 24, pp.
1000–1006, 1975.

[23] Mohammad Reza Soleymani and Salvatore D. Morgera, “An efficient nearest
neighbor search method,” IEEE Transactions on Communications, vol. COM-
35, no. 6, pp. 677–679, 1987.

[24] Abdelhamid Djouadi and Essaid Bouktache, “A fast algorithm for the nearest-
neighbor classifier,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 19, no. 3, pp. 277–282, 1997.

25

[25] Eel-Wan Lee and Soo-Ik Chae, “Fast design of reduced-complexity nearest-
neighbor classifiers using triangular inequality,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 20, no. 5, pp. 567–571, 1998.

[26] James McNames, “A fast nearest-neighbor algorithm based on a principal axis
search tree,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 23, no. 9, pp. 964–976, Sept. 2001.

[27] Sunil Arya, David M. Mount, Nathan S. Netanyahu, Ruth Silverman, and
Angela Y. Wu, “An optimal algorithm for approximate nearest neighbor
searching in fixed dimensions,” Journal of the ACM, vol. 45, no. 6, pp. 891–923,
1998.

[28] András Faragó, Tamás Linder, and Gábor Lugosi, “Fast nearest-neighbor search
in dissimilarity spaces,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 15, no. 9, pp. 957–962, 1993.

[29] Ronald Fagin and Larry Stockmeyer, “Relaxing the triangle inequality in
pattern matching,” International Journal of Computer Vision, vol. 28, no.
3, pp. 219–231, 1998.

[30] Gı́sli R. Hjaltason and Hanan Samet, “Distance browsing in spatial databases,”
ACM Transactions on Database Systems, vol. 24, no. 2, pp. 265–318, 1999.

[31] Yong-Sheng Chen, Yi-Ping Hung, and Chiou-Shann Fuh, “Winner-update
algorithm for nearest neighbor search,” in Proceedings of the International
Conference on Pattern Recognition, Barcelona, Spain, Sept. 2000, vol. 2, pp.
708–711.

[32] King-Ip Lin, H. V. Jagadish, and Christos Faloutsos, “The TV-tree: An index
structure for high-dimensional data,” The VLDB Journal, vol. 3, no. 4, pp.
517–542, 1994.

[33] Patrick Henry Winston, Artificial Intelligence, Addison-Wesley, Reading,
Massachusetts, third edition, 1992.

[34] Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification,
John Wiley & Sons, New York, second edition, 2001.

[35] Gilbert Strang and Truong Nguyen, Wavelets and Filter Banks, Wellesley-
Cambridge Press, Wellesley, Massachusetts, 1996.

[36] Howard D. Wactlar, Takeo Kanade, Michael A. Smith, and Scott M. Stevens,
“Intelligent access to digital video: Informedia project,” IEEE Computer, vol.
29, no. 5, pp. 46–52, 1996.

26

Biographical Sketch

About the Author—YONG-SHENG CHEN received his B.S. degree in com-
puter and information science from National Chiao Tung University, Taiwan,
in 1993. He received an M.S. degree and a Ph.D. degree in computer science
and information engineering from National Taiwan University, Taiwan, in 1995
and 2001, respectively. He is currently an assistant professor in the Department
of Computer Science, National Chiao Tung University, Taiwan. His research
interests include biomedical signal processing, medical image processing, and
computer vision.

About the Author—YI-PING HUNG received his B.Sc. in Electrical En-
gineering from the National Taiwan University in 1982. He received an M.Sc.
from the Division of Engineering, an M.Sc. from the Division of Applied Math-
ematics, and a Ph.D. from the Division of Engineering, all at Brown Univer-
sity, in 1987, 1988 and 1990, respectively. He is currently a professor in the
Graduate Institute of Networking and Multimedia, and in the Department of
Computer Science and Information Engineering, both at the National Taiwan
University. From 1990 to 2002, he was with the Institute of Information Sci-
ence, Academia Sinica, Taiwan, where he became a tenured research fellow in
1997 and is now an adjunct research fellow. He received the Young Researcher
Publication Award from Academia Sinica in 1997. His current research inter-
ests include computer vision, pattern recognition, image processing, virtual
reality, multimedia and human-computer interaction.

About the Author—TING-FANG YEN received her B.S. in Computer Sci-
ence and Information Engineering from National Chiao Tung University, Tai-
wan, in 2004. She is currently a graduate student in Electrical and Com-
puter Engineering at Carnegie Mellon University. Ting-Fang’s current research
mainly focus on software security, including issues in exploit detection and re-
covery, and evaluating the effect of software diversity in preventing widespread
attacks.

About the Author—CHIOU-SHANN FUH received the BS degree in com-
puter science and information engineering from National Taiwan University,
Taipei, Taiwan, in 1983, the MS degree in computer science from the Penn-
sylvania State University, University Park, PA, in 1987, and the PhD degree
in computer science from Harvard University, Cambridge, MA, in 1992. He
was with AT&T Bell Laboratories and engaged in performance monitoring
of switching networks from 1992 to 1993. He was an associate professor in
Department of Computer Science and Information Engineering, National Tai-
wan University, Taipei, Taiwan from 1993 to 2000 and then promoted to a full
professor. His current research interests include digital image processing, com-
puter vision, pattern recognition, mathematical morphology, and their appli-
cations to defect inspection, industrial automation, digital still camera, digital

27

video camcorder, and camera module such as color interpolation, auto expo-
sure, auto focus, auto white balance, color calibration, and color management.

28

Figure Captions

Fig. 1. An example of the 4-level structure of the point p, where p ∈ R8.

Fig. 2. An example of hierarchical construction of the LB-tree. All the points in the
same dark region are determined agglomeratively and are grouped into a cluster.
Notice that each point is transposed in order to fit into the limited space.

Fig. 3. An example of the LB-tree.

Fig. 4. Illustration of the distance inequality of Equation (1).

Fig. 5. Three intermediate stages of the heap. (a) Given a query point q, the LB-dis-
tances for nodes 〈m0

1〉 and 〈m0
2〉 at level 0 are calculated and used to construct

a heap. (b) The node 〈m0
2〉 in (a) has the smaller LB-distance and is replaced by

its children: nodes 〈m1
2〉 and 〈m1

3〉. (c) The node 〈m1
3〉 in (b) has the smallest

LB-distance and is replaced by nodes 〈m2
4〉 and 〈m2

5〉.

Fig. 6. Mean query time versus size, s, of the sample point set (d = 32).

Fig. 7. Mean query time versus dimension of the underlying space, d (s = 10, 000).

Fig. 8. Mean query time versus mean of the minimum distances, εmin (s = 10, 000,
d = 32).

29

Table 1
Efficiency comparison for clustered Gaussian data with different σ

Algorithm σ=0.02 σ=0.04 σ=0.06 σ=0.08 σ=0.1

ES 11.938 ms.

SBS 0.619 ms. (19) 0.679 ms. (18) 0.710 ms. (17) 1.024 ms. (12) 1.916 ms. (6)

BBDT 0.236 ms. (51) 0.243 ms. (49) 0.249 ms. (48) 0.265 ms. (45) 0.289 ms. (41)

LBT 0.047 ms. (254) 0.052 ms. (230) 0.077 ms. (155) 0.082 ms. (146) 0.115 ms. (104)

30

Table 2
Efficiency comparison for an object recognition database

Algorithm e=0.005 e=0.01 e=0.015

ES 50.048 ms.

SBS 0.613 ms. (82) 1.096 ms. (46) 2.161 ms. (23)

BBDT 0.079 ms. (634) 0.164 ms. (305) 0.281 ms. (178)

LBT 0.046 ms. (1088) 0.072 ms. (695) 0.095 ms. (527)

31

Table 3
Mean query time (in ms.) for k-nearest neighbor search

k

Algorithm 2 4 6 8 10 12 14 16 18 20

BBDT 0.087 0.121 0.204 0.363 0.587 0.875 1.192 1.532 1.885 2.251

LBT 0.053 0.069 0.091 0.121 0.158 0.202 0.252 0.302 0.356 0.408

32

Table 4
Mean query time (in ms.) for εT -nearest neighbor search.

εT

Algorithm 0 0.012 0.024 0.036 0.048 0.060 0.072 0.084 0.096 0.108

LBT 0.023 0.040 0.060 0.078 0.096 0.114 0.134 0.154 0.174 0.193

33

p 2

p 1

p 0

p 3
7p6p5p 8p

4p

4p

3p

3p

2p

2p

2p

1p

1p

1p

1p

0

1

2

3

LEVEL

= ========

2
2C 3

2C 4
2C 5

2C

2
3C 3

3C 4
3C 5

3C 6
3C 7

3C 8
3C 9

3C

1
0C 2

0C

1
1C 2

1C 3
1C

1
3C

1
2C

ROOT

p
1
0 p

5
0 p

6
0 p

8
0 p

2
0

3
0 p

4
0 p

7
0 p

9
0

p
7
1p

4
1p

3
1p

9
1p

2
1p

8
1

6
1p

5
1p

1
1

p
1
2 p

5
2 p

8
2 p

6
2 p

2
2 p

9
2 p

3
2 p

4
2 p

7
2

p
1
3

p
1

p
7
3

p
7

p
4
3

p
4

p
3
3

3

p
9
3

p
9

p 3

p
2

p
6
3

p
6

p
8

8
3p

5
3

p
5

p

2

p

p

p

=

= = = = = = = ==

0

1

2

3

= = = = = = = =

LEVEL

2
0rm2

0

2
1r

m2
1

3
1r

m3
1

5
2r

m5
2

4
2r

m4
2

3
2r

m3
2

2
2r

m2
2

1
0rm1

0

1
1r

m1
1

1
2r

m1
2

m1
3

1
p

2
3r 3

3r 4
3r 5

3r 6
3r 7

3r 8
3r 9

3r1
3r

m3
2 m3

3 m4
3 m5

3 m6
3 m7

3 m8
3 m9

3

ROOT

0 0 0 0 0 0 0 00

p
5 8 6

p
2

p
9

p
3 4

p
7

p pp

*

*

*

*

q l

p l
j
lr

m j
l

j
l<m >LBd (,)q l

dLB(〈m0
2〉, q0) = 2

�
�

�
�	

dLB(〈m0
1〉, q0) = 6

dLB(〈m1
3〉, q1) = 3

�
�

�
�	

@
@

@
@R

dLB(〈m1
2〉, q1) = 8 dLB(〈m0

1〉, q0) = 6

dLB(〈m2
5〉, q2) = 4

�
�

�
�	

@
@

@
@R

dLB(〈m0
1〉, q0) = 6 dLB(〈m2

4〉, q2) = 9

�
�

�
�	

dLB(〈m1
2〉, q1) = 8

(a) (b) (c)

800 1600 3200 6400 12800 25600 51200
10−2

10−1

100

101

 s

m
ea

n
qu

er
y

tim
e

(m
s.

)

exhaustive
SBS
BBDT
LBT
SBS+Haar
BBDT+Haar
LBT+Haar

2 4 8 16 32 64 128 256
10−2

10−1

100

101

102

 d

m
ea

n
qu

er
y

tim
e

(m
s.

)

exhaustive
SBS
BBDT
LBT
SBS+Haar
BBDT+Haar
LBT+Haar

0.033 0.065 0.13 0.26 0.52 1.017 1.928 3.838
10−2

10−1

100

101

 εmin

m
ea

n
qu

er
y

tim
e

(m
s.

)

exhaustive
SBS
BBDT
LBT
SBS+Haar
BBDT+Haar
LBT+Haar

