
In Proceedings of the Fourth Asian Conference on Computer Vision, Taipei, Taiwan, Jan. 2000, Volume 2, pages 977–982

A Fast Block Matching Algorithm Based on the Winner-Update Strategy

Yong-Sheng Chenyz Yi-Ping Hungyz Chiou-Shann Fuhz

yInstitute of Information Science, Academia Sinica, Taipei, Taiwan
zDepartment of Computer Science and Information Engineering,

National Taiwan University, Taipei, Taiwan

ABSTRACT

Block matching is a popular and powerful technique for
stereo vision, visual tracking, object recognition, and video
compression. This paper presents a new fast algorithm,
which is called the winner-update algorithm, for block match-
ing. We utilize an ascending list of the lower bounds of the
matching error for each search position. The calculation
of the matching error can be avoided if one of its lower
bound is larger than the globally minimum matching error.
The winner-update algorithm computes the lower bounds
only when the previous lower bounds in the same list are
smaller than the globally minimum matching error. This al-
gorithm can significantly speed up the computation of the
block matching because (1) the computational cost of each
lower bound is less than that of the matching error; and (2)
for many search positions, only the first several lower bounds
in the list need to be calculated. In the application to motion
vector estimation, our experiments on test image sequences
show that up to 98% of operations can be reduced while still
guaranteeing the minimum matching error.

Keywords� block matching, fast algorithm, motion esti-
mation.

1. INTRODUCTION

Block matching is a popular and powerful technique for
stereo vision, visual tracking, object recognition, and video
compression. In this paper, we focus on its application to
motion vector estimation for video compression. Motion-
compensated predictive coding has been widely used in the
transmission and storage of video data [5, 6, 3, 4] for reduc-
ing the temporal redundancy. For this purpose, the image
is usually divided into blocks and the displacement (motion
vector) of each block from its corresponding block in the ref-
erence image is estimated and coded. The residual matching
error between these two corresponding blocks are also coded
in the data stream to retain the video quality.

Block matching technique is much used for estimating the
block motion vector due to its simplicity. The matching error
between the block at position �x� y� in the current image,
It, and the candidate block at position �x� u� y � v� in the
reference image, It��, is often defined as the sum of absolute
difference (SAD):

SAD�x�y��u� v� �

B��X

i��

B��X

j��

jIt�x�i� y�j��It���x�u�i� y�v�j�j� (1)

where B is the block size. The best estimate of the block
motion vector, ��u� �v�, locates the block at position �x��u� y�

�v� having the minimum matching error, SAD�x�y���u� �v�.
This motion vector ��u� �v� can be obtained by using the full-
search (FS) algorithm to calculate and compare the matching
error for each search position in the reference image:

��u� �v� � arg min
�u�v�

SAD�x�y��u� v��

where �u� v� � f�u� v�j � R � u� v � Rg, R is the search
range, and �x� u� y� v� is a valid position in the reference
image, It��. This straightforward method takes extremely
large amount of computation, although it can find the best
matching block.

In the literature, many techniques have been developed
to reduce the computational cost of block matching. These
techniques can be classified into three categories. The tech-
niques in the first category concern the search strategy, that
is, they save the computations by reducing the number of
positions searched. The gradient descent techniques, based
on the unimodal error surface assumption, belong to this
category. Well-known examples include the following: the
three-step search (TSS) algorithm [8], the two-dimensional
logarithmic search algorithm [7], and the conjugate direc-
tion search algorithm [15]. For another example, the search
region can also be restricted to a small region located by
the motion vectors of the spatially and temporally adjacent
blocks together with the hierarchical related blocks [1].

The techniques in the second category, on the other hand,
speed up the calculation of matching error for each search
position. One simple way is to subsample the pixels in the
matching blocks [12], thus only a part of the pixels are used
for calculating the matching error. Another example is the
so-called early jump-out technique [2], which can interrupt
the process of matching error accumulation when the ac-
cumulated matching error is large enough comparing to a
threshold sequence.

The techniques in the first and second categories are not
exclusive and they can be combined to further improve the
efficiency as described in [12, 14]. For another example, the
hierarchical method [13] estimates the coarse result of the
motion vector in the lower resolution image. Then the result
is refined in the higher resolution image within a small search

1



region centering at the coarse result. The major drawback of
the techniques of the first two categories is that they cannot
guarantee to achieve the minimum matching error because
only a part of information is examined. Consequently, the
best coding quality cannot be obtained.

The techniques in the third category use some matching
criteria to eliminate search positions while still ensuring that
the minimum matching error can be obtained [10, 11, 9].
These matching criteria are induced from Minkowski’s in-
equality and their measures are smaller than or equal to the
matching error. At first, the minimum matching error is
initialized as the matching error calculated at the predicted
position. For each search position other than the predicted
one, the calculation of the matching error can be avoided if
one of the measures of the matching criteria is larger than the
up-to-date minimum matching error. Otherwise, the match-
ing error is calculated and the up-to-date minimum matching
error is updated if necessary. Because calculating the mea-
sure of the matching criteria costs less than calculating the
matching error, the total amount of computation can be re-
duced.

When the motion vector is hard to predict, for example, if
the image sequences contains objects with abrupt motion, the
initial minimum matching error may be large. Hence much
useless calculation of the matching criteria and the matching
errors will be performed until a position with small matching
error is examined. In the worst case, the matching errors
are monotonically decreasing in the order that the search
positions are examined. All the matching criteria are useless
and the calculation of their measures is only waste of time.
In such an unfortunate case, the computational cost will be
higher than that of using the FS algorithm in fact.

In this paper, we propose an efficient and simple algo-
rithm, named the winner-update algorithm, which can accel-
erate the computation of the block matching while still en-
suring that the minimum matching error can be obtained. For
each search position, an ascending list of the lower bounds of
the matching error can be established. The calculation of the
matching error can be avoided if one of the lower bounds is
larger than the globally minimum matching error. The lower
bound of the matching error can be derived from partial ac-
cumulation or Minkowski’s inequality and its computational
cost is less than that of the matching error. By using the
proposed algorithm, very few lower bounds and matching
errors are actually calculated. Consequently, the total com-
putational cost can be significantly reduced. The algorithm
does not need the prediction of the motion vector and it can
avoid the useless calculation of the matching error which the
techniques in the third category may suffer.

Moreover, this algorithm can be easily combined with the
techniques in the first two categories for further speedup, but
the guarantee of the minimum matching error is given up,
of course. As an example, the combination of the three-step
search algorithm and the proposed algorithm is also presented
in this paper.

2. THE WINNER-UPDATE ALGORITHM

Concept
In this section, we use a simple game of poker cards to illus-

trate the concept of the winner-update algorithm. Suppose
there are r players in the game and each player is dealt d
cards. An example is shown in Figure 1 where r � � and
d � �. The value of each card ranges from 1 to 13. The
penalty score of each player is the sum of the values of his/her
hand and the player with the minimum penalty score is the
winner. The basic idea is that one does not have to calculate
the summation of all the card values for each player before
he can determine the winner. If the intermediate summation,
or the lower bound of the total penalty score, for one player
has already been greater than the total penalty score of the
winner, then he/she has no chance to win and hence we can
stop calculating his/her penalty score to save some computa-
tion. Of course, the penalty score of the winner is not known
in advance. But the winner-update strategy explained below
can help to solve the problem.

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

card #1

card #2

card #3

card #4

1 P3 P4 P5

3 12 4 8 6

9 2

3

2

13 4

10

P P2

Figure �� A simple game for illustrating the
concept of the winner�update algorithm�
There are �ve players� P�� ���� P�� and each
player is dealt four cards� Player � has
�nished the accumulation of the values
in his�her hand and becomes the winner�
The temporary accumulations of others are
all greater than the third player�s �nal ac�
cumulation result� Hence their remaining
calculation can be saved�

At the beginning, we lay all the cards face down except
the first one of each hand. The lower bound of the penalty
score for each player is initialized as the value of the first
card. Only the temporary winner among the players having
the minimum lower bound is allowed to turn up the face of
the next card of his/her hand and update (increase) his/her
intermediate lower bound of the penalty score. A new tem-
porary winner is then selected and this process is repeated
until the temporary winner has no card laid facedown and
becomes the final winner. Table 1 lists the operations step
by step to demonstrate the process for the example given in
Figure 1.

In block matching for motion vector estimation, the
matching errors between the template block and most of
the candidate matching blocks are usually very large com-
pared with the minimum matching error. That is, most of
the players hold cards with relatively large values except
the winner and a few tough competitors. Therefore, by us-

2



operation/status P� P� P� P� P�

initialization 3 12 4 8 6
turn up card #2 of P� 12 12 4 8 6
turn up card #2 of P� 12 12 6 8 6
turn up card #3 of P� 12 12 9 8 6
turn up card #2 of P� 12 12 9 8 10
turn up card #2 of P� 12 12 9 21 10
turn up card #4 of P� 12 12 11 21 10
turn up card #3 of P� 12 12 11 21 20
P� is the winner 12 12 11 21 20

Table �� Step by step calculation of the
penalty score of each player� The score
numbers in boldface are the temporary
minima after each step�

ing this winner-update strategy, the amount of the cards laid
facedown which represents the saved computations can be
enormous.

Partial Accumulation
The process of choosing the winner having minimum penalty
score in the previously mentioned game resembles the pro-
cess of finding the corresponding block having minimum
matching error in block matching. Each player in the game
stands for a search position and the penalty score is the differ-
ence between the values of the corresponding pixels. From
Eq.(1), we can define the partial accumulation of l pixels as:

PSADl
�x�y��u� v� �

lX

m��

jIt�x� im� y� jm�� It���x�u� im� y� v� jm�j�

where f�im� jm�jm � �� � � � � B� � �g is the index set of
all the pixels in the block. Obviously, the following inequal-
ity relationship holds true (subscript �x� y� is dropped for
simplicity):

PSAD��u� v� � PSAD��u� v� � � � �

� PSAD
B�
���u� v� � SAD�u� v��

As a result, the partial accumulation of l pixels,
PSADl�u� v�, can be defined as the lth element in the lower
bound list, LBl�u� v�. Notice that the last element in the
list, LBB�

���u� v�, equals the matching error, SAD�u� v�.
These B� � � lower bounds are in ascending order:

LB
��u� v� � LB

��u� v� � � � � � LB
B�
���u� v��

Furthermore, the computational cost of these lower bounds
are ascending from 1 to B�.

General Winner-Update Algorithm
For each block at position �x� y� in the current image, the
lower bound of the matching error, LB�u� v�, between this
block and the candidate matching block at position �x�u� y�
v� in the reference image is initialized as the first element
in the lower bound list, LB��u� v�. An additional variable,

l�u� v�, is used to record the index in the list thatLB�u� v� is
assigned and it is initialized to 0. At first, the search position
��u� �v� is chosen to be the temporary winner having minimum
LB��u� �v�. Then the temporary winner updates its lower
bound LB��u� �v� with the next element in the lower bound
list, LBl�	u�	v�
���u� �v�, and records the new index number.
The new search position ��u� �v� having minimum LB��u� �v�

is chosen again as the new temporary winner. This process
is repeated until l��u� �v� of the new winner equals K, which
denotes the number of the last element in the lower bound
list. Remember that the last lower bound, LBK��u� �v�, equals
the matching error SAD��u� �v� at position ��u� �v�. The block
matching process can now stop because the lower bounds of
the matching errors for other search positions are all larger
than the matching error of the winner.

The proposed algorithm is given below:

The Winner-Update Algorithm

given template block at position �x� y� in It
begin

for each �u� v� in the search range do
begin (initialization)

calculate LB��u� v�

LB�u� v� 	� LB��u� v�

l�u� v� 	� �

end
select ��u� �v� having minimum LB��u� �v� to be the

temporary winner
while l��u� �v� � K do

begin
l��u� �v� 	� l��u� �v� � �

calculate LBl�	u�	v���u� �v�

LB��u� �v� 	� LBl�	u�	v���u� �v�

select ��u� �v� having minimum LB��u� �v� to be the
new temporary winner

end
output (�u� �v)

end

Minkowski’s Inequality
Recently, Lee and Chen [9] developed the block sum pyramid
(BSP) algorithm for fast motion vector estimation. They
constructed a pyramid structure for each matching block and
defined a matching criterion for each layer in the pyramid as
mentioned in Section 1. This kind of matching criteria can
be used as the lower bound we need and is presented below.

Assume the size of the matching block is 
K � 
K , we
construct K � � layers of images, each layer is of full-
resolution, for each image in the sequence in the following
way. Consider a four-layer example as illustrated in Figure 2.
For each pixel, Itl�x� y�, at layer l, its value is assigned to be
the sum of its four corresponding pixels at layer l� �:

It
l�x� y� � It

l
��x� y� � It
l
��x� 
K�l��� y��

It
l
��x� y� 
K�l��� � It

l
��x� 
K�l��� y� 
K�l����

(2)
where l is the layer number, l � �� � � � � K � �, and ItK is
the original image at time t. Notice that the value of the pixel
It
l�x� y� at layer l is in fact the sum of the corresponding

3




K�l � 
K�l pixels of the original image ItK�x� y�. In this
way, we can construct the block sum pyramids for all the
positions in the whole image, except for the last 
K�l � �

pixels at each row and each column due to the boundary
condition. Figure 3 shows an example of 4-layer images.

I (x,y)1

I (x,y)2

I (x,y)3

I (x,y)0

x x+1 x+2 x+3 x+4 x+5 x+6 x+7 x+8... ...

Figure �� This �gure illustrates the 	�layer
images constructed from an original im�
age� here each layer is of full�resolution�
Only one dimension 
the x�axis� is shown
for simplicity� Two pyramids at position
x and x � � are depicted in solid line and
dotted line� respectively�

I� I�

I� I�

Figure �� This �gure presents the construc�
tion of 	�layer images�

At layer l, the matching error SAD�x�y�
l�u� v� between

the block at position �x� y� in image Itl and the candidate
matching block at position �x� u� y � v� in image It��l is
defined as:

SAD�x�y�
l�u� v� �

�l��X

i��

�l��X

j��

jIt
l�x�
K�li� y�
K�lj��

It��
l�x� u� 
K�li� y � v � 
K�lj�j� (3)

where l � �� � � � � K.
According to Minkowski’s inequality (1-norm case here),

Lee and Chen derived and proved the following inequality
relationship between the matching errors computed at each
layer:

SAD�x�y�
��u� v� � SAD�x�y�

��u� v� � � � �

� SAD�x�y�
K�u� v�� (4)

The number of pixels used for calculating
SAD�x�y�

l�u� v� at layer l is 
l � 
l, that is, the
number is �� �� � � � � 
K � 
K when l is �� �� � � � � K,
respectively. We use SAD�x�y�

l�u� v� defined in Eq.(3)
as the lower bound LBl�u� v� of the matching error
SAD�x�y��u� v� at position �x� y�.

3. COMBINATION WITH THE THREE-STEP
SEARCH ALGORITHM

The proposed winner-update algorithm can be easily com-
bined with other fast algorithms for further speedup, but the
guarantee of the minimum matching error is given up. Con-
sidering the well-known TSS algorithm, nine search posi-
tions which are coarsely spaced are examined at first. Then
the position having minimum matching error is selected and
eight search positions which are less coarsely spaced around
this selected position are examined. The matching errors
of these eight positions and the previously selected position
are compared and a new position having minimum matching
error is selected again. This process is repeated until the re-
quired resolution (spacing) of the examined search positions
is achieved.

At each iteration, the TSS algorithm needs to calculate
and compare the matching errors of nine or eight search
positions. Meanwhile the winner-update algorithm can be
applied to efficiently find the one having minimum matching
error among these search positions. The accuracy of this
combined algorithm is the same as that of the TSS algo-
rithm because the winner-update algorithm can find the best
matching position at each iteration.

4. EXPERIMENTS

Implementation Issues

The major overhead of the winner-update algorithm is
the selection of the minimum lower bound at each itera-
tion. A heap data structure can be used in this algorithm and
O�log� n� operations are used to maintain the heap condition
and keep the element with the smallest lower bound in the
root of the heap tree at each iteration.

The selection overhead can be reduced to constant time by
using hashing method. To reduce the size of hashing table,
the mean absolute difference (MAD) is used instead of SAD
and the lower bound can be calculated as (subscript �x� y� is
dropped for simplicity):

LB
l�u� v� � MAD

l�u� v�

�
�


K
K
SADl�u� v��

Because MADl�u� v� ranges from ��� to 
����, a table
with 256 elements is used and the table address is assigned
with the integer part of MADl�u� v�. Separate chaining is
used in our implementation to resolve the collision. The
first block in the first non-empty table entry is chosen to
be the temporary winner. After updating this block’s new
lower bound, it is moved, if necessary, to the corresponding
table entry according to its new lower bound in constant time.
When the selected block with minimum lower bound reaches

4



layer 0, all the blocks with the same table address, that is, in
the same chain, are examined to determine the final winner
with the minimum matching error.

Experimental Results
This section shows the experimental results of applying the
winner-update algorithm to some test image sequences. Five
algorithms—the full-search (FS) algorithm, the block sum
pyramid (BSP) algorithm [9], the proposed winner-update
algorithm with the lower bound defined from Minkowski’s
inequality (WinUpMI), the three-step search (TSS) algorithm
[8], and the combination of the winner-update algorithm and
the three-step search algorithm (WinUpTSS)—were imple-
mented. Notice that the last two algorithms do not guarantee
that the global minimum can be found. We evaluate these
algorithms by comparing three performance issues: (1) the
peak signal-to-noise ratio (PSNR) between the reconstructed
motion-compensated image and the original image; (2) the
number of absolute operations for calculating the matching
error; and (3) the execution time according to our implemen-
tation and hardware environment. These algorithms were
implemented in C language on a Sun Ultra-1 workstation.
The execution time includes reading images, multi-layer im-
ages construction if necessary, and motion vector estimation.
As shown in Figure 4, five image sequences—Salesman,
Trevor, Coastguard, Football, and Foreman—were used for
comparing the performance of the algorithms. Each image
was divided into �� � �� nonoverlapping blocks and the
search range was set to ����� ��
� ����� ��
.

(a) (b)

(c) (d)

(e)

Figure 	� Five test image sequences� 
a�
Salesman� 
b� Trevor� 
c� Football� 
d�
Foreman� and 
e� Coastguard�

Table 2 shows the performance comparison of the above-
mentioned algorithms with the Salesman image sequence
which contains 100 images of size ��
 � 
��. The image

in this sequence contains complex background as shown in
Figure 4(a) and the PSNR value is high. Thus only a few
competitors with small matching error exist and the mini-
mum matching error is small. Most search positions obtained
larger lower bounds than the small minimum matching error
and withdrew from the competition. Only 1.97% of abso-
lute operations are needed to calculate the matching errors,
comparing to the absolute operations for the FS algorithm.
Considering the overhead of constructing the multi-layer im-
ages and switching the calculation among different search
positions, the total execution time for estimating the motion
vectors with the winner-update algorithm remain to be very
small. Our experiments shows that the WinUpMI algorithm
costs only 3.97% execution time of what the FS algorithm
costs. As for the WinUpTSS algorithm, further speedup
can be achieved without decreasing the PSNR value of the
TSS algorithm. The number of absolute operations decreases
from 3.11% to 0.63% and the actual execution time decreases
from 3.33% to 1.61%.

PSNR Operations Execution Time
Algorithm (dB) number % sec. %

FS 35.44 99847168 100.00 533.6 100.00
BSP 35.44 2823837 2.83 30.8 5.77

WinUpMI 35.44 1967831 1.97 21.2 3.97

TSS 35.15 3103744 3.11 17.8 3.33
WinUpTSS 35.15 627416 0.63 8.6 1.61

Table �� Performance comparison of �ve
algorithms with Salesman image sequence�

Table 3 shows the experimental results obtained with the
Trevor image sequence which contains 99 images of size

�� � 
��. As shown in Figure 4(b), the background of
the images contains periodic strips. The blocks in the back-
ground area needed more computation to find the final cor-
responding block having the minimum matching error. Thus
higher operation ratio and execution time ratio were obtained
comparing to those for the Salesman image sequence.

PSNR Operations Execution Time
Algorithm (dB) number % sec. %

FS 34.42 62980096 100.00 359.7 100.00
BSP 34.42 2716395 4.31 31.5 8.76

WinUpMI 34.42 2445738 3.88 28.0 7.78

TSS 34.01 1971453 3.13 12.5 3.48
WinUpTSS 34.01 495151 0.79 7.0 1.95

Table �� Performance comparison of �ve
algorithms with Trevor image sequence�

The experiments described below use three image se-
quences containing larger motion. The first image sequence
Coastguard contains 300 images of size ���� 
��, the sec-
ond image sequence Football contains 60 images of size
��
 � 
��, and the third image sequence Foreman contains
400 images of size ��� � 
��. Tables 4, 5, and 6 show the
experimental results using the three image sequences. Be-
cause of the lower PSNR value, the efficiency improvement
of the WinUpMI algorithm comparing to the FS algorithm
is not as significant as that in the experiments of Salesman

5



and Trevor image sequences. The minimum matching errors
are larger and more computations are required to determine
the best matching blocks. It is obvious that the proposed
WinUpMI algorithm outperforms the BSP algorithm in these
experiments especially when there is a lot of large motion in
the image sequence.

PSNR Operations Execution Time
Algorithm (dB) number % sec. %

FS 28.51 83206656 100.00 1339.7 100.00
BSP 28.51 16157373 19.42 372.7 27.82

WinUpMI 28.51 6948447 8.35 178.8 13.35

TSS 28.07 2623309 3.15 44.6 3.33
WinUpTSS 28.07 1171328 1.41 37.4 2.79

Table 	� Performance comparison of �ve
algorithms with Coastguard image se�
quence�

PSNR Operations Execution Time
Algorithm (dB) number % sec. %

FS 23.86 82258432 100.00 268.1 100.00
BSP 23.86 9649071 11.73 49.5 18.46

WinUpMI 23.86 5796655 7.05 32.1 11.97

TSS 23.10 2573771 3.13 8.8 3.28
WinUpTSS 23.10 1013051 1.23 6.8 2.54

Table 
� Performance comparison of �ve
algorithms with Football image sequence�

PSNR Operations Execution Time
Algorithm (dB) number % sec. %

FS 31.28 100998144 100.00 2209.1 100.00
BSP 31.28 10891459 10.78 366.8 16.60

WinUpMI 31.28 6456348 6.39 221.8 10.04

TSS 30.02 3169292 3.14 71.6 3.24
WinUpTSS 30.02 1257482 1.25 54.5 2.47

Table �� Performance comparison of �ve
algorithms with Foreman image sequence�

5. CONCLUSIONS

In this paper, we have proposed a new fast algorithm,
named the winner-update algorithm, which can speed up the
computation of block matching while still guaranteeing the
minimum matching error. According to our experiments, the
proposed WinUpMI algorithm can save 91.7% to 98% of ab-
solute operations, depending on the image sequence. If the
global optimum is not required, then WinUpTSS can save
98.6% to 99.4% of absolute operations without decreasing
the PSNR value of using TSS algorithm. The WinUpMI algo-
rithm requires a preprocessing stage to construct multi-layer
images. Additional operations are also required to switch
among the search positions. After considering these two
kinds of overhead, the efficiency of the proposed algorithm
is still very good. According to our experiments, 86.7% to
96% of the execution time can be saved, compared to that
using the FS algorithm.

References

[1] J. Chalidabhongse and C.-C. J. Kuo. Fast motion vector
estimation using multiresolution-spatio-temporal cor-
relations. IEEE Transactions on Circuits and Systems
for Video Technology, 7(3):477–488, 1997.

[2] H.-C. Huang and Y.-P. Hung. Adaptive early jump-out
technique for fast motion estimation in video coding.
Graphical Models and Image Processing, 59(6):388–
394, 1997.

[3] ISO/IEC 11172-2. Information technology—coding of
moving pictures and associated audio for digital storage
media at up to about 1.5 mbit/s - part 2: Video. 1993.

[4] ISO/IEC 13818-2 and ITU-T Recommendation H.262.
Information technology—generic coding of moving
pictures and associated audio information: Video.

[5] ITU-T Recommendation H.261. Video codec for au-
diovisual services at p�64 kbit/s. Mar. 1993.

[6] ITU-T Recommendation H.263. Video coding for low
bit rate communication. Feb. 1998.

[7] J. R. Jain and A. K. Jain. Displacement measurement
and its application in interframe image coding. IEEE
Transactions on Communications, COM-29(12):1799–
1808, 1981.

[8] T. Koga, K. Iinuma, A. Hirano, Y. Iijima, and T. Ishig-
uro. Motion-compensated interframe coding for video
conferencing. In Proceedings of National Telecommu-
nications Conference, volume 4, pages G5.3.1–G5.3.5,
New York, 1981.

[9] C.-H. Lee and L.-H. Chen. A fast motion estimation al-
gorithm based on the block sum pyramid. IEEE Trans-
actions on Image Processing, 6(11):1587–1591, 1997.

[10] W. Li and E. Salari. Successive elimination algorithm
for motion estimation. IEEE Transactions on Image
Processing, 4(1):105–107, 1995.

[11] Y.-C. Lin and S.-C. Tai. Fast full-search block-matching
algorithm for motion-compensated video compression.
IEEE Transactions on Communications, 45(5):527–
531, 1997.

[12] B. Liu and A. Zaccarin. New fast algorithms for the
estimation of block motion vectors. IEEE Transac-
tions on Circuits and Systems for Video Technology,
3(2):148–157, 1993.

[13] K. M. Nam, J.-S. Kim, R.-H. Park, and Y. S. Shim.
A fast hierarchical motion vector estimation algorithm
using mean pyramid. IEEE Transactions on Circuits
and Systems for Video Technology, 5(4):344–351, 1995.

[14] Y. Q. Shi and X. Xia. A thresholding multiresolution
block matching algorithm. IEEE Transactions on Cir-
cuits and Systems for Video Technology, 7(2):437–440,
1997.

[15] R. Srinivasan and K. R. Rao. Predictive coding based
on efficient motion estimation. IEEE Transactions on
Communications, COM-33(8):888–896, 1985.

6


