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Abstract

Brain extraction from head magnetic resonance (MR) images is a classification

problem of segmenting image volumes into brain and non-brain regions. It is a dif-

ficult task due to the convoluted brain surface and the inapparent brain/non-brain

boundaries in images. This paper presents an automated, robust, and accurate brain

extraction method which utilizes a new implicit deformable model to well represent

brain contours and to segment brain regions from MR images. This model is de-

scribed by a set of Wendland’s radial basis functions (RBFs) and has the advan-

tages of compact support property and low computational complexity. Driven by

the internal force for imposing the smoothness constraint and the external force

for considering the intensity contrast across boundaries, the deformable model of

a brain contour can efficiently evolve from its initial state toward its target by it-

eratively updating the RBF locations. In the proposed method, brain contours are
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separately determined on 2-D coronal and sagittal slices. The results from these two

views are generally complementary and are thus integrated to obtain a complete

3-D brain volume. The proposed method was compared to four existing methods,

Brain Surface Extractor, Brain Extraction Tool, Hybrid Watershed Algorithm, and

Model-based Level Set, by using two sets of MR images as well as manual seg-

mentation results obtained from the Internet Brain Segmentation Repository. Our

experimental results demonstrated that the proposed approach outperformed these

four methods when jointly considering extraction accuracy and robustness.

Key words: Brain extraction, Skull stripping, Deformable model, Radial basis

function

1 Introduction

Brain extraction is essential or beneficial to many neuroimaging applications.

For example, removal of the non-brain tissues facilitates the correction of inten-

sity non-uniformity for magnetic resonance (MR) images (Acosta-Cabronero

et al., 2008). Tissue segmentation algorithms for separating brain regions into

grey matter (GM), white matter (WM), and cerebrospinal fluid (CSF) usually

incorporate brain extraction as a preprocessing step to simplify the segmen-

tation problem (Dale et al., 1999; Zhang et al., 2001; Shattuck et al., 2001).

Extraction of brain regions can improve the accuracy of brain image regis-

tration by avoiding the interference of inter-subject variation of non-brain

structures (Woods et al., 1998), including affine and non-rigid methods (Jenk-
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inson and Smith, 2001; Gholipour et al., 2007; Liu et al., 2008). In the past

decade, voxel-based morphometry (VBM) (Ashburner and Friston, 2000) has

been extensively applied to statistically reveal regions with significant struc-

tural discrepancy between image groups (Good et al., 2001a,b; Beyer and

Krishnan, 2002; Brenneis et al., 2003; Karas et al., 2003). Recent studies indi-

cated that accurate brain extraction can improve the validity of VBM results

because of better tissue segmentation and brain registration (Fein et al., 2006;

Acosta-Cabronero et al., 2008).

Brain extraction algorithms can be classified into four major classes: (1)

thresholding/clustering based methods, (2) boundary-based methods, (3) de-

formable model methods, and (4) hybrid methods. Thresholding/clustering

based methods extract brain regions according to the phenomenon that in-

tensities of the voxels belonging to the same tissue are similar. Lemieux et al.

(1999) proposed a fine-tuned algorithm which utilizes several intensity thresh-

olds and morphological operations to remove non-brain areas. Analysis of

Functional NeuroImages (AFNI) fits a Gaussian mixture model to the inten-

sity histogram of a brain image and estimates an intensity range to segment

the brain areas in a slice-by-slice manner (Cox, 1996; Ward, 1999). Hahn and

Peitgen (2000) presented a watershed algorithm which uses a connectivity

criterion, pre-flooding height, to group image voxels with similar intensities

and then regards the largest connected component as the brain volume. More

examples can be found in Brummer et al. (1993), Lee et al. (1998), Worth

et al. (1998), Hata et al. (2000), Stokking et al. (2000), and Huh et al. (2002).

Methods of this type are usually sensitive to image scanning parameters and

image artifacts, such as noise and intensity inhomogeneity. Therefore, user

intervention is usually required to determine proper parameters.
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Boundary-based methods locate brain boundaries using the edge informa-

tion obtained from image derivatives. Bomans et al. (1990) presented a semi-

automated algorithm in which the brain region was manually labelled from

the connected components detected with the Marr-Hildreth operator. Brain

Surface Extractor (BSE) method improved the work of Bomans et al. (1990)

by adaptively smoothing the noisy regions, detecting structure edges, and au-

tomatically determining the brain volume (Sandor and Leahy, 1997; Shattuck

et al., 2001). In contrast to the thresholding/clustering based approaches, these

methods are less sensitive to intensity inhomogeneity and scanning parame-

ters. However, automated methods of this type may encounter difficulties in

differentiating true boundaries from the false ones. For example, the GM/WM

edges are usually very close to the target boundaries, the CSF/GM edges, and

thus may perplex the determination of the brain volume.

Extraction methods using deformable models segment brain volumes by evolv-

ing contour or surface toward the target. Deformable model can be charac-

terized by its representation method, implicit or explicit, and the evolution

scheme (Xu et al., 2000; Montagnat et al., 2001). An explicit model directly de-

scribes the brain contour or surface and the fitting process is usually rapid (Da-

vatzikos and Bryan, 1996; Kelemen et al., 1999; Dale et al., 1999; Smith, 2002).

On the other hand, implicit model can easily change the model topology, for

example, to split or merge objects, but the computational complexity is usu-

ally high. The level set method adopted in Zhuang et al. (2006) is an example

of this kind of methods. Brain extraction using deformable model is generally

more robust and accurate compared to the thresholding/clustering based and

boundary-based methods (Smith, 2002; Ségonne et al., 2004; Zhuang et al.,

2006). Moreover, incorporation of constraints or prior knowledge about the
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brain shape is relatively easy for this kind of methods. Therefore, they are

more robust to both image artifacts and boundary discontinuities and can

achieve subvoxel accuracy (Xu et al., 2000).

Hybrid approaches integrate the methods of different types with the anticipa-

tion to draw on the specific strengths at the expense of more computational

cost (Atkins and Mackiewich, 1998; Aboutanos et al., 1999; Germond et al.,

2000; Baillard et al., 2001; Rex et al., 2004; Mikheev et al., 2008). Ségonne

et al. (2004) applied the watershed algorithm (Hahn and Peitgen, 2000) to

generate an initial brain volume and incorporated the prior information of the

brain shape into a deformable model to refine the extraction results. Rehm

et al. (2004) integrated the extraction results obtained from atlas registration

(Woods et al., 1998), intensity thresholding, and the BSE algorithm (San-

dor and Leahy, 1997; Shattuck et al., 2001) by means of voting in the brain

volume.

For large-scale studies, both accuracy and efficiency are important issues when

considering brain extraction algorithms (Fennema-Notestine et al., 2006). The

level set methods, which use implicit deformable models, are superior in ac-

curacy and robustness, but the computational complexity of these methods is

usually very high. On the contrary, methods using explicit models are gener-

ally more efficient. However, the discretization process in this kind of methods

needs to compromise between the extraction accuracy and evolution efficiency.

Finer (coarser) discretization employs more (fewer) sampling points to model

object boundaries and can achieve more precise (rougher) results at a rela-

tively slow (rapid) evolution speed.

In this work, we designed a new deformable model and developed an au-
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tomated brain extraction method. The deformable model is implicitly repre-

sented by a set of Wendland’s radial basis functions (RBFs) and can efficiently

evolve toward the target boundary by iterative updates of RBF locations.

Because of the use of RBFs, the new model can smoothly represent object

boundaries though each RBF keeps a distance to the neighboring ones. Brain

contours of 2-D coronal and sagittal slices are individually fitted. The results

of these two views are generally complementary and thus can be integrated

to obtain accurate 3-D brain volumes. According to our experiments, the pro-

posed brain extraction method outperformed others when jointly considering

extraction accuracy and robustness.

2 Methods

The proposed brain extraction method comprises three major steps, as shown

in Fig. 1. Image intensity parameters and brain centroid are first estimated for

the following segmentation procedures. Then the proposed deformable model

is applied to extract the brain area on each of the coronal and sagittal slices.

Complementary areas extracted from two different views are then integrated

into a complete 3-D brain volume.

2.1 Estimation of image intensity parameters and brain centroid

We estimate the effective intensity range and centroid of the head as the work

of Smith (2002). An effective intensity range [t1, t2] is determined to ignore the

voxels with unusual intensities, such as noises or DC spikes, in which t1 and t2

are the intensity values in the histogram such that the accumulated number
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of voxels reaches 2% and 98%, respectively, as shown in Fig. 1. To roughly

separate the head from the background, the threshold t is set to be 10% in the

range of [t1, t2]. The brain centroid O is calculated by the first order image

moment using the voxels with intensity value in the range of [t, t2].

An ellipsoid approximating the brain shape is determined by detecting the

head bounding box from those voxels with intensity within [t, t2]. The polar

radius is set to the distance between the centroid and superior plane and the

two equatorial radii are set to the halves of the distances between the opposite

bounding planes, that is, the left-right and the anterior-posterior planes.

Difference of Gaussian (DOG) operator provides brain structure information

which can be used for the detection of the mid-saggital plane (MSP) of the

brain (Liu et al., 2008) and for the estimation of the brain tissue intensities.

DOG performs image substraction after the convolution with two Gaussian

kernels G(σ1) and G(σ2), σ1 > σ2:

DOG(I, σ1, σ2) = G(σ1) ∗ I −G(σ2) ∗ I , (1)

where I is a T1-weighted MR image and “∗” denotes the convolution operator.

The voxels with DOG values smaller than zero are in the regions with rela-

tively high intensities, which are mostly the WM areas in the brain. Therefore,

the median intensity of these voxels within the brain-approximating ellipsoid

estimates the global WM intensity, tw. On the other hand, the regions with

DOG values larger than zero indicate the tissues with relatively low intensi-

ties. These voxels within the ellipsoid are mostly the GM and CSF. We apply

Otsu’s algorithm (Otsu, 1979) to calculate an intensity threshold to for sepa-

rating CSF voxels from GM voxels. The median intensity of the CSF voxels
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estimates the global CSF intensity, tc.

2.2 Brain extraction on the slices in two views

Brain extraction using deformable model generally requires a constraint to

keep the contour or surface smooth. Loosening this constraint may lead to

better fitting for the uneven brain surface but may face the risk of leakage

through the weak boundaries. On the other hand, models with strict smooth-

ness constraint can achieve stable results, but they usually underestimate the

curvature of brain surface. To tackle this problem, Smith (2002) utilized a hy-

perbolic tangent function with empirically obtained maximum and minimum

curvature values to adaptively smooth the model of brain surface.

In this work, we apply the deformable contour model to extract the brain

regions on both coronal and sagittal slices and then integrate the results from

two views. As shown in Fig. 2, local curvatures of a region extracted from dif-

ferent views are usually quite different. Fitting a local boundary in the view

with relatively low curvatures often achieve more reliable results, whereas the

boundaries frequently cut through the tissues due to the high curvatures in an-

other view. Therefore, segmentation results in different views can complement

each other. Applying a strict smoothness constraint for two views followed

by the simple logical OR operation for the integration can achieve accurate

and stable extraction. Notice that brain extraction on the axial slices is not

considered in this work because of the efficiency issue.

The segmentation in the coronal view starts with the slice nearest to the

brain centroid O and proceeds with the slices toward the anterior and poste-
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rior directions. The extraction on the sagittal slices, which are parallel to the

detected MSP, is divided into two parts. Each part starts with a sagittal slice

30 mm apart from the MSP and proceeds with the slices toward the MSP and

the most lateral slice, as shown in Fig. 1. Sagittal slices within 3 mm from the

MSP are not processed to avoid the unstable segmentation due to relatively

few GM and WM tissues. Because the extracted brain region shrinks gradu-

ally as the extraction goes forward along the anterior, posterior, left, and right

directions, brain extraction in each of these directions is terminated once the

size of the extracted brain region is smaller than a threshold.

2.3 Initial contour

An initial contour within the brain region is required for each of the three

starting slices, as shown in Fig. 3. The brain bounding box is first detected

from those pixels with their intensity values within [t, t2]. In this way the

lower boundary of the bounding box is usually located at the bottom of the

MR volume and is thus adjusted according to the aspect ratios 8:7 and 4:3

for the coronal and sagittal slices, respectively. A set of Wendland’s RBFs are

then equally spread along an ellipse centered in the bounding box with the

lengths of its axes set to be 0.7 times the length and width of the box. These

RBFs determine an initial contour which can evolve to fit the brain contour

by the method described in the next section. Because the brain contours of

adjacent slices are usually similar, the evolved contour of current slice provides

a good initial for the neighboring ones. This propagation way improves the

performance of brain extraction, in terms of both accuracy and efficiency.
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2.4 Deformable model for brain extraction

2.4.1 Implicit contour representation

A contour in a d-dimensional image space (d is 2 or 3) can be implicitly

modeled as the zero set of a scalar function ϕ : <d → <:

C = {x | ϕ(x) = 0, x ∈ <d} . (2)

In this work, we define the scalar function ϕ(·) as the sum of K weighted

RBFs:

ϕ(x) =
K∑

i=1

Ti(x− ci)φs(‖x− ci‖) , (3)

where ‖ · ‖ is the Euclidean norm and Ti(·) is a weighting function for the

RBF φs(·). The one-argument function φs : <+ → < is the RBF centered

at ci, ci ∈ <d. This work adopts the Wendland’s ψ-functions, ψ3,1, as the

function φs because of its advantages of compact support property and low

computational complexity (Wendland, 1995; Fornefett et al., 2001):

φs(r) =


(1− r

s
)4(4r

s
+ 1) , 0 ≤ r < s

0 , s ≤ r

, (4)

where s is the shape parameter for accommodating various extents of the

compact support. Given the outward normal vector ni at ci, the weighting

function Ti : <d → < is defined as:

Ti(v) = vtni . (5)
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Therefore, each Ti(·)φs(·) term in Eq. (3) implicitly represents a line as the

zero set in 2D image space. The normal vector at the RBF center determines

the orientation of the line and the summation of these products results in a

smooth contour representation, as illustrated in Fig. 4. Notice that we only

consider the zero set within the support extents of RBFs and usually the

contour does not pass through RBF centers in this model. From the implicit

function, the normal vector ni at the control point ci is calculated as

ni =
∇ϕ(ci)

‖∇ϕ(ci)‖
. (6)

During the contour evolution, we adaptively allocate or deallocate RBFs ac-

cording to the distance between the neighboring RBF centers.

2.4.2 Contour evolution forces

The brain area on each slice is determined by iteratively moving each RBF

center ci along the normal direction ni to a compromise between an internal

force Fs(ci) and an external force Fe(ci), i = 1 . . . K:

∂ci

∂t
= (aFs(ci) + bFe(ci)) ni , (7)

where the weighting parameters a and b are both generally set to be 0.5.

The internal force calculated from the contour itself is used to keep the contour

smooth during the evolution process. We define the smoothness constraint

function Fs(·) at ci as the averaged magnitude of the orientation differences

between the normal vector ni and the normal vectors ni−1 and ni+1 of ci’s
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neighboring RBFs centered at ci−1 and ci+1:

Fs(ci) = ut
ini ×

‖ni − ni−1‖+ ‖ni − ni+1‖
2

, (8)

where ui is the normalized vector which starts from ci and points to the

midpoint between ci−1 and ci+1. Because each RBF keeps a distance to its

neighboring ones, the contour smoothness is estimated from a larger scale of

view, compared to the local curvature ∇ni estimated at ci.

The external force is used to evolve the initial contour toward its target bound-

ary. Here we modify the external force adopted in Zhuang et al. (2006), which

originated from Dale et al. (1999) and Smith (2002), as follows:

Fe(ci) = w(d, α, s′)× (
Imin(ci)

Imax(ci)
− β) . (9)

The function above is designed according to the phenomenon that the intensity

contrast between the CSF and GM/WM is usually high. Functions Imin(·)

and Imax(·) find the local minimum intensity and local maximum intensity,

respectively, among several sampled pixels starting from each RBF center ci

along the opposite direction of ni:

Imin(ci) = max(t1,min(tm, I(ci), I(ci − ni), I(ci − 2ni), . . . , I(ci −Mni))) , (10)

Imax(ci) = min(t2,max(tw, tm, I(ci), I(ci − ni), I(ci − 2ni), . . . , I(ci −Nni))) , (11)

where M and N determine the search ranges and tm is the median intensity of

the brain tissues on each slice, which is approximated from the pixels within

the initial brain region. The parameter β is used to characterize the intensity

contrast between the brain and non-brain tissues. Its value is slightly larger
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than the intensity ratio of the CSF to WM:

β =
tc
tw

+ k , (12)

where k is a small positive number. In this way the value of the parameter β

is not fixed but adaptively determined because the WM and CSF intensities,

tw and tc, are estimated from the MR image. This advantage benefits the

robustness of the proposed brain extraction method. Generally, the distance

N in Imax(·) should be large enough to reach the WM during the evolution.

Therefore, Imax(·) roughly equals to the local WM intensity. If the evolving

contour is inside the brain region, Imin(·) is most likely the intensity of GM or

WM. This results in a positive external force and drives the contour outward.

Once the contour is outside the brain boundary, Imin(·) is most likely the CSF

intensity and the resulted negative external force (approximately −k) pulls

the contour inward.

Because the brain boundaries of neighboring slices are usually similar, we

apply a weighting function w(·) to constrain the moving distance d of the

RBF while the deformable model evolves from its initial position. Here the

weighting function w(·) is defined as the Wendland’s RBF in Eq. (4) with

support extent s′:

w(d, α, s′) = φs′(max(0, d− α)) . (13)

As the example shown in Fig. 5, w(·) begins to gradually decrease to zero when

the moving distance d is larger than α. Therefore, this function regularizes the

amount of brain contour evolution and thus imposes the smoothness constraint

of the extracted brain volume across adjacent slices. Note that this term is set
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to be the constant one in the extraction process for each of the starting slices.

2.5 Integration of segmentation results

The brain regions determined from the coronal and sagittal slices are com-

plementary and thus can be integrated to increase the sensitivity of brain ex-

traction. Segmentation results of the sagittal slices are first transformed back

to the native space because these slices are sampled from the planes parallel

to the detected MSP. Logical OR operation is then applied to combine the

coronal and the transformed sagittal results. Finally, we apply morphological

opening with a circle as the structural element to remove the weak connected

components and to smooth the brain surface. Fig. 6 illustrates the extraction

results of a T1-weighted head image.

2.6 Performance evaluation

This section introduces the methods used to evaluate the performance of the

proposed brain extraction algorithm, including the data sets, performance

criteria, and the approaches used for comparisons. The obtained accuracy

evaluation results are further analyzed by two-sample t-test for performance

comparison among the brain extraction methods. Moreover, previous eval-

uation works can be found in Lee et al. (2003), Boesen et al. (2004), and

Fennema-Notestine et al. (2006).
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2.6.1 Brain extraction algorithms for performance comparisions

The proposed method was compared with the Brain Surface Extractor (BSE)

in BrainSuite2 (Sandor and Leahy, 1997; Shattuck et al., 2001; Shattuck and

Leahy, 2002), Brain Extraction Tool (BET) version 2.1 (Smith et al., 2001;

Smith, 2002), Hybrid Watershed Algorithm (HWA) version stable 3 (Ségonne

et al., 2004), and Model-based Level Set (MLS) version 0.5 (Zhuang et al.,

2006). The programs of the compared methods used in our experiments were

downloaded from their webpages. BET, BSE, HWA, and our method were

implemented in C++ whereas MLS was programmed in Java. All extrac-

tion experiments were performed on an AMD Opteron 240 processor running

Linux, except BSE. Software of BSE is available only for Windows system,

thus we evaluated its performance on another machine with an AMD XP

2400+ processor. Furthermore, we adopted the nearest neighbor sampling in

our implementation not only because of its efficiency but also its accuracy

compared to the trilinear interpolation. This observation agrees with the find-

ings in Smith (2002). The reason could be that sampling methods other than

the nearest neighbor somewhat blur images and the resulted weak boundaries

may deteriorate the accuracy of brain extraction.

2.6.2 Image data sets with manual segmentation results

Two sets of T1-weighted head MR images as well as manual segmentation re-

sults were obtained from the Internet Brain Segmentation Repository (IBSR) 1 .

In the experiments, we applied extraction algorithms to determine the brain

1 IBSR was developed by the Center for Morphometric Analysis at Massachusetts

General Hospital and is available at http://www.cma.mgh.harvard.edu/ibsr .
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volumes of these subjects and employed the manually segmented brain areas,

including the ventricles, to evaluate the extraction accuracy.

The first IBSR data set comprises twenty MR volumes, each with around 60

coronal slices, matrix size 256 × 256, FOV 256 × 256 mm2, and slice thick-

ness 3.1 mm. Obvious intensity inhomogeneity and other significant artifacts

present in most of the MR images in this data set. Another challenge of this

data set is that the neck and even shoulder areas are included. This may in-

fluence the extraction accuracy of BET and HWA methods, as the examples

shown in Figs. 7a and 7c (HWA even failed to process eighteen of the twenty

MR images), because the excess non-brain tissues severely bias the estimation

of the required parameters. To fairly evaluate extraction performance, sev-

eral inferior slices of the image volumes containing neck or shoulder area were

manually removed beforehand. In this way, BET and HWA achieved better

segmentation results, as shown in Figs. 7b and 7d.

The second IBSR data set contains eighteen MR images, each with around 128

coronal slices, matrix size 256× 256, FOV 240× 240 mm2, and slice thickness

1.5 mm. All images were transformed to radiological convention beforehand

based on the orientation information obtained from IBSR. These images have

superior quality in contrast to those in the first data set. According to the

document of IBSR, each image in this data set has been roughly registered

to the Talairach space and the intensity inhomogeneity has been corrected

using the software developed by the Center for Morphometric Analysis at the

Massachusetts General Hospital.
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2.6.3 Criteria for extraction accuracy assessment

Several criteria are utilized to measure the extraction accuracy, including the

Jaccard similarity coefficient (JSC), the sensitivity and specificity coefficients,

and the risk evaluation of the segmentation results. The JSC, also known as

the Jaccard index, is an extensively adopted measurement which evaluates the

similarity between the extracted brain region B and the corresponding ground

truth A:

JSC(A,B) =
|A ∩B|
|A ∪B|

, (14)

where | · | denotes the cardinality value. The value of JSC is within [0, 1] and

a larger JSC value means a better overlap with the ground truth.

Brain extraction is usually a compromise between the high recognizing per-

centage for brain voxels (that is, high sensitivity) and the high rejecting per-

centage for non-brain voxels (that is, high specificity). Therefore, the coeffi-

cients of sensitivity Se and specificity Sp can be used to characterize brain

extraction algorithms:

Se =
TP

TP + FN
, (15)

Sp =
TN

TN + FP
. (16)

The true positive rate, TP, and false positive rate, FP, are the number of

voxels correctly and incorrectly classified as brain tissues, respectively. The

true negative rate, TN, and false negative rate, FN, are the number of voxels

correctly and incorrectly classified as non-brain tissues, respectively.
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In some applications, it is more important to avoid missing brain tissues than

to reject all non-brain regions. From this point of view, Ségonne et al. (2004)

proposed an error function E to measure the extraction risk:

E(c) =
pf + cpm

1 + c
, (17)

where c is the risk ratio between the probabilities of missed detection for brain

tissues, pm, and false alarm, pf . These two probabilities are calculated as

pm =
|A−B|
|A ∪B|

, (18)

pf =
|B − A|
|A ∪B|

, (19)

where B is the extracted brain region, A is the corresponding ground truth,

and | · | denotes the cardinality value.

2.6.4 Parameters of brain extraction algorithms

The parameters of the compared methods were determined to achieve the best

average JSC value for each data set. In other words, there were two sets of

parameter values for each method and each set is for one data set. For the

first (second) IBSR image set, the smoothness weighting of MLS was chosen

as 0.05 (0.1); the fractional intensity threshold of BET was set to be 0.6 (0.7);

the parameters of HWA were set to the default values (default values with

surface-shrink option turned on); the parameter k of the proposed method was

set to be 0.15 (0.15); and the edge constant, diffusion iteration, and diffusion

constant of BSE were set to be 3 (3), 1 (1), and 0.70 (0.66), respectively.
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3 Experimental results

This section presents our results of performance evaluation for brain extraction

methods. Table 1 lists the experimental outcomes of the proposed and other

brain extraction algorithms using the first IBSR data set. In general, MLS

and our method performed better than others. Jointly considering both the

sensitivity and specificity, the accuracy indices of BET and BSE were moderate

among the five methods evaluated. In this experiment, HWA did not achieve

significant outperformance for all accuracy criteria (p > 0.05). Notice that the

performance indices of each method shown in Table 1 did not count in the cases

that (1) the JSC value between the extracted brain volume and the ground

truth is smaller than 0.6 (three cases for BSE); (2) the program terminates

without any results (three cases for HWA); and (3) the extraction result is

blank (one case for BSE and one case for MLS). Excluding these cases (seven

in total), all methods achieved slightly larger JSC values, which means better

overlapping of the extracted brain regions with the ground truths, as shown

in Table 2. HWA had remarkable improvement in its sensitivity due to the

omission of additional four poor cases. Because of the exclusion of these seven

cases, outperformance of BSE and MLS to our method became significant in

terms of the specificity (p = 0.001) and JSC (p = 0.024), respectively.

To verify that the manual removal of slices containing neck or shoulder region

in the first experiment did not largely affect the performance for BSE, MLS,

and the proposed methods, we applied these three algorithms again to extract

the brain volumes from original IBSR images. The obtained results indicated

that these three algorithms produced similar extraction outcomes no matter

the excess non-brain slices were removed or not.
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Table 3 lists the experimental results of the proposed and other extraction

algorithms using the second IBSR data set. Our method generally performed

better than others with respect to all accuracy criteria, except for the sen-

sitivity. HWA achieved the best sensitivity in detecting brain tissues at the

expense of the relatively low specificity. BET, MLS, and BSE were statistically

equal in all accuracy criteria, except for the specificity of BSE. BSE had the

significantly lower specificity in detecting non-brain regions compared to BET

(p=0.046) and MLS (p=0.02).

Tables 1 to 3 also list the average execution time of extraction methods us-

ing the first and second IBSR data sets. Both experiments show that BSE

achieved the best efficiency, followed by BET and our method, though BSE

was executed on a relatively low-end processor. The processing time of HWA

and MLS was apparently longer among the compared methods. Notice that

MLS has a chance to achieve better efficiency if the algorithm is implemented

in C/C++, instead of Java.

For each brain extraction method, the probabilities of the false classification

for brain and non-brain voxels, pm and pf , were calculated to evaluate its ex-

traction risk. Fig. 8a shows the risk profiles of the first experiment when the

risk ratio c between pm and pf ranged from 1 to 10. It is apparent that MLS

and our method have relatively lower extraction risks. BET and HWA perform

better than BSE when the risk ratio is larger than 1.8 and 8.0, respectively.

This figure also illustrates the extraction risk for the results excluding the

seven subjects that caused markedly poor results. We can see that the perfor-

mance of the proposed method, BSE, and MLS has been slightly improved.

The extraction risk of HWA decreases rapidly due to its high sensitivity to the

inclusion of brain tissues. The risk profiles of the second experiment shown
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in Fig. 8b indicate that the proposed method has the lowest extraction risk

compared to other algorithms if the penalty is smaller than 6. HWA performs

better than BSE, MLS, BET, and our method if the risk ratio is larger than

1.6, 2.0, 3.0, and 6.0, respectively.

4 Discussion

Our method implicitly represents the brain contours with the proposed de-

formable model and explicitly evolves the contours by moving the RBF cen-

ters of the deformable model. Wendland’s RBFs can well represent smooth

object boundaries and are thus appropriate for brain extraction. By utilizing

the explicit evolution, boundary determination of our method is efficient, at

the expense of not being able to change the model topology. Therefore, the

proposed model is appropriate for the application in which the object to be

segmented has the same topology as the initial contour. Moreover, the perfor-

mance of our deformable model, in terms of both accuracy and efficiency, can

be further improved by considering adaptive RBF placement. For example,

sparsely (densely) deploying RBFs with larger (smaller) support extent to the

boundary with smaller (larger) curvature.

The first experiment indicated that excess non-brain tissues may greatly af-

fect the extraction accuracy of BET and HWA. Neck or shoulder region in the

image volume largely biases the estimation of brain centroid and brain size.

Therefore, BET may locate the initial surface far from a reasonable position

and thus fail to drive it toward the target. For HWA, the deviation of initial

parameters may cause erroneous estimation of tissue intensity in the following

watershed procedure. On the contrary, the proposed method is more robust
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that the excess non-brain regions do not obviously affect the segmentation

results, as the examples shown in Fig. 7. In this work, we considered fully au-

tomated procedure for brain extraction. Nevertheless, softwares of both BET

and HWA provide options for the manual specification of brain radius and

centroid parameters to remedy the biased estimation caused from the excess

non-brain regions.

Three of the compared methods, BSE, HWA, and MLS, obtained unsatis-

factory extraction results or even failed for some subject(s) in the first ex-

periment. These cases were further analyzed to comprehend the underlying

properties of these extraction algorithms. By correcting the intensity inhomo-

geneity beforehand using the N3 method (Sled et al., 1998), MLS produced

good extraction result for the previously failed case whereas BSE and HWA

still obtained unsatisfactory results. This suggests that inhomogeneity correc-

tion may improve the extraction stability of MLS. The failed cases of HWA

resulted from program termination because the estimated brain size or WM

intensity was too large. Manual specification of brain centroid and radius can

avoid the extraction failure of HWA. This suggests that poor image qual-

ity may cause poor initial extraction results for the watershed procedure, a

thresholding/clustering method, of HWA. From the excluded cases of BSE,

we observed that all the images present systematic edge artifacts caused by,

for example, the noise spike in k-space. Enlarging the kernel size of diffusion

smoothing, BSE can improve the extraction accuracy for the images with mod-

erate edge artifacts though it could not tackle the images with obvious edges,

as shown in Fig. 9. On the other hand, the proposed method and BET are

more robust because these two methods did not obtain poor results for the

first IBSR data set.
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Images of the first IBSR data set are with relatively poor quality and mani-

fest themselves in high intensity inhomogeneity, low signal-to-noise ratio, and

other significant artifacts. Image quality of the second IBSR data set is closer

to what a modern MR image scanner can achieve. Quantitative evaluation re-

sults shown in Tables 1 to 3 indicated that our method can accurately extract

the brain volumes for the images in both sets, and this may imply that the

proposed method is less sensitive to image quality compared to other algo-

rithms. These experiments also show that the segmentation risk using HWA

decreases rapidly as the relative importance to the inclusion of brain tissues

increases. This phenomenon implies that HWA is appropriate if applications

prefer to keep most brain voxels at the expense of the inclusion of non-brain

tissues, such as the meninges and venous sinuses.

Quantitative morphometric studies of brain MR images require a large num-

ber of subjects to increase the statistical power. In this case, MR images used

for structural analysis are probably obtained from different scanners (Schnack

et al., 2004; Jovicich et al., 2006). Because the tissue intensity of multi-site im-

ages can vary considerably, a robust brain extraction algorithm should prevent

from the parameter adjustment for images obtained by different scanners. To

accommodate the various intensity properties, we utilize DOG to estimate the

principal parameter of our algorithm, the intensity ratio of CSF to WM. The

use of image derivative reduces the influence of noise and intensity inhomo-

geneity. Thresholded DOG can robustly reveal the regions with relatively low

and high intensity and thus it provides good information for the estimation of

global CSF and WM intensities.

In conclusion, we have proposed an implicit deformable model and developed

a novel brain extraction method for head MR images. Experimental results
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using two IBSR data sets indicated that our method can extract brain volumes

with high accuracy compared to four existing algorithms, which have been

extensively applied in neuroimaging applications.
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Coronal slices Sagittal slices

Integration of brain regions extracted from coronal and sagittal slices

Brain extraction on coronal and sagittal slicesEstimation of image intensity parameters and brain centroid
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Intensity histogram Brain centroid localization

Estimation of global CSF intensity tcEstimation of global WM intensity tw

(a) (b)

(c)

(d) (e)

(f)

Fig. 1. Flowchart of the proposed method. (a) The effective intensity range [t1, t2]

and a rough head/background threshold t are estimated from the intensity his-

togram. (b) Then the voxels with intensity value within [t, t2] are used to approxi-

mate the brain centroid. (c) Applying DOG operator with zero threshold, the global

WM intensity tw and CSF intensity tc are decided from the voxels within the ellip-

soid approximating the brain shape. The brain areas of the (d) coronal slices and

(e) sagittal slices are extracted. (f) A complete 3-D brain region is determined from

the complementary areas segmented from two different views.
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(a)

(b)

(c) Plane 2

Plane 1

surface

contour in Plane2

contour in Plane1

Fig. 2. Brain surface presents quite different curvatures in the coronal and sagittal

views. (a) The yellow curves show that the local curvature of brain surface in the

coronal view is significantly higher than that in the sagittal view, and (b) vice versa.

(c) Boundary fitting can achieve more reliable results with low curvatures than with

high curvatures. The regions marked as red in (a) and (b) illustrate that the fitting

results obtained from coronal and sagittal views are mutually complementary.
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Fig. 3. An elliptic contour centered in the approximated bounding box of the brain

is regarded as the initial contour for the brain extraction on each of the starting

slices.
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Fig. 4. Implicit contour representation. (a) Image intensity in this figure represents

the value of Ti(·)φs(·). The zero set where Ti(·)φs(·) = 0 within the compact support

region represents the implicit model, marked as the red line. (b) The combination

of Ti(·)φs(·) can represent contour smoothly.
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Fig. 5. The weighting function w(d, α, s′) used to constrain the moving distance d

of the RBF while evolving from its initial position. In this example, α and s′ are set

to be 2 and 5, respectively.
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(a)

(b)

Fig. 6. Brain extraction results of a T1-weighted image shown in (a) coronal and

(b) sagittal views.
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(a)

(b)

(c)

(d)

BET Our method

Our method

HWA Our method

HWA Our method

BET

Fig. 7. Excess non-brain tissues affect the extraction accuracy of BET and HWA.

The MR images of the first IBSR data set contain neck areas, as shown in the left

of (a) and (c). In this case BET and HWA cannot well extract the brain volumes,

as shown in the middle of (a) and (c). Manually removing several inferior non-brain

slices, as shown in the left of (b) and (d), can facilitate BET and HWA to produce

better extraction results, as shown in the middle of (b) and (d). On the other hand,

the proposed method is relatively robust to the excess non-brain tissues, as shown

in the right from (a) to (d). 40
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Fig. 8. Extraction risk evaluation using (a) the first IBSR data set and (b) the

second IBSR data set. The mark “∗” indicates that some failed or extremely poor

segmentation case(s) are not included. After excluding all of these cases for each

method, the risk profiles are shown as the dashed lines in (a).
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(a)

(b)

Fig. 9. Influence of systematic edge artifacts, indicated by the arrows, to the extrac-

tion results of BSE. (a) A large kernel size of diffusion smoothing may facilitate BSE

to improve the brain extraction results for the images with moderate edge artifacts,

(b) but not for the images with obvious edges.
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