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Abstract

Nonlinear registration is a technique which can accommodate the deformation of structures. It is widely applied to
many applications of medical images, such as the analysis of disease characterization and the observation of brain
degeneration. This paper presents an efficient approach which can accurately register images. Hierarchical regular
meshes of Wendland’s radial basis functions are adopted to model the deformation of images from coarse to fine. To
efficiently establish the spatial relationship between images, an approximation method is proposed to determine the
coefficients of basis functions according to the spatial interpretation in deformation. This results an image registration
accomplished by a series of fast optimizations with only three degrees of freedom, and avoids the difficulties of direct
searching for all coefficients in a huge optimization space. Experimental results indicate that the proposed method is
much more accurate than statistical parametric mapping 2 (SPM2) and is superior to hierarchical attribute matching
mechanism for elastic registration (HAMMER) and automatic registration toolbox (ART) in both accuracy and

efficiency.
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1. Introduction

Registration is an important step in many applications of
medical images. For example, the fusion of positron emission
tomography (PET) and magnetic resonance (MR) images gives
the opportunity to delineate anatomical and functional
information at the same time. The registration results of
images acquired at different times can be used to observe
temporal changes. Moreover, the average of brain images
which are normalized to the Talairach space gives the prior
knowledge of the human brain and it also acts a bridge to
Brodmann’s map.

A typical registration method needs a transformation
function to describe the spatial mapping between images. Rigid
or affine transformation is appropriate for many applications,
such as the alignment of brain images scanned from the same
subject because we can assume the motion is constrained by the
skull. Extending the polynomial orders of affine transformation
can form a more complicated registration model [1]. All these
methods can only cope with global differences between images.
For many applications, however, more sophisticated
approaches are required to eliminate the anatomical variation
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across subjects, such as the structural analysis of brains.

In this work, we apply radial basis functions (RBFs) to
develop an accurate and efficient nonlinear registration
technique. Hierarchical meshes of RBFs are used to model
image deformation from coarse to fine. Although a large
number of RBFs were proposed, Wendland’s RBF is adopted
because of the low computational complexity and the compact
support property [2]. The compact support, which means that
the influence of the function is constrained in a local region, is
a reasonable property in deformation modeling because the
registration of local structures should not affect the
deformation of remote regions. According to this property, we
propose an efficient method to accurately approximate the
coefficients of RBFs. At present, the proposed method is
applied to register MR images of human brains. Simulated MR
images were constructed for the validation, and the
experimental results indicate that our method is much accurate
than statistical parametric mapping 2 (SPM2) [3] and is
superior to hierarchical attribute matching mechanism for
elastic registration (HAMMER) [4] and automatic registration
toolbox (ART) [5], in terms of both efficiency and accuracy.

In this paper, nonlinear registration techniques are first
reviewed according to the adopted transformation model. Then,
the new registration approach and implementation issues are
introduced in detail. Finally, we describe a validation
procedure and show the comparison results using 58 image
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pairs with ground truths.
2. Review

Numerous nonlinear registration approaches were
proposed in the past decades. According to the transformation
models, we classify them into three main categories: elastic
and fluid methods, finite element methods (FEM), and the
techniques using basis functions.

Elastic methods register images based on the balance of
internal and external forces, which represent the constraint of
deformation smoothness and the similarity measurement
between images, respectively [6]. Because of the limitation of
the high internal forces, these schemes may inadequately apply
to model highly localized deformation, such as the bending of
cerebral cortex. To overcome this problem, the variant, fluid
model, relaxes the energy constraint, but they face the risk of
false registration instead [7].

A typical FEM registers images using segmented objects
which are usually represented as the meshes of tetrahedrons or
hexahedrons [4,8-9]. These methods can deform objects in a
more realistic way because different energy terms can be
assigned to objects according to the physical properties.
However, two major drawbacks with this method results from
the preprocessing stages. Firstly, the segmentation errors of
objects always contribute to the deviations of registrations.
Secondly, the computational complexity is usually high
because a great deal of small elements are required to represent
the segmented objects in order to achieve an accurate
registration.

Linear combinations of basis functions are also widely
applied to describe the spatial mapping between images. These
methods can be further classified into two major categories
according to the characteristics of the adopted functions.

The methods of the first class establish the spatial
mapping between images using wavelets [10-11] or discrete
cosine transform (DCT) [3], in which each function encodes a
particular frequency of deformation in registration. A large
number of basis functions are required in order to model the
subtle deformation of images. This causes two problems in
practical applications that the computational complexity is
often high and it is usually difficult to obtain good results by
the direct searching in the large optimization space.

The methods of the second class, referred as
landmark-based approaches, register images under the
assumption that a set of corresponding control points or
landmarks are identified. Lots of landmark-based basis
functions were proposed for image registrations, such as
thin-plate splines (TPS) [12-13], Gaussian [14], multi-quadrics
[13], inverse multi-quadrics [15], and Wendland’s RBF [2].
Given a set of corresponding landmarks, these approaches can
easily solve the mapping relation between images. However,
the labor-intensive identifications of landmarks are not only
time-consuming but always prone to errors.

Regular distribution of landmark-based basis functions
can be used to avoid the manual selections of control points,
and this enables an automatic registration by optimizing the
coefficients of basis functions [16-17]. These approaches have

the same drawbacks as those methods in the first class, and
may be even worse. Especially, the number of basis functions
is usually considerably large and this aggravates the situations.
To improve these, Likar er al. divided images and applied
affine registrations to the corresponding sub-regions [18]. The
centers of the registered sub-regions were regarded as the
corresponding control points, but this has the drawback that
the determined pairs of control points do not guarantee a good
spatial mapping. Rohde et al. repeatedly applied few RBFs to
register image regions which are not well registered [19]. A
problem with this method is that the supports of the RBFs of
the identified regions were constrained to be non-overlapped,
but this could lose chances to register the regions between the
identified ones.

3. Methods

Our new nonlinear registration technique contains three
main components, including 1) a transformation function T
which establishes the spatial mapping between a test image, /4,
and a reference image, /g, 2) a cost function used to measure
the registration quality, and 3) the proposed method used to
efficiently approximate image transformation such that the cost
is minimized. Combining these, image registration 1is
formulated as an optimization problem with the objective
function:

f:arnginCost(IA,IB;T), (1)

3.1 Image deformation modeling

The registration of two images is accomplished by the
hierarchical meshes of basis functions, which are regularly
distributed, and represented as the accumulation of coarse-
to-fine deformation:

L
T(p)=p+».D'(p)- )
I=1

The displacement function D’ at mesh level / contains
three interpolators which are composed by the linear
combinations of basis functions:

D'(p) = (D, (p), Dy (p), D,(p)); [ =1,.... L ©)

)’ i:x’y’za (4)

N,
D)= ci0,(p-r]
Jj=1

where D)/( R D;, , and D; represent the displacement
functions in three dimensions, respectively, 0, is the basis
function with support s, rjl. and ij are the centers and the
corresponding coefficients of the basis functions, and ; is the
number of basis functions applied at mesh level /.

Wendland’s RBF is adopted in this work because it can
efficiently achieve accurate registration results. Letting 6(z)=
0(t/s), the Wendland’s RBF is defined as [2]:

e(t):{gl—zl)zimn, 0sr<l (5)

The induced influence is bounded by the support length
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and is inversely proportional to the distance from its center, as
shown in Figure 1. A compact supported basis function is more
reasonable in deformation modeling because the effects of
registration for local structures should not propagate to the
whole image domain. This property also implies that the
evaluation of the spatial mapping for each point needs only a
few terms in Eq. (4), therefore, the computational complexity
of image transformation can be greatly alleviated. Given 16°
compact supported basis functions, for example, the number of
the function evaluations for the transformation of each point
can be dramatically reduced from 3x2' to a small k, where &
depends on the number of basis functions which supports to
the point. Another advantage of Wendland’s RBF is that the
evaluation is relatively efficient in comparison with other
choices, such as wavelets, B-splines, and Wu’s RBF.
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Figure 1. The induced influence of Wendland’s RBF is bounded by
the support and is inversely proportional to the distance
from its center, =0.

3.2 Approximation of RBF coefficients

A major drawback of the image registration accomplished
by the hierarchical meshes of basis functions is the dramatic
increase of the function number. This results in a difficult
optimization problem because there are a lot of coefficients
that must be determined to establish the spatial mapping
between images. Taking a 16x16x16 mesh as an example, the
direct search in the optimization space with 12,288 degrees of
freedom (DOF) is not only difficult but also time-consuming.

To achieve an accurate and efficient registration, we
approximate the coefficients of Wendland’s RBFs in a regular
mesh according to the spatial interpretations in deformation.
Firstly, each mesh grid associates with the centers of three
basis functions, and the influences of these functions form a
specific deformation pattern. Therefore, an image registration
can be regarded as the accumulation of the deformation
patterns generated from the distributed mesh grids. Secondly,
the influence of each basis function is constrained in a local
region and rapidly decreases with the distance from its center
because of the properties of Wendland’s RBF. This means that
the major objective of each deformation pattern is to register
the supported area well, especially the region nearby the center,
as shown in Figure 2.

According to the observations, the coefficients of basis
functions, éf , associated with each mesh grid, j, are estimated
by minimizing the registration cost of the image region near
the center using the simplex optimization method:

Figure 2. The deformation effects of Wendland’s RBFs induced by setting the coefficients of r; in X, (a), and y, (b), direction as 10 and -10,
respectively. (c) Setting all the coefficients of r;, the induced deformation is the accumulated effects of (a) and (b). (d) The
deformation induced by function r,. (e) Setting the coefficients for r; and r,, the image deformation is the accumulation of the

influences of all basis functions.
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T(p)=p+3.D'(p)+C o,

where C/_L = [@g é}fl_ 5Ll]' . Therefore, an image registration

using a mesh of basis functions is reduced to a series of
optimization problems. The DOF of each optimization is only
three, hence, the coefficients can be efficiently determined
because of the small search space. Directly combining the
estimated coefficients at each mesh level obtains a spatial
transformation with deviations due to the overlaps between the
supports of basis functions. Two strategies are applied to solve
this problem and achieve accurate registration. First, instead of
the whole area supported by basis functions, only the region
nearby the center is used to evaluate the cost. The region is
defined as the sphere with radius ys centered at the mesh grid,
where s is the support length and y €[0,1] defines the area
used to measure the image similarity. This not only reduces the
estimation error but also facilitates efficiency. Second, the
approximated coefficients are weighted to form the image
transformation:

): @

L
p'rj

Tm)=p+ 20 ()+8Y.C} o

where £ is a weighting parameter.
3.3 Cost function of registration

A cost function is defined to quantify the registration
quality between a reference image /, and a test image /g which
is transformed by function T

Cost(1,,1;T)=—-SU,,15;T)+ET). ®)

The first term S measures the similarity of images, and
the other function, E, is a penalty term which describes the
deformation energy results from 7. The parameter o defines
the tradeoff between the image similarity and the deformation
smoothness.

The choice of a similarity measure primarily depends
upon the characteristics of images in applications. The
quantifications of the intensity dependence between images are
applied with successes for multimodal registrations (see [20-21]
for reviews). The criteria of this type, such as mutual
information (MI) [22] and correlation ratio (CR) [23], are also
quite adequate for unimodal registrations because they are
relatively robust to the noise, the intensity contrast, and the
intensity inhomogeneity of images. Both CR and MI could be
applied in this work, but CR is adopted because it is superior
to MI in accuracy and efficiency, as reported in [23-24]. Pluim
et al. also indicated that different interpolation approaches can
result in different artifact patterns in the optimization functions
[25].

Let N be the voxel number of the overlapping region Q
between the test image /5 and reference image /g. Considering
that there are K histogram bins Y; in /g and each contains N;
voxels, i=1 ... K, the formula of CR is expressed as:

1 5N

Rimg T‘Var(X,.) N (9)

where Var(/,) is the intensity variance of the test image in €,
X; is the voxels of the test image which belongs to Q and are
mapped to the same histogram bin of the reference image, and
Var(X;) is the intensity variance of X;. Two widely applied
regularization methods are the Laplacian model and the
thin-plate model. The former method is adopted because it can
be efficiently evaluated:

or

2 alz
ay) +(az) ldx dy dz (10)

1 oT .,
ET) = [[J 0+
where V is the volume of the estimated region.

3.4 Implementation

There are two hierarchical structures in the proposed
registration method in which the data complexity and the warp
complexity increase level by level. The use of image pyramids
facilitates both the efficiency and the accuracy because image
data can be greatly reduced and the local minima traps of
optimizations can be escaped. The use of hierarchical regular
meshes of Wendland’s RBFs models the structure differences
from coarse to fine. L meshes were applied, and 2/x2/x2/ basis
functions are regularly placed on the voxel positions of the
image domain at level /, where /=1, ..., L.

Another important parameter is the setting for the support
length of basis functions. The support length at each mesh
level is defined as & times the minimum distance between the
centers of functions. From practical experience, k&=1.5 can
achieve balance between the efficiency and the accuracy of
registration.

The computational complexity of this work is mostly
determined by the evaluation of basis functions because each
optimization task has to repeatedly transform numerous image
voxels. The execution time of each registration task is also
remarkable, though the proposed approximation method only
evaluates the cost of a small image region and the
transformation of each point needs only three function
evaluations. Instead of all direct function evaluation, the
lookup tables of Wendland’s RBF are built beforehand to
further improve registration efficiency.

Finally, we summarize the algorithm of the proposed
nonlinear registration method in the following:

apply affine or rigid registration

set the deformation modeling scale [ to the coarest level 1

while / < the user-defined finest deformation scale L

downsample images to the current resolution
set the centers of RBFs
set the lookup table of the Wendland's RBF

for each RBF center
approximate the associated coefficients, Cij , C;j ,
and Cij by minimizing Eq. (8)

end for

accumulate deformation field

if/<Lthan!/=1[+]

end while
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4. Results

The proposed method was compared with SPM2 [3],
HAMMER [4], and ART [5]. The validation procedure can
easily generate a lot of simulated image pairs with the spatial
corresponding relations. The constructed images could emulate
actual deformation of images.

4.1 Materials

The validations of registration methods need the known
ground truth of the spatial mapping between images.
Simulated deformation fields generated by selecting control
points and applying landmark-based basis functions should be
the simplest way. However, it is difficult to well model the
spatial correspondence between brain structures.

The construction of simulated images and the
comparisons of registration algorithms were divided into two
stages. Firstly, the proposed method and SPM2 was compared
using simulated images created by TPS transformation with
selected landmarks. Secondly, SPM2 was applied to register
numerous images and the generated deformation fields were
used to compare our method with HAMMER and ART. This

validation procedure could easily construct simulated images,
and the obtained spatial mapping relation could describe
realistic deformations of brain structures.

Four simulated T1-weighted MR images, SD-1~SD-4,
were first constructed by TPS using sixteen pairs of control
points in which eight pairs were used to fix image corners and
others were placed in the region of interests. The sizes of the
source image and the warped images were all 115x115x96
with voxel size 2 mm’. Figure 3 shows that the differences
between the source image and the constructed images were
smooth and reasonable. In simulations, the images transformed
by TPS and the original image were regarded as the reference
images and the test image, respectively.

Figure 4 shows a simple diagram of the second stage, in
which SPM2 was applied to register 58 Tl-weighted MR
images using the MNI-152 brain template as the target image.
The size of the 58 MR images and the images warped by
SPM2 were all 115x115x96 with voxel size 2 mm’. In

simulations, the 58 images warped by SPM2 and the obtained
deformation fields were regarded as the target images and the
ground truths, respectively, and the original images were used
as the test images. Figure 5 demonstrates one pair of the
simulated images.

Figure 3. Simulated images constructed by TPS. The size of these images are all 115x115x96 with voxel size 2 mm®. (a) The source image.
(b)-(e) The images warped by TPS using 16 pairs of control points.
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Figure 4. The construction of simulated images using SPM2. The MNI-152 brain template and 58 T1-weighted MR images were used to be
the target image and the test images, respectively. In simulations, the 58 images registered by SPM2 (b), and the corresponding
deformation fields (c), were regarded as the target images and the ground truths, respectively. The original images, (a), were used as
the test images. The size of the original images and the registered images are all 115x115x96 with voxel size 2 mm’.
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(a)
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Figure 5. One pair of the simulated images constructed by SPM2
using MNI-152 brain template as the target image.
Image (b) is the registration result generated by SPM2
using image (a) as the test image.

4.2 Comparisons of registration algorithms

The default parameters of SPM2 were applied in the first
simulation. The applied parameters of the proposed method
were: 1) three levels of the image pyramid and the meshes of
Wendland’s RBFs; 2) the smoothing parameter 0=0.5; 3) the
parameter of the support length £=1.5; 4) the weighting of the
approximated coefficients f=0.4; and 5) the parameter ), set to
be 0.6, which defined the area used to evaluate the registration
cost. This work was implemented in C++ programming
language, and the first simulation was performed on a PC with
an AMD Athlon XP 2400+ processor running Windows-XP.
Table 1 summarizes the simulation results, and it shows that
our method is much more accurate than SPM2. The
registration error in simulations of this work is defined as the
average distance between the ground truth and the mapping
location transformed by registration algorithms. Moreover, the
error did not count the regions of non-brain tissues and the
background.

Table 1. Accuracy comparisons with SPM2.

Registration errors (mm)

Method SD-1 __SD-2 __SD-3 _ SD-4

SPM2 cutoff-25 mm
(default)
SPM2 cutoff-20 mm 1.50 1.42 1.59 1.62

Our method 0.31 0.32 0.42 0.48

1.65 1.60 1.58 1.61

In the second simulation, the parameters of HAMMER
and ART were set to be their defaults. The skull stripping and
the tissue segmentation of each simulated image, which are
two required preprocessing stages in HAMMER, were
accomplished by the FSL package [26]. The parameters of the
proposed method were the same as for the first simulation,
except four mesh levels of RBFs were used instead. The
simulation was executed on a PC with AMD Opteron 240
processor running Red Hat Linux. Table 2 shows the
comparison results. These experimental results indicate that
the proposed approach is superior to other methods in both
accuracy and efficiency, except for the deviation variance was
slightly larger than ART. The results indicate the accuracy of
HAMMER is inferior to those of other methods. Table 3
summarizes the registration results of our method level by
level, and it shows the increase of basis functions is useful to
capture the local differences between structures.

Table 2. Accuracy and efficiency comparisons with HAMMER and

ART.
Method Registration errors ~ Variance  Time (sec)
HAMMER 1.70 0.76 2598
ART 0.69 0.09 522
Our method 0.48 0.13 309

Table 3. Registration errors and execution time of the proposed
method at each level.

RBF number 23 43 83 163
Deviations (mm) 3.16 2.13 0.94 0.48
Variance (mm?) 175 1.16 033 0.13
<1 3 26 279

Time (sec)

5. Discussion

An accurate and efficient nonlinear registration technique
has been presented in this article. Hierarchical regular meshes
of Wendland’s RBFs are used to model coarse-to-fine
deformation of images. Image registration is accomplished by
a series of optimizations for the three coefficients associated
with each mesh grid according to the spatial interpretation in
deformation. This solves the difficulties of direct searching for
coefficients in a huge optimization space. Our simulation
results indicate the proposed method is much more accurate
than SPM2 and is also superior to HAMMER and ART in both
accuracy and efficiency.

The validation of registration techniques using real
images is difficult because the spatial corresponding relations
are always unknown. One method is to manually identify a set
of corresponding landmarks between images by experts and
quantify the deviation after registration. The major drawback
of this approach is its requirement of manual selection of
landmarks, and it also needs several experts to eliminate the
subjective factor. Hence, this method is time-consuming and
the landmark identification is always prone to errors.

Another frequently adopted validation method is to
register several images to the same target. Registration
techniques are evaluated according to the sharpness of the
averaged results. The disadvantage is that the sharpness of an
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average image may not a good criterion used to measure the
accuracy of a registration technique. Firstly, one can always
change the smoothing parameter to have a better result.
Figures 6(a) and (b) demonstrate this by the average images of
57 T1-weighted MR volumes which were registered by SPM2
using different smoothing parameters, the maximum option
and the default option. It can be seen that the default option
resulted in a clearer image because the registrations were less
regularized. In addition, Figure 6(c) shows the averaged image
of the same 57 MR volumes which were registered by the
proposed method. Though our averaged image is sharper than
the two results of SPM2, it was penalized by larger
deformation energy instead. Secondly, a clear average image
could not imply that a registration technique is accurate. For
example, ART was not robust in our experiments because the
registration is quite less regularized and sensitive to noise.
Image registration using ART is usually unstable (Figure 7(b))
and sometimes failed (Figure 7 (c)). However, the anatomical
structures of the average image are quite clear, as shown in
Figure 7 (a).

©

Figure 6. The averages of 57 Tl-weighted MR images
respectively  registered by  SPM2  using
regularization parameter (a) 100, (b) 1, and (c) by
the proposed registration method.

©

Figure 7. The performance of nonlinear registration algorithms
should not be evaluated using the average of the aligned
images. For example, the image averaged from the
registration results of 57 real T1-weighted MR images
using ART is quite sharp, as shown in (a). However,
mostly registered images are less regularized, such as
the regions indicated in (b), and the topology was not
preserved in some registration results, such as the region
indicated in (c).
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