
In Proceedings of the 15th International Conference on Pattern Recognition, Barcelona, Spain, Sep. 2000, Volume 2, pages 708–711

Winner-Update Algorithm for Nearest Neighbor Search

Yong-Sheng Chenyz Yi-Ping Hungyz Chiou-Shann Fuhz

yInstitute of Information Science, Academia Sinica, Taipei, Taiwan

zDept. of Computer Science and Information Engineering, National Taiwan University, Taiwan
Email: hung@iis.sinica.edu.tw

Abstract

This paper presents an algorithm, called the winner-
update algorithm, for accelerating the nearest neighbor
search. By constructing a hierarchical structure for each
feature point in the lp metric space, this algorithm can save
a large amount of computation at the expense of moderate
preprocessing and twice the memory storage. Given a query
point, the cost for computing the distances from this point to
all the sample points can be reduced by using a lower bound
list of the distance established from Minkowski’s inequality.
Our experiments have shown that the proposed algorithm
can save a large amount of computation, especially when the
distance between the query point and its nearest neighbor
is relatively small. With slight modification, the winner-
update algorithm can also speed up the search for k nearest
neighbors, neighbors within a specified distance threshold,
and neighbors close to the nearest neighbor.

1. Introduction

Nearest neighbor rule has been widely applied in many
fields, including template matching, pattern recognition,
data compression, and information retrieval. In general,
a fixed set of s sample points, P � fpiji � �� � � � � sg are
given and preprocessing is performed if necessary. For each
query point q, the goal of nearest neighbor search is to find
in P the point closest to q. Let d denote the dimension
of the underlying space. The computational complexity of
the exhaustive search for finding the nearest neighbor is
O�sd�. When s, d, or both are large, this process is very
time-consuming.

In the literature, many methods have been proposed to
speed up the computations of nearest neighbor search. Bent-
ley [1] proposed a K-dimensional binary search tree method.
They partitioned the space of sample points into hyper-
rectangular buckets. Their search process for the closest
point consists of a binary search of order O�log s� for a tar-
get bucket and a local search for the desired sample point in
the target bucket and its neighboring buckets. This method
is very efficient when d is small. However, its performance
degrades exponentially with increasing d [4]. The reason

is that more neighboring buckets are to be checked when
d is higher. Thus, the number of sample points to be ex-
amined increases dramatically. Fukunaga and Narendra [2]
also proposed a fast algorithm for finding k nearest neigh-
bors. They divided the set of sample points into subsets and
then divided each subset into subsets further. A tree struc-
ture can be constructed by repeating this process. Given a
query point, they can then use a branch-and-boundsearch to
efficiently find the closest point by using the tree structure.

Recently, Lee and Chen proposed a set of inequalities of
the distance and applied to fast vector quantization [3]. By
using these inequalities, they defined some test measures
which require less computation than the distance do. For
each sample point, its distance from the query point is larger
than its test measures. If one of the test measures is larger
than the minimum distance computed so far, this sample
point can be excluded from further consideration. Hence,
many distance computations can be saved. However, a lot
of useless calculation will be performed until a sample point
with small distance is examined. In the worst case, the
distances are monotonically decreasing with respect to the
examining order of the sample points. For such case, the
computational cost will even be higher than that of using the
exhaustive search.

In this paper, we propose an algorithm, called the winner-
update algorithm, to efficiently find the nearest neighbor.
Here, we choose the lp norms as the distance function in
the d-dimensional space. Given a query point, the straight-
forward way to find the nearest neighbor is to first com-
pute the distances from the query point to all the points
in the sample set and then choose the sample point which
gives the smallest distance. To reduce the time required for
computing the distances, our algorithm adopts the winner-
update strategy which utilizes a lower bound list for each
distance. In this paper, we use the lower bound list derived
from Minkowski’s inequality, which requires a hierarchi-
cal structure for each feature point. For many applications,
the hierarchical structure for the sample points can be con-
structed beforehand, and only twice the memory storage is
needed. The winner-update search strategy, which is a spe-
cial case of branch-and-bound search strategy, can reduce a

1

large amount of distance calculations by using these lower
bounds. The examining order of the sample points will not
affect the performance of the algorithm. With slight modi-
fication, the winner-update algorithm can also speed up the
search for k nearest neighbors, neighbors within a speci-
fied distance threshold, and neighbors close to the nearest
neighbor. Our experiments have shown that the proposed al-
gorithm can save a large amount of computation, especially
when the distance between the query point and its nearest
neighbor is relatively small.

2. Fast Nearest Neighbor Search

2.1. Lower bounds of distance measure
For a point z in Rd space, z � �z�� z�� � � � � zd�, its

lp norm is defined as kzkp � �
Pd

i�� jzij
p�

�

p . By using
Minkowski’s inequality, kx�ykp � kxkp� kykp, one can
obtain kx� ykp � jkxkp � kykpj. For example, d � �,

�jx� � y�j
p � jx� � y�j

p�
�

p � j�jx�j
p � jx�j

p�
�

p � �jy�j
p � jy�j

p�
�

p j�

jx�� y�j
p
� jx� � y�j

p
� j�jx�j

p
� jx�j

p
�
�

p � �jy�j
p
� jy�j

p
�
�

p j
p
� (1)

Without loss of generality, we assume that the dimension
of the feature space, d, is equal to �L. For each point x, we
construct a (L� �)-level structure (from level L to level �)
by using the following equation:

xl��i � �jxl�i��j
p � jxl�ij

p�
�

p � (2)

where the level number l � L� � � � � � and i � �� � � � � �l��.
The �L elements, xLi , i � �� � � � � �L, at level L store
the original point x, while xl � �xl�� x

l
�� � � � � x

l
�l�, l �

�� � � � � L � �, are points in spaces of smaller dimensions,
i.e., ��� ��� � � � � �L��. In the following, xl is referred to
as the l-level projection of x. Notice that twice the mem-
ory storage is needed to store this hierarchical structure,
x
��x�� � � � �xL, for each point x.

For points x and y, the following inequality between the
distances calculated at the l-th and (l � �)-th levels can be
obtained from Equations (1) and (2):

�

�
lX

i��

jxli � y
l
ij
p�

�

p � �

�
l��X

i��

�jxl
�i�� � y

l
�i��j

p � jxl
�i � y

l
�ij

p��
�

p

� �

�
l��X

i��

j�jx
l
�i��j

p
� jx

l
�ij

p
�
�

p �

�jyl
�i��j

p � jyl
�ij

p�
�

p jp�
�

p

� �

�
l��X

i��

jxl��
i

� y
l��

i
jp�

�

p �

That is, kxl�� � y
l��kp � kxl � y

lkp, l � L� � � � � �. As
a result, we obtain an ascending list of the lower bounds
(LBs) of the distance between points x and y:

LB��x�y� � LB��x�y� � � � � � LBL�x�y�

where LBl�x�y� � kxl � y
lkp is the distance between

x
l and y

l, i.e., the l-level projection of x and y in �l-
dimensional space. Notice that LBL�x�y� is the desired
distance kx � ykp. When the level number l is smaller,
the computational cost of LBl�x�y� is smaller because the
dimension at the l-th level is smaller.

2.2. Winner-update algorithm

Given a fixed set of sample pointsP � fpiji � �� � � � � sg

and a query point q in R�L space, (L��)-level structure for
each point is first constructed by using Equation (2). Zero
padding can be used if the dimension of the underlying space
is not �L. The goal of nearest neighbor search is to find the
point �p inP such that the distance measure k�p�qkp is min-
imum. For each sample point pi, if any of the lower bound
LBl�pi�q�, l � �� � � � � L � �, of the distance kpi � qkp
is larger than k�p� qkp, pi has no chance to be the nearest
neighbor because kpi � qkp � LBl�pi�q� � k�p � qkp.
Consequently, the more-expensive calculation of the dis-
tance measure kpi � qkp can be replaced by the less-
expensive calculation of its lower bounds. The computa-
tional cost of the lower bounds is less than that of kpi�qkp
because LBl�pi�q�, l � �� � � � � L� �, is the distance mea-
sure in the space with lower dimension (�l), This is the
reason why the computational cost can be saved by using
the lower bound list.

In the following, we will describe the proposed winner-
update algorithm for minimizing the number of lower
bounds actually calculated. At first, we sort all the sample
pointspi, i � �� � � � � s, according to their 0-level projection,
i.e., pi

�, and obtain a sorted list of 0-level projections. (No-
tice that the dimension at level 0 is 1.) Then, the temporary
winner, �p is initially chosen to be the sample point whose
0-level projection, �p�, is closest to q

�, the 0-level projec-
tion of the query point q. This temporary winner can be
found by using binary search (with complexity O�log s�).
Let P � be the set of all 0-level projections of sample points
excluding those of sample points having been the temporary
winner. At any time instant, if the 0-level projection of a
sample point is in P �, then it has not yet been considered as
a competitor of the temporary winner. Next, the temporary
runner-up �p is defined to be the sample point whose 0-level
projection, �p�, is closest to q� within P �. This can be found
by simply checking the neighbor(s) of �p� in the sorted list
of pi

�, i � �� � � � � s. The lower boundLB��p�q� of the dis-
tance k�p�qkp is initialized to beLB���p�q� � k�p��q�kp.
A variable for each p, l�p�, is used to record the level where
the lower bound of p’s distance to q is calculated, which
is initialized as 0. The temporary winner �p is then inserted
into an empty heap data structure, in which the point with
minimum lower bound is kept on the top. At each iteration,
the temporary winner �p on top of the heap is selected to
update its lower bound by calculatingLB l��p�����p�q� at the

2

next level. The heap data structure is re-organized ("Down-
Heap") by moving down the point �p without violating the
heap property. Then a new temporary winner �p on top of the
heap is selected. If the distance k�p��q

�kp of the runner-up
�p at level 0 is smaller than LBl��p���p�q�, this runner-up has
a chance to be the final winner and should be inserted in the
heap. This procedure is repeated until l��p� equals L, that
is, LBl��p���p�q� is calculated at level L, which is exactly
the desired distance k�p � qkp. Since the lower bounds of
the distance of other points, in the heap or not, are all larger
than k�p� qkp, the nearest neighbor �p is obtained.

The proposed algorithm is summarized below:

/* Preprocessing Stage */
100 given sample points fpiji � �� � � � � sg in R�L space
110 construct (L� �)-level structure for each point pi

120 sort all the sample points according to pi
�

/* Nearest Neighbor Search Stage */
130 given a query point q
140 begin
150 construct (L� �)-level structure for point q
160 find the temporary winner, �p, using binary search
170 sequentially search for the runner-up, �p, from �p�

180 l��p� � �

190 calculate LBl��p���p�q�
200 LB��p�q� 	� LBl��p���p�q�
210 insert �p into an empty heap
220 while l��p� � L do
230 l��p� 	� l��p� � �

240 calculate LBl��p���p�q�
250 LB��p�q� 	� LBl��p���p�q�
260 DownHeap(�p)
270 choose the top element in the heap as �p
280 if k�p� � q

�kp � LB��p�q�
290 add �p into the heap and set �p � �p
300 sequentially search for the new runner-up �p
310 endif
320 endwhile
330 output �p
340 end

2.3. Extension to k-nearest neighbors search

The proposed algorithm can be easily extended to find
k nearest neighbors, k � �, in the following way. Once
the nearest neighbor �p is obtained by using the algorithm
described in Section 2.2, we can delete it from the heap and
continue the process until the second nearest neighbor is
obtained. By repeating the above procedure, one can obtain
the third nearest neighbor, the fourth nearest neighbor, ...,
and so on, until all the k nearest neighbors are obtained. The
following pseudo-code can be added to the basic algorithm,
in the appropriate order as designated, to provide k nearest
neighbors:

215 for i � �� �� � � � � k
331 delete �p from the heap
332 if heap is empty
333 add �p into the heap and set �p � �p
334 sequentially search for the new runner-up �p
335 endif
336 endfor

2.4. Points within a distance threshold

In many pattern recognition applications, a query object
is recognized with high confidence only when it is suffi-
ciently close to an object in the sample set. Therefore,
the distance between the nearest point and the query point
should be smaller than a pre-specified distance threshold �.
The proposed algorithm can be easily modified to meet this
requirement and to further speed up the search process by
adding the following pseudo-code:

225 if LB��p�q� � � stop
325 if LB��p�q� � � stop

When all the points within the distance threshold � are
required, the additional pseudocode for providing k nearest
neighbors, given in Section 2.3, can be further added (in this
case, let k � s).

2.5. Points close to the nearest point

In some cases, all the points that are sufficiently close
to the nearest neighbor may be considered as good matches
to the query point. To achieve this goal, all the points of
distance smaller than �� � r�k�p � qkp have to be found
out, where �p is the nearest neighbor. Our algorithm can
be easily modified to provide this functionality. After the
nearest neighbor �p and the minimum distance k�p�qkp are
obtained, the threshold � is set to �� � r�k�p � qkp and the
method described in Section 2.4 can be used to provide all
the points having distance smaller than �.

3. Experimental Results

To analyze the the performance of the winner-update
algorithm, we perform some experiments for three factors,
including the size s of the sample set, the dimension d of
the feature space, and the distance between the query point
and its nearest neighbor. In these experiments, l� norm is
used as the distance measure and the goal is to find the
nearest neighbor. The exhaustive search algorithm and the
winner-update algorithm are implemented on a Sun Ultra-1
workstation and the execution time is compared.

We randomly generate the sample set with a pre-specified
size s and dimension d. For each sample point, the value
for each dimension is randomly generated from a uniform
distribution with extent
�� ��. Randomly choosing a point

3

10
1

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

10
1

10
2

10
3

 s, # sample points

m
ea

n
qu

er
y

tim
e

(m
s.

)

analysis of different number of samples

exhaustive
winner−update

Figure 1. Comparison of query time for s.

10
1

10
2

10
3

10
−1

10
0

10
1

10
2

10
3

 d, # dimensions

m
ea

n
qu

er
y

tim
e

(m
s.

)

analysis of different number of dimensions

exhaustive
winner−update

Figure 2. Comparison of query time for d.

from the sample set, a query point of the same dimension d
can be generated by adding uniformly distributed noise, with
extent
�e� e�, to each component of the sample point. The
query point is then used to search for its nearest neighbor in
the sample point set and the mean query time is compared.
The query time of the winner-update algorithm includes the
hierarchical structure construction and the search process.

In the first experiment, five different sizes (��i� i �
�� � � � � �) of the sample point set is generated. Each point
has a dimension of 32 and the noise extent e is set to 0.01.
Figure 1 shows the comparison of the mean query time by
using exhaustive search algorithm and the winner-update
algorithm. When s is small, the computation time of con-
structing hierarchical structure cannot be ignored and the
computational saving is relatively small. As s increases, the
winner-update algorithm is roughly ten times faster than the
exhaustive search algorithm. This scale is not related to s.

In the second experiment, sample point sets with ten dif-
ferent dimension, d � �l, l � �� � � � � ��, are generated.
Each set contains 10000 points and the noise extent e is set
to 0.01. When d � ����, as Figure 2 shows, the winner-
update algorithm is over 50 times faster than the exhaustive
search algorithm. Without the curse of dimensionality that
K-dimensional binary search tree algorithm suffers, on the
contrary, the computation speed of the winner-update algo-

10
−4

10
−3

10
−2

10
−1

10
−1

10
0

10
1

10
2

 e, extent of uniformly distributed noise

m
ea

n
qu

er
y

tim
e

(m
s.

)

analysis of different noise level

exhaustive
winner−update

Figure 3. Comparison of query time for e.

rithm over the exhaustive algorithm scales up.
The last experiment analyzes how the noise extent e in-

fluences the performance of the winner-update algorithm.
When e is large, the distance between the query point and
its nearest neighbor is large. The computational cost of the
winner-update algorithm increases because more samples
can have similar distances from the nearest neighbor. We
generate the sample point set containing 10000 points with
dimension 32. Figure 3 shows that the performance with
different noise extent. Notice that when e equals 0.1, the
computational cost of the proposed algorithm equals to that
of the exhaustive algorithm.

4. Conclusions

In this paper, we have proposed a fast algorithm, called
the winner-update algorithm, for nearest neighbor search.
This algorithm can reduce a large amount of computation,
while need only twice the memory storage and moderate
preprocessing. When the distance between the query point
and its nearest neighbor is relatively small, the proposed
algorithm is particularly efficient. Moreover, the proposed
algorithm can be easily modified to provide k nearest neigh-
bors, neighbors within a specified distance threshold, and
neighbors close to the nearest neighbor.

References

[1] J. L. Bentley. Multidimensional binary search trees used for as-
sociative searching. Communications of the ACM, 18(9):509–
517, 1975.

[2] K. Fukunaga and P. M. Narendra. A branch and bound al-
gorithm for computing k-nearest neighbors. IEEE Trans. on
Computers, 24:750–753, 1975.

[3] C.-H. Lee and L.-H. Chen. A fast search algorithm for vector
quantization using mean pyramids of codewords. IEEE Trans.
on Communications, 43(2/3/4):1697–1702, 1995.

[4] S. A. Nene and S. K. Nayar. A simple algorithm for nearest
neighbor search in high dimensions. IEEE Trans. on Pattern
Analysis and Machine Intelligence, 19(9):989–1003, 1997.

4

