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Abstract

This paper presents a novel algorithm for fast nearest
neighbor search. At the preprocessing stage, the proposed
algorithm constructs a lower bound tree by agglomeratively
clustering the sample points in the database. Calculation of
the distance between the query and the sample points can be
avoided if the lower bound of the distance is already larger
than the minimum distance. The search process can thus
be accelerated because the computational cost of the lower
bound, which can be calculated by using the internal node
of the lower bound tree, is less than that of the distance.
To reduce the number of the lower bounds actually calcu-
lated, the winner-update search strategy is used for travers-
ing the tree. Moreover, the query and the sample points
can be transformed for further efficiency improvement. Our
experiments show that the proposed algorithm can greatly
speed up the nearest neighbor search process. When apply-
ing to the real database used in Nayar’s object recognition
system, the proposed algorithm is about one thousand times
faster than the exhaustive search.

1. Introduction

Nearest neighbor search is very useful in recognizing ob-
jects [12], matching stereo images [15], classifying patterns
[9], compressing images [10], and retrieving information in
database system [7]. In general, given a fixed data setP
which consists ofs sample points in ad-dimensional space,
that is,P = {pi ∈ Rd|i = 1, . . . , s}, preprocessing can be
performed to construct a particular data structure. For each
query pointq, the goal of the nearest neighbor search is to
find in P the point closest toq. The straightforward way
to find the nearest neighbor is to exhaustively compute and
compare the distances from the query point to all the sam-
ple points. The computational complexity of this exhaustive
search isO(s · d). Whens, d, or both are large, this process
becomes very computational-intensive.

In the past, Bentley [2] proposed thek-dimensional bi-
nary search tree to speed up the the nearest neighbor search.
This method is very efficient when the dimension of the data
space is small. However, as reported in [13] and [3], its
performance degrades exponentially with increasing dimen-
sion. Fukunaga and Narendra [8] constructed a tree struc-
ture by repeating the process of dividing the set of sam-
ple points into subsets. Given a query point, they used
a branch-and-bound search strategy to efficiently find the
closest point by using the tree structure. Djouadi and Bouk-
tache [5] partitioned the underlying space of the sample
points into a set of cells. A few cells located in the vicinity
of the query point can be determined by calculating the dis-
tances between the query point and the centers of the cells.
The nearest neighbor can then be found by searching only
in these neighboring cells, instead of the whole space. Nene
and Nayar [13] proposed a very fast algorithm to search for
the nearest neighbor within a pre-specified distance thresh-
old. From the first to the last dimension, their method can
exclude the sample points that the distances from those sam-
ple points to the query point at the current dimension are
larger than the threshold. Then, the nearest neighbor can
be determined by examining the remaining candidates. Lee
and Chae [11] proposed another elimination-based method.
Based on triangle inequality, they used a number of anchor
sample points to eliminate many distance calculations. In-
stead of finding theexactnearest neighbor, Arya et al. [1]
proposed a fast algorithm which can find theapproximate
nearest neighbor within a factor of(1 + r) of the distance
between the query point and its exact nearest neighbor.

In this paper, we present a novel algorithm which can ef-
ficiently search for the exact nearest neighbor in Euclidean
space. At the preprocessing stage, the proposed algorithm
constructs a lower bound tree (LB-tree), in which each leaf
node represents a sample point and each internal node rep-
resents a mean point in a space of smaller dimension. Given
a query point, the lower bound of its distance to each sample
point can be calculated by using the mean point of the inter-
nal node in the LB-tree. Calculation of the distance between
the query and the sample points can be avoided if the lower



bound of the distance is already larger than the minimum
distance between the query point and its nearest neighbor.
Because the computational cost of the lower bound is less
than that of the distance, the whole search process can be
accelerated.

Furthermore, we adopt the following three techniques
to reduce the number of the lower bounds actually calcu-
lated. The first one is the winner-update search strategy
[4] for traversing the LB-tree. We adopt this search strat-
egy to reduce the number of the nodes examined. Starting
from the root node of the LB-tree, the node having the min-
imum lower bound is chosen and its children will then join
the competition after their lower bounds having been calcu-
lated. The second one is the agglomerative clustering tech-
nique for the LB-tree construction. The major advantage of
this technique is that it can keep the number of the internal
nodes as small as possible while keeping the lower bound as
tight as possible. The last technique we adopt is data trans-
formation. By applying data transformation to each point,
the lower bound of an internal node can be further tight-
ened, and thus save more computation. We use two kind
of data transformation in this work: wavelet transform and
principal component analysis.

Our experiments show that the proposed algorithm can
save substantial computation of the nearest neighbor search,
in particular, when the distance of the query point to its
nearest neighbor is relatively small compared with its dis-
tance to most other samples.

2. Multilevel structure and LB-tree

This section introduces the LB-tree, the essential data
structure used in the proposed nearest neighbor search al-
gorithm. We will first describe the multilevel structure of a
data point. The multilevel structures of all the sample points
can be used for the LB-tree construction.

2.1. Multilevel structure of each point

For a pointp = [p1, p2, . . . , pd] in a d-dimensional Eu-
clidean space,Rd, we define its multilevel structure, de-
noted by{p0,p1, . . . ,pL}, in the following way. At each
level l, pl comprises the firstdl dimensions of the pointp,
where the integerdl satisfies1 ≤ dl ≤ d, l = 0, . . . , L.
That is,pl = [p1, p2, . . . , pdl ], which will be referred to as
the level-l projection ofp.

In this paper, we assume that the dimension of the un-
derlying space,d, is equal to2L without loss of generality.
Zero padding can be used to enlarge the dimension ifd is
not a power of2. In the multilevel structure, the dimension
at levell is set to bedl = 2l. In this way, a (L + 1)-level
structure of triangle shape can be constructed for pointp.
Notice that level-L projection,pL, is the same as the point
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Figure 1. An example of the 4-level structure
of the point p, where p ∈ R8.

p. Figure 1 illustrates an example of the4-level structures,
{p0, . . . ,p3}, whered = 8.

Given the multilevel structures of two pointsp andq, we
can derive the following inequality property.

Property 1 The Euclidean distance betweenp and q is
larger than or equal to the Euclidean distance between their
level-l projectionspl andql for each levell. That is,

‖p− q‖2 ≥ ‖pl − ql‖2, l = 0, . . . , L.

From Property 1, the distance‖pl − ql‖2 between the
level-l projections can be considered as a lower bound of the
distance‖p− q‖2 between the pointsp andq. Notice that
the computational cost of the distance‖pl−ql‖2 is less than
that of the distance‖p−q‖2. To be specific, the complexity
of calculating the distance between level-l projections arises
fromO(20) toO(2L) asl varies from0 toL.

2.2. LB-tree for the data set

To construct an LB-tree, we need to use the multilevel
structures of all the sample pointspi, i = 1, . . . , s, in the
data setP . Suppose the multilevel structure hasL + 1 lev-
els, that is, from level0 to levelL. Then, the LB-tree also
hasL+ 1 levels without considering the dummy root node
having zero dimension. Each leaf node at levelL in the LB-
tree contains a level-L projectionpiL, which is exactly the
same as the sample pointpi. The level-l projections,pil,
i = 1, . . . , s, of all the sample points can be hierarchically
clustered from level0 to levelL − 1, as illustrated in Fig-
ure 2. More discussions on the LB-tree construction will be
given in Section 4.

Let 〈p〉 denote the node containing the pointp in the LB-
tree. Each clusterClj is represented by an internal node
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Figure 2. An example of hierarchical con-
struction of the LB-tree. All the points in the
same dark region are determined agglomera-
tively and are grouped into a cluster. Notice
that each point is transposed to fit into the
limited space.

〈ml
j〉 at level l in the LB-tree, wherej = 1, . . . , sl and

sl denote the number of clusters at levell. As shown in
Figure 3, the internal node〈ml

j〉 contains the mean point
ml

j and the associatedradius, rlj . The mean pointml
j is

the mean of all the level-l projections of the sample points
contained in clusterClj . The radiusrlj is the radius of the
smallest hyper-sphere that centers at the mean pointml

j

and covers all the level-l projections in clusterClj . This
smallest hyper-sphere is called thebounding sphereof Clj .
The radiusrlj can be calculated as the maximum distance
from the mean pointml

j to all the level-l projections in
this cluster. In other words, the LB-tree has the following
inequality property.

Property 2 Given a sample pointp∗, the distance between
its level-l projection,p∗l, and its level-l ancestor,ml

j∗ , is
smaller than or equal to the radius of the bounding sphere
of clusterClj∗ . That is,

‖p∗l −ml
j∗‖2 ≤ rlj∗ , l = 0, . . . , L.
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Figure 3. An example of the LB-tree.

Notice that each leaf node can be viewed as a cluster having
only one point. In this case, the mean point is the sample
point itself and the radius is zero.

Now, suppose we are given a query pointq. The first step
is to form its multilevel structure as described in Section 2.1.
Consider a sample pointp∗ and its corresponding leaf node
〈p∗〉. Its ancestor at levell in the LB-tree can be found,
and let it be denoted by〈ml

j∗〉. As illustrated in Figure 4,
we can derive the following inequality by using the triangle
inequality and Properties 1 and 2:

‖p∗ − q‖2 ≥ ‖p∗l − ql‖2
≥ ‖ml

j∗ − ql‖2 − ‖p∗l −ml
j∗‖2

≥ ‖ml
j∗ − ql‖2 − rlj∗ . (1)

Let dLB(〈ml
j∗〉,ql) denote the LB-distance between the

internal node〈ml
j∗〉 andql, which is defined below:

dLB(〈ml
j∗〉,ql) ≡ ‖ml

j∗ − ql‖2 − rlj∗ . (2)

We then have the following inequality property.

Property 3 Given a query pointq and a sample pointp∗,
the LB-distance between the level-l ancestor ofp∗ (that is,
〈ml

j∗〉) and the level-l projection ofq is smaller than or
equal to the distance betweenp∗ andq. That is,

dLB(〈ml
j∗〉,ql) ≤ ‖p∗ − q‖2, l = 0, . . . , L.
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Figure 4. Illustration of the distance inequality
of Equation (1).

From Property 3, we know thatdLB(〈ml
j∗〉,ql) can be

viewed as a lower bound of the distance betweenp∗ and
q. Notice that LB-distance is not a valid distance metric
and a negativedLB(〈ml

j∗〉,ql) implies that the query point
q locates within the bounding sphere ofClj∗ centered at
ml

j∗ .
Because the internal node〈ml

j∗〉 can have a number of
descendants,dLB(〈ml

j∗〉,ql) is not only the lower bound
of the distance toq for any particular sample pointp∗, but
also the lower bound of the distances toq for all the sample
points in the clusterClj∗ containingp∗. Hence, we have
the following property by using Property 3.

Property 4 Letq be a query point and̂p be a sample point.
For any internal node〈ml

j〉 of the LB-tree, if

dLB(〈ml
j〉,ql) > ‖p̂− q‖2,

then, for every descendant leaf node〈p′〉 of 〈ml
j〉, we have

‖p′ − q‖2 > ‖p̂− q‖2.

From Property 4, we can see that if the LB-distance of
the internal node〈ml

j〉 is already larger than the distance
from the sample point̂p to the query pointq, all the descen-
dant leaf node〈p′〉 of ml

j can be eliminated in the contest.
They have no chance to be the winner because there is al-
ready a better candidate,p̂, which is closer toq.

3. Proposed algorithm

At the preprocessing stage, the proposed algorithm con-
structs an LB-tree ofL + 1 levels by using the data setP .
For each query pointq, the proposed algorithm uses the
LB-tree to efficiently find its nearest neighbor,p̂, such that
the Euclidean distance‖p̂ − q‖2 is minimum. According
to Property 4, if the LB-distance of an internal node〈ml

j〉
is larger than the minimum distance,‖p̂ − q‖2, all the de-
scendant samples of the node〈ml

j〉 can not be the nearest

neighbor. Hence, the costly calculation of the distances be-
tweenq and many sample points can be saved at the ex-
pense of calculating the less-expensive LB-distances.

However, the above saving requires the knowledge of the
value‖p̂ − q‖2, and we do not know which sample point
is p̂ beforehand. In fact,̂p is exactly the nearest neigh-
bor which we would like to find. To achieve the same ef-
fect, we adopt the winner-update search strategy to com-
pute the lower bounds from the root node toward the leaf
nodes while traversing the LB-tree. Based on the following
two observations, we calculate the LB-distances of the in-
ternal nodes from the top level to the bottom level. First, the
computation of the LB-distance costs less at the upper level.
Second, a node at the upper level has more descendants in
general. Thus, more distance calculation can be saved if the
LB-distance of an upper-level node is already larger than
the minimum distance.

In the following, we will describe the winner-update
search strategy, which is a best-first search strategy, that can
greatly reduce the number of the LB-distances actually cal-
culated. At the first iteration, the LB-distances betweenq0

and all the level-0 nodes in the LB-tree are calculated by us-
ing Equation (2). These level-0 nodes,〈m0

1〉, 〈m0
2〉, . . . ,

〈m0
s0〉, are used to construct a heap data structure and the

root node of the heap,〈p̂〉, is the node having the minimum
LB-distance. Then, at the next iteration, the node〈p̂〉 is
deleted and its children are inserted into the heap. The LB-
distances of these child nodes are calculated and the heap
is rearranged to maintain the heap property. The node〈p̂〉
is updated accordingly to be the new root node of the heap
having the minimum LB-distance. Again, the node〈p̂〉 is
deleted and all its children are inserted. This procedure is
repeated until the dimension of〈p̂〉, dim(〈p̂〉), is equal tod.
At this point, the node〈p̂〉 is a leaf node containing a sam-
ple point and the distance‖p̂ − q‖2 is the minimum in the
heap. Since the LB-distances of other nodes in the heap,
which are the lower bounds of the distances from all the
other sample points to the query pointq, are already larger
than‖p̂ − q‖2, the nearest neighbor̂p can be determined.
The proposed algorithm is summarized below.

Proposed Algorithm for Nearest Neighbor Search

/* Preprocessing Stage */
100 Given a data setP = {pi ∈ Rd|i = 1, . . . , s}
110 Construct the LB-tree ofL+ 1 levels forP

/* Nearest Neighbor Search Stage */
120 Given a query pointq
130 Construct the (L+ 1)-level structure ofq
140 Insert the root node of the LB-tree into an

empty heap
150 Let〈p̂〉 be the root node of the heap
160 while dim(〈p̂〉) < d do



170 Delete the node〈p̂〉 from the heap
180 Calculate the LB-distances for all the children

of 〈p̂〉
190 Insert all the children of〈p̂〉 into the heap
200 Rearrange the heap to maintain the heap property

that the root node is the one having the minimum
LB-distance

210 Update〈p̂〉 as the root node of the heap
220 endwhile
230 Output̂p

For conciseness of the pseudo code, the algorithm de-
scribed above initializes the heap as the dummy root node
of the LB-tree, instead of the level-0 nodes. This makes no
difference because the dummy root node of the LB-tree is
replaced immediately by its children, that is, all the level-0
nodes, at the first iteration of the loop.

4. Construction of LB-tree

A simple method of constructing the LB-tree is to di-
rectly use the multilevel structures of the sample points
without clustering. That is, there ares internal nodes at
each levell. Each internal node contains exactly one level-l
projection,pil, i = 1, . . . , s, and its radius is set to be zero.
In the constructed LB-tree, each internal node has only one
child node except the root node, which hass child nodes.

Recall that from Properties 3 and 4 the LB-distance for
each internal node is the lower bound of the distances be-
tween q and all the descendant samples of this internal
node. In order to obtain a tighter lower bound to skip more
distance calculation, the LB-distance of each internal node
should be as large as possible. Therefore, from Equation (2)
the radius of the bounding sphere,rlj , should be as small as
possible. From this point of view, we should adopt the sim-
ple construction method described above in which the ra-
dius of each internal node is zero. However, there would be
too many internal nodes in this case, and the cost will be too
high in terms of the memory storage and the computation of
the LB-distance for these internal nodes. Hence, we would
also like to keep the number of the internal nodes as small
as possible. When constructing an LB-tree, consequently,
we should consider the trade-off between the number of the
internal nodes and their associated radius of the bounding
sphere.

The construction of the LB-tree is performed in the pre-
processing stage, and hence, its computational cost is not
a major concern here. In this work, we use an agglomera-
tive clustering technique [6] for constructing the LB-tree, in
which both the number of the internal nodes and the asso-
ciated radius are both small. As shown in Figure 2, the LB-
tree is constructed hierarchically from top level to bottom
level. At each levell, the level-l projections are agglomera-
tively grouped into clusters. The explanation of the detail is

quite lengthy, and is not given here due to the limitation of
space.

5. Data transformation

Data transformation can further improve the efficiency
of the proposed algorithm for nearest neighbor search. Re-
member that the Euclidean distance calculated at levell in
the LB-tree is actually the distance in the subspace of the
first 2l dimensions. If these dimensions are not discrimi-
native enough (that is, the projections of the sample points
on this subspace are too close to each other), the distances
of different samples calculated at this subspace may be al-
most the same. Therefore, these distances computed in the
2l-subspace will not help in the determination of the near-
est neighbor. This problem can be alleviated by transform-
ing the data points into another space such that the ante-
rior dimensions are likely to be more discriminative than
the posterior dimensions. The Euclidean distances calcu-
lated in either the transformed space or the original space
should be the same, thus will not affect the final search re-
sult of the nearest neighbor but only efficiency. Further-
more, this transformation should not be too computation-
expensive because the query points have to be transformed
in the query process. The following lists the pseudo code
for the data transformation, which are to be added to the
algorithm given in Section 3:

105 Transform each sample point

125 Transform the query pointq

According to the contents of the data, we propose two
types of data transformation. When the data point repre-
sents an autocorrelated signal, for example, an audio signal
or an image block, wavelet transform with orthogonal ba-
sis [14] can be used. In this work, we adopt Haar wavelets
to transform the data, and then each level in the multilevel
structure represents the data in one of its multiple resolu-
tions.

The second type of data transformation is the principal
component analysis (PCA). Performing PCA can find a set
of vectors ordered in their ability to account for the variation
of data projected on those vectors. We can transform the
data point onto the space spanned by this set of vectors such
that the anterior dimensions are more discriminative than
the posterior dimensions.

6. Experimental results

This section presents some experimental results obtained
by using a computer-generated set of autocorrelated data
(Section 6.1) and by using a real data set acquired from



a object recognition system (Section 6.2). These experi-
ments were conducted on a PC with a Pentium III 700 MHz
CPU. Instead of using the amount of distances calculated,
we compare the efficiency of different algorithms by using
the execution time. The reasons are: first, our algorithm has
some overhead, including the insertion and deletion of el-
ements in the heap, rearranging the heap, and updating the
node〈p̂〉; and second, the computational cost of the LB-
distance of the node at some level differs from that of the
node at another level.

6.1. Experiments on autocorrelated data

In this section, we show three experimental results to
compare the performance of the proposed algorithm as the
following three factors vary: the number of the sample
points in the data set,s; the dimension of the underlying
space,d; and the average of the minimum distances be-
tween the query points and their nearest neighbors,εmin.
In these experiments, we randomly generate autocorrelated
data points to simulate real signal. For each data point, its
value of the first dimension is randomly generated from a
uniform distribution with extent[−1, 1]. The value of each
subsequent dimension is assigned as the value of the previ-
ous dimension added by a normally distributed noise with
zero mean and variance0.1. The value of each dimension
beyond the extent[−1, 1] is truncated. In order to see the
influence of data transformation on the search efficiency for
autocorrelated data, we construct two kinds of multilevel
structures for each data point—one with Haar transform,
and the other without any data transformation.

In the first experiment, we generated seven data sets of
sample points with cardinalitiess = 800, 1600, 3200, . . . ,
51200 by using the random process described above. The
dimension of the underlying space,d, was32. Another set
containing100, 000 query points were also generated by us-
ing the same random process. Nearest neighbor search was
then performed for each query point. The mean query time
is shown in Figure 5. The query time for the proposed algo-
rithm has taken into account both the Haar transform, if ap-
plied, and the search process. To demonstrate the influence
of the agglomerative clustering and the Haar transform on
the search efficiency, we show the mean query time resulted
by using different versions of the proposed algorithm. The
first version adopts the agglomerative clustering but not the
data transformation, and is denoted by “+clustering-Haar”.
The second version adopts the Haar transform but not the
agglomerative clustering (that is, use the simplest method
for LB-tree construction mentioned in Section 4), and is de-
noted by “-clustering+Haar”. The third version adopts both
the agglomerative clustering and the Haar transform, and is
denoted by “+clustering+Haar”. In this experiment, the pro-
posed algorithm (the “+clustering+Haar” version) is11.7
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Figure 5. Mean query time for different sizes,
s, of the sample point set ( d = 32).

and52.8 times faster than the exhaustive search algorithm,
whens is 800 and51, 200, respectively. Whens increases
(from 800 to 51, 200), there are more sample points scat-
tered in the fixed space. Therefore, the average of the min-
imum distances,εmin, decreases (from0.91 to 0.53). Ac-
cording to Property 4, the LB-distance is more likely to be
larger than the minimum distance of the query pointq to its
nearest neighbor̂p when the minimum distance is smaller.
That is, more distance calculations can be avoided ifεmin is
smaller. This is the reason why the speedup factor increases
ass increases.

In the second experiment, we generated eight data sets
of 10, 000 sample points, each set generated with a dif-
ferent dimension,d = 2, 4, 8, . . . , 256. Also, eight cor-
responding sets of100, 000 query points, with dimensions
d = 2, 4, 8, . . . , 256, were generated by using the same ran-
dom process. As shown in Figure 6, the proposed algo-
rithm (the “+clustering+Haar” version) apparently outper-
forms the exhaustive search. It is interesting to note that, for
autocorrelated data, our algorithm does not suffer the curse
of dimensionality thatk-dimensional binary search tree al-
gorithm suffers, as reported in [13, 3]. In fact, the computa-
tional speedup of the proposed algorithm (over the exhaus-
tive algorithm) scales up from5.5 to 63.5 (the “+cluster-
ing+Haar” version) asd increases from2 to 256. Whend
increases, the level number of the multilevel structure and
of the constructed LB-tree also increases. By using Haar
transform, the anterior dimensions contain more significant
components of the autocorrelated data. Consequently, the
lower bound of the distance calculated at the upper level
can be tighter in this way. Distance calculation for more
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Figure 6. Mean query time for different dimen-
sion of the underlying space, d. (s = 10, 000)

sample points therefore can be avoided by calculating only
a few LB-distances of their ancestors on the upper level,
except for a few tough competitors. If Haar transform is
not applied (i.e., the “+clustering-Haar” version), each di-
mension of the data point is equally significant. Thus the
LB-distance at the lower level (which requires more com-
putation) needs to be calculated to determine the nearest
neighbor, which then degrades the performance. Also, the
agglomerative clustering from top to down is more effec-
tive if data transformation is applied so that the anterior
dimensions contain more significant components. For the
“+clustering-Haar” version, there are more internal nodes,
comparing to that for the the “+clustering+Haar” version,
thus will reduce its efficiency. Whend increases, this phe-
nomenon becomes more amplified, thus the speedup factor
for the non-transform version drops dramatically but not for
the transform version.

The third experiment shows how the proposed algorithm
performs with respect toεmin. We generated a data set
of 10, 000 sample points in a space of dimensiond =
32. Then, each sample point was used for generating a
query point by adding to each coordinate a uniformly dis-
tributed noise with extent[−e, e]. When e is large, the
distance between the query point and its nearest neighbor
tends to be large also. In this experiment, we generated
eight sets of10, 000 query points, each with a differente,
e = 0.01, 0.02, 0.04, . . . , 1.28. The mean query time ver-
sus the mean of the minimum distances,εmin, for differ-
ent versions of our algorithm is shown in Figure 7. When
e increases from0.01 to 1.28, εmin increases from0.033
to 3.838. The computational cost of the proposed algo-
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Figure 7. Mean query time for different mean
of the minimum distances, εmin. (s = 10, 000,
d = 32)

rithm increases because the LB-distance is less likely to be
larger than the minimum distance when the minimum dis-
tance of the nearest neighbor is already very large. Thus,
less distance calculation can be saved. In this case, the
speedup factor of the proposed algorithm (the “+cluster-
ing+Haar” version), compared with the exhaustive algo-
rithm, decreases from537 to 0.63. Notice that the noise
extent,[−1.28, 1.28], is larger than the data extent,[−1, 1],
when the speedup factor becomes0.63. For most applica-
tions,εmin is usually relatively small. Therefore, the phe-
nomenon that the proposed algorithm does not outperform
the exhaustive search algorithm, as shown on the right part
in Figure 7, is not likely to happen for most applications.

6.2. Experiments on an object recognition database

The experiments described in this section adopted the
same database used in [12, 13]. This database was gener-
ated from7, 200 images of100 objects. For each object,72
images were taken at different poses. Each of these7, 200
images is of size128×128. Each image was represented in
vector form and was normalized to unit length. These nor-
malized vectors can be used to compute an eigenspace of
dimension35. Then, each vector can be compressed from
16, 384 dimensions to35 dimensions by projecting onto the
eigenspace. In the eigenspace, the manifold for each object
can be constructed by using the72 vectors belonging to the
object. Each of the100 manifolds was sampled to obtain
360 vectors for each object. All thes = 36, 000 sampled
vectors constitute the data set, here each sample point has



dimensiond = 35.
The set of query points can be generated by first uni-

formly sampling the manifolds and then adding random
noise to each coordinate. We first sampled each of the100
manifolds at3, 600 equally spaced positions and then added
to each coordinate a uniformly distributed noise with extent
[−0.005, 0.005]. In this way, we can have a set of360, 000
query points.

The proposed algorithm and the exhaustive search al-
gorithm were used for performing the nearest neighbor
search, and the mean query time is0.046 ms and50.048
ms, respectively. In this case, our algorithm is1, 088
times faster than the exhaustive search algorithm. This
performance is roughly18 times faster than the result at-
tained by Nene and Nayar [13], in which their method
is about61 times faster than the exhaustive search. The
construction time of the LB-tree using those36, 000 sam-
ple points of dimension35 is 11, 679 seconds and the
number of clusters,sl, at level l of the LB-tree issl =
20, 245, 2456, 4684, 5716, 7019, 36000, l = 0, 1, . . . , 6.
Although the construction time is still acceptable in this
case, more work should be done to improve the efficiency of
the LB-tree construction when dealing with a larger sample
point set.

7. Conclusions

In this paper, we have proposed a fast algorithm for
nearest neighbor search. This algorithm adopts the winner-
update search strategy to traverse an LB-tree created by us-
ing agglomerative clustering. For further speedup of the
search process, some kind of data transformation, such as
Haar transform (for autocorrelated data) and PCA (for gen-
eral object recognition data), is applied to sample points and
query points.

According to our experiments, the proposed algorithm
dramatically speed up the search process, in particular,
when the distance of the query point to its nearest neighbor
is relatively small compared with its distance to most other
samples. In many object recognition applications, a query
point of an object is close to the sample points belonging to
the same object, but is far from the sample points of other
objects. This makes the proposed algorithm more appealing
and practical. In this paper, we have applied our algorithm
to the object recognition database used in [12, 13]. The pro-
posed algorithm is about one thousand times faster than the
exhaustive search, which is about eighteen times faster than
the result achieved in [13].

We believe that the proposed algorithm can be very help-
ful in content-based retrieval from a large image or audio
database, such as [7, 16], where each sample point repre-
sents an autocorrelated signal. In this kind of applications,
the dimensiond and the number of sample pointss are both

large. Our algorithm can provide very efficient search for a
given query image or audio.

References

[1] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and
A. Y. Wu. An optimal algorithm for approximate nearest
neighbor searching in fixed dimensions.Journal of the ACM,
45(6):891–923, 1998.

[2] J. L. Bentley. Multidimensional binary search trees used
for associative searching.Communications of the ACM,
18(9):509–517, 1975.

[3] S. Berchtold, D. A. Keim, H.-P. Kriegel, and T. Seidl. Index-
ing the solution space: A new technique for nearest neigh-
bor search in high-dimensional space.IEEE Transactions
on Knowledge and Data Engineering, 12(1):45–57, 2000.

[4] Y.-S. Chen, Y.-P. Hung, and C.-S. Fuh. Fast block matching
algorithm based on the winner-update strategy.IEEE Trans-
actions on Image Processing, to appear.

[5] A. Djouadi and E. Bouktache. A fast algorithm for the
nearest-neighbor classifier.IEEE Transactions on Pattern
Analysis and Machine Intelligence, 19(3):277–282, 1997.

[6] R. O. Duda, P. E. Hart, and D. G. Stork.Pattern Classifica-
tion. John Wiley & Sons, New York, second edition, 2001.

[7] M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang,
B. Dom, M. Gorkani, J. Hafner, D. Lee, D. Petkovic,
D. Steele, and P. Yanker. Query by image and video content:
The QBIC sytstem.IEEE Computer, 28(9):23–32, 1995.

[8] K. Fukunaga and P. M. Narendra. A branch and bound al-
gorithm for computingk-nearest neighbors.IEEE Transac-
tions on Computers, 24:750–753, 1975.

[9] T. Hastie and R. Tibshirani. Discriminant adaptive nearest
neighbor classification.IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 18(6):607–616, 1996.

[10] C.-H. Hsieh and Y.-J. Liu. Fast search algorithms for vector
quantization of images using multiple triangle inequalities
and wavelet transform.IEEE Transactions on Image Pro-
cessing, 9(3):321–328, 2000.

[11] E.-W. Lee and S.-I. Chae. Fast design of reduced-com-
plexity nearest-neighbor classifiers using triangular inequal-
ity. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 20(5):567–571, 1998.

[12] H. Murase and S. K. Nayar. Visual learning and recognition
of 3-D objects from appearance.International Journal of
Computer Vision, 14:5–24, 1995.

[13] S. A. Nene and S. K. Nayar. A simple algorithm for nearest
neighbor search in high dimensions.IEEE Transactions on
Pattern Analysis and Machine Intelligence, 19(9):989–1003,
1997.

[14] G. Strang and T. Nguyen.Wavelets and Filter Banks. We-
llesley-Cambridge Press, Wellesley, Massachusetts, 1996.

[15] C. Tomasi and R. Manduchi. Stereo matching as a nearest-
neighbor problem.IEEE Transactions on Pattern Analysis
and Machine Intelligence, 20(3):333–340, 1998.

[16] H. D. Wactlar, T. Kanade, M. A. Smith, and S. M. Stevens.
Intelligent access to digital video: Informedia project.IEEE
Computer, 29(5):46–52, 1996.


