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Abstract Registration of magnetic resonance brain images is a geometric operation that determines point-wise corre-

spondences between two brains. It remains a difficult task due to the highly convoluted structure of the brain. This paper

presents novel methods, Brain Image Registration Tools (BIRT), that can rapidly and accurately register brain images

by utilizing the brain structure information estimated from image derivatives. Source and target image spaces are related

by affine transformation and non-rigid deformation. The deformation field is modeled by a set of Wendland’s radial

basis functions hierarchically deployed near the salient brain structures. In general, nonlinear optimization is heavily

engaged in the parameter estimation for affine/non-rigid transformation and good initial estimates are thus essential to

registration performance. In this work, the affine registration is initialized by a rigid transformation, which can robustly

estimate the orientation and position differences of brain images. The parameters of the affine/non-rigid transformation

are then hierarchically estimated in a coarse-to-fine manner by maximizing an image similarity measure, the correlation

ratio, between the involved images. T1-weighted brain magnetic resonance images were utilized for performance eval-

uation. Our experimental results using four 3-D image sets demonstrated that BIRT can efficiently align images with

high accuracy compared to several other algorithms, and thus is adequate to the applications which apply registration

process intensively. Moreover, a voxel-based morphometric study quantitatively indicated that accurate registration can

improve both the sensitivity and specificity of the statistical inference results.

Keywords Affine/non-rigid image registration · Difference of Gaussian · Radial basis functions · Correlation ratio ·

Voxel-based morphometry
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1 Introduction

Registration is an essential geometric operation in medical image analysis. In longitudinal studies, for instance, images

acquired repeatedly over a period of time can be used to observe the temporal changes of brain structures by subtracting

the registered images [32,53] or by analyzing the structure deformation [72,59]. Customized or standard brain templates

can be constructed by spatially normalizing and then averaging the brain images in a stereotaxic space [29,28,52,51].

Registration of an individual brain to the template can bridge the individual brain to the Talairach space [70] and can

also help to obtain the gross anatomical structures of the individual brain with template-based segmentation methods

[24,26].

When registering images, the degree of structural variability determines the transformation model to be adopted.

Rigid or affine transformation can only accommodate the global transformation and are adequate to register the images

acquired for the same subject. Many approaches were proposed for affine registration of brain images. Ashburner et al.

incorporated the prior knowledge of human brains into a Bayesian framework [10]. Wood et al. used a Newton-type

method to iteratively optimize the values of transformation parameters [79]. Jenkinson et al. proposed a coarse-to-fine

method that can optimize the transformation parameters from multiple candidates [39,38].

A transformation model with a high degree of freedom is indispensable to inter-subject registration, in which the

anatomical difference is non-rigid. In the following, non-rigid registration methods are briefly introduced according to

the adopted transformation model. Comprehensive surveys can be found in [37,57,83,33].

Elastic methods register images by compromising the deformation smoothness and the similarity measurement

between images [11]. Because of the smoothness constraint, these kind of methods may not sufficiently model highly

localized deformation, such as the convolution of cerebral cortex [45,62]. Their variants, fluid models, relax the smooth-

ness constraint to overcome this problem at a higher risk of false registration [45]. Fluid registration works can be found

in [21,16,32]. Moreover, the Demons algorithm [71] and its variant [75] are also considered as an approximation of

fluid registration [33].

A finite element method (FEM) registers images by using the segmented objects, which are usually represented by

the meshes of tetrahedrons or hexahedrons [27,6,30,66,77,65,81]. It can deform objects in a more realistic way because

different energy terms can be assigned to objects according to their physical properties. However, the computational
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complexity of the FEM approach is generally high and the error of tissue segmentation contributes to the deviation of

registration.

Basis functions have been extensively applied to describe the spatial mapping relationship between images. These

methods can be further divided into two sub-categories. The first kind of methods, referred as landmark-based ap-

proaches, establishes the spatial transformation from a set of corresponding control points or landmarks. Numerous

basis functions have been used to model the spatial mapping, such as the thin-plate splines (TPS) [13,47], Gaussian [2],

inverse multi-quadrics [64], multi-quadrics [47], and Wendland’s radial basis functions (RBFs) [31]. The major disad-

vantage of these kind of methods is that the identification of landmarks is not only time-consuming but also prone to

errors. To alleviate this problem, Likar and Pernus applied affine registration to the sub-regions of images and regarded

the centers of the registered parts as the matching control points [46].

Instead of the labor-intensive landmark selection, the second kind of methods regularly deploy basis functions

in image volumes and calculate the coefficients of basis functions by optimizing an objective function. Many basis

functions have been applied to model the deformation fields, including wavelets [1], discrete cosine transform [7], and

B-splines [63,44]. However, a large number of basis functions are required to model subtle deformation. In this case, the

computational complexity is high and it is usually difficult to obtain good results by searching in a large parameter space.

To reduce the number of basis functions, Rohde et al. used the gradient magnitude of the normalized mutual information

(NMI) to detect poorly aligned image regions and repeatedly deployed RBFs in these regions for registration refinement

[61].

Anatomical information has also been applied in non-rigid registration frameworks. Pluim et al. incorporated image

gradient into the similarity measurement, mutual information (MI), for utilizing the spatial information [55]. Marsland

et al. iteratively determined the poorly registered regions and deployed knot points to the strong edges for modeling the

deformation field with the clamped-plate splines [50]. Camara et al. registered the corresponding structures and used the

obtained results to initialize the subsequent procedure for the multimodal registration of whole-body images [18]. More

examples can be found in [42,17,36,48,74]. Generally, these type of methods take advantage of both the structure and

intensity information during the registration process.

Image registration is an important tool in quantitative analysis using voxel-based morphometry (VBM). VBM statis-

tically reveals the structural differences between two image groups through a voxel-wise comparison of tissue volumes
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[8]. There have been numerous VBM studies presented in the literature, such as the examination of brain asymmetry and

the effects of sex and handedness in brain structures [35], the aging of brains [34], and the characterization of diseases

[12,15,41]. Before the statistical comparison, all images have to be spatially normalized into the same stereotaxic space

such that the corresponding structures are well aligned. Many registration techniques have been adopted in the VBM

procedure and the accuracy of image registration can greatly affect the reliability of the analysis results [14,9,3,22].

Moreover, VBM analysis usually applies registration procedure intensively. Therefore, an accurate and time efficient

registration algorithm is generally considered preferable for VBM.

In this work, we utilize the structure information of the brain extracted from image derivatives and develop affine

and non-rigid methods, called the Brain Image Registration Tools (BIRT), for the accurate and time efficient registration

of magnetic resonance (MR) brain images. The proposed affine method aligns brain images by estimating the orientation

and position differences between brains followed by optimizing the similarity between images in a hierarchical manner.

The non-rigid deformation of the brain is modeled by a set of Wendland’s RBFs, which are hierarchically deployed near

the salient anatomical structures. In this way, a small amount of RBFs are sufficient to well represent the deformation

field and thus are beneficial to the execution efficiency. A VBM study of inter-group structural analysis is also conducted

to qualitatively and quantitatively investigate the effect of registration accuracy upon the VBM analysis results. Software

packages of the proposed registration algorithms are available at http://bsp.cs.nctu.edu.tw/software.

2 Methods

Image registration establishes the spatial mapping T : p 7→ q, which transforms every point p in the source (or test)

image to its corresponding point q in the target (or reference) image, such that the same structures are well aligned. The

mapping relation T generally consists of a global transformation Tg, which is usually an affine transformation, and a

local, non-rigid deformation Tl:

q = T(p) = Tg(p)+Tl(Tg(p)) . (1)

Notice that Tg maps each point p to its corresponding point Tg(p) while Tl represents the non-rigid displacement vector

field. This section first introduces how to extract the structure information of the brain from image derivatives and then

presents the proposed affine and non-rigid registration methods based on the extracted information.
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2.1 Structure information of the brain

Difference of Gaussian (DOG) performs image substraction after convolution with two Gaussian kernels G(σ1) and

G(σ2), σ1 > σ2:

DOG(I,σ1,σ2) = G(σ1)∗ I−G(σ2)∗ I , (2)

where I is a T1-weighted MR image and “∗” denotes the convolution operator. We define the thresholded DOG (TDOG)

value to be one (foreground) when the DOG value is larger than a threshold, and otherwise the TDOG value is zero

(background). Instead of using the zero-crossings of DOG results to detect edge features, we utilize the foreground in the

TDOG image to reveal those regions with relatively low intensity in I, such as the gray matter (GM) and cerebrospinal

fluid (CSF), as shown in Fig. 1. Notice that the region between two hemispheres contains mostly TDOG foreground

voxels. This phenomenon can be utilized to determine the mid-sagittal planes (MSPs) and then estimate the orientation

of brains. Non-brain tissues may present in TDOG foreground and can be easily removed by applying the brain masks.

Then the masked foreground can guide the deployment of RBFs to cortices and ventricles in the proposed non-rigid

registration method.

2.2 Affine registration

2.2.1 Overview of the affine registration method

The proposed affine registration method comprises four major steps, as shown in Fig. 2, which determine the twelve

degrees of freedom of the transformation Tg(p) = Ap + b, where b is a translation vector and A is the transformation

matrix representing the rotation, scaling, and shearing of an image volume. Among the twelve parameters of affine

registration, the rigid parameters for rotation and translation are highly coupled and hence the estimation accuracy is

critical to the whole affine registration process [39]. We estimate the six parameters of the rigid-body transformation

by locating the MSPs followed by aligning brain volumes on the overlapped MSPs, as described in Secs. 2.2.2 and

2.2.3. Subsequently, the six rigid parameters are further refined and the results provide a good set of initial values

in the parameter estimation for affine transformation. The engaged optimization process for the refinement of rigid

transformation Tr and affine transformation Tg utilizes a hierarchical image structure and the Nelder-Mead downhill

simplex method [58] to maximize the correlation ratio (CR), SCR(It , Is,Tr) and SCR(It , Is,Tg), between the spatially
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mapped source image Is and target image It . Fig. 3(d) shows an example of the alignment results using our affine

registration method. Detailed description about CR criterion will be given in Sec. 2.4.

2.2.2 Determination of brain MSP

The MSP of a brain is defined as the plane which best separates the two hemispheres [73]. Locating brain MSPs requires

the estimation of two rotation and one translation parameters among the six parameters of rigid transform. Some methods

of automatic determination of MSPs can be found in [4], [49], and [73]. In this work, we first estimate the MSP in an

analytical way. By utilizing the first order image moment as the work of [68], the brain centroid is calculated as a point

on the initial MSP. The normal vector of the initial MSP is estimated by applying principal component analysis (PCA)

to the TDOG image. As the example shown in Fig. 4(a), the TDOG foreground is planarly distributed nearby the MSP,

whereas the distribution is more isotropic in other regions. Applying PCA to the TDOG image, the two eigenvectors

corresponding to the largest two eigenvalues roughly span the MSP and the eigenvector corresponding to the smallest

eigenvalue provides an estimate for the normal vector of the MSP. Fig. 4(b) shows that the closed-form solution provides

a good initial estimation of the MSP. This initial estimation is further refined toward the “relatively darkest” plane in

the brain by maximizing the number of TDOG foreground voxels. This optimization process can improve the MSP

determination, as shown in Fig. 4(c), as well as the overlapping of the MSPs in the source and target images, which is

required in the proposed affine registration method, as shown in Fig. 3(b).

2.2.3 Alignment on the overlapped MSPs

We align the brain volumes on the overlapped MSPs to estimate other three rigid parameters, including a translation

vector on the MSP and a rotation angle around the MSP normal. The rotation angle is first estimated by the directions of

corpus callosums (CC) segmented from the MSPs. Applying PCA to the segmented CC, the eigenvector corresponding

to the largest eigenvalue provides an estimate of the CC direction. Directional difference between CCs gives a good

initial estimate of the rotation around the MSP normal. The rotation angle and the translation vector compose a rigid

transform T′r and are refined by optimizing the CR, SCR(It , Is,T′r), between the source image Is and target image It . As

shown in Fig. 3(c), the proposed method can robustly register brain images, even if there are large rotational differences

in some unusual cases.
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The segmentation of CC is based on the phenomenon that the intensities of CC in a T1-weighted MR image are

significantly larger than those of the surrounding tissues. One or two intensity thresholding steps are used to segment

the CC. For each located MSP, we first calculate an effective intensity range [t1, t2] to ignore the pixels with unusual

intensities, the brain centroid O, and a radius r mm which estimates the brain size, as the work of [68]. The segmentation

of CC only considers the area within the circle with center at O and with radius kr mm, where the value of k is set to be

0.7 in our implementation, as shown in Fig. 5(a). All the connected regions with intensity larger than t1 +β (t2− t1) and

with area larger than γ are extracted from MSP, where the values of β and γ were set to be 0.7 and 100 mm2 in BIRT,

respectively. We regard the extracted region(s) as the candidate(s) of CC. The segmentation of CC is achieved if there

is only one CC candidate, as shown in Fig. 5(b). However, the intensity differences between CC and the surrounding

tissues can vary considerably and thus the regions other than CC often survive in the first thresholding process, as shown

in Fig. 5(d). To further distinguish these tissues, we apply Otsu’s method [54] to calculate another intensity threshold if

there are many CC candidates. Notice that only the pixels in the candidate regions are involved in the calculation. The

proposed method can well segment the CC on MSP, even if there are excess non-brain tissues, such as the neck and

shoulder areas, as shown in Fig. 5(e). Nevertheless, extracting the brain regions beforehand increases the robustness of

our segmentation method because it avoids the disturbance of non-brain tissues, which can result in the estimation bias

of the brain centroid, as shown in Fig. 5(c).

2.3 Non-rigid registration

Non-rigid spatial mapping between brain images is related by a set of Wendland’s RBFs with different levels of sup-

port extents. Fig. 6 shows the flowchart of the proposed non-rigid registration procedure. Non-brain structures are first

removed because the inter-subject variation of these regions is relatively large compared to that of brain tissues and

hence could interfere with registration efficacy [80]. Therefore, we use a brain mask to extract the brain area as well as

the boundary of the brain in the TDOG image, referred as the brain-only TDOG. Though the structures revealed in the

brain-only TDOG are quite rough, they provide a guidance to deploy RBFs near the brain boundary, the boundary be-

tween GM and WM, and the boundary between CSF and GM/WM. Furthermore, the deformation field is progressively

estimated by optimizing the coefficients of each RBF in a coarse-to-fine manner.
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2.3.1 Non-rigid transformation model

We use a combination of K RBFs to model the non-rigid deformation field, Tl(·),

Tl(p) =
K

∑
i=1

αiφ(‖p− ci‖) , (3)

where ‖ ·‖ is the Euclidean norm and the one-argument function φ : ℜ+→ℜ is the RBF centered at ci with coefficients

αi ∈ℜ3, i = 1, . . . ,K. There are different types of RBFs. In this work, we use one of the Wendland’s ψ-functions, ψ3,1,

as the RBF φ due to its low computational complexity and the compact support property [78,31]. This function φ is

formulated as

φ(r) =


(1− r)4(4r +1) , 0≤ r < 1

0 , 1≤ r
. (4)

Based on this set of K RBFs, the positions ci and the coefficients αi, i = 1, . . . ,K, of the RBFs determine the 3-D

displacement vector Tl(p) for each point p in the image volume.

With the compact support property, the influence of each RBF is restricted to a local region which is a unit sphere

around the RBF center. It is a preferred characteristic in non-rigid registration because the deformation of one area should

not affect remote regions. This property also greatly alleviates the computational complexity of spatial transformation

in contrast to the functions with global support, such as TPS and multi-quadrics, because only a few RBFs are involved

in the calculation of displacement vector for an image point. To accommodate various extents of compact support, the

argument r of the function φ(·) is scaled by the shape parameter, s [43]. The Wendland’s RBF with support extent s is

formulated as

φs(r) = φ(
r
s
) . (5)

2.3.2 Hierarchical decomposition of deformation field

For the K RBFs involved in our non-rigid deformation model, there are L different support extents, s j, j = 1, . . . ,L, each

with K j RBFs and K1 +K2 + · · ·+KL = K. Therefore, the non-rigid deformation field, Tl(·), can be rewritten as

Tl(p) =
L

∑
j=1

K j

∑
i=1

α j,iφs j (‖p− c j,i‖) , (6)

where φs j (·) denotes the RBF with support extent s j and coefficients α j,i centered at c j,i. For proper deployment of

RBFs, brain volume is hierarchically divided into eight equal subregions, which are cubes in our implementation, and
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each subregion has an RBF placed at the center if this region contains any foreground voxels in the brain-only TDOG, as

shown in Fig. 7. Although the maximum number of RBFs required at level j is 8 j, the use of brain-only TDOG can help

to place necessary RBFs near important anatomical features and avoid the dramatic increase of the number of RBFs.

This deployment method is fairly beneficial for computational efficiency while maintaining high registration accuracy,

particularly at the fine levels. The support extent s j at each level j is a parameter which is set to be multiples of the

width of subregions. Therefore, the RBFs from low to high levels are capable of modeling the deformation field from

coarse to fine resolutions.

Since the deformation field model is hierarchically decomposed into RBFs with different levels of support extent,

we estimate the coefficients of RBFs one-by-one while gradually accumulating the deformation field in a coarse-to-fine

manner. Consider the coefficient estimation for the m-th RBF at level l. The centered positions and coefficients of the

RBFs at the coarser levels from 1 to l− 1 and the RBFs from 1 to m− 1 at level l are all determined previously. We

update the deformation field by adding a new RBF φsl (‖p− cl,m‖) centered at cl,m with coefficients αl,m:

Tl,m
l (p) =

l−1

∑
j=1

K j

∑
i=1

α j,iφs j (‖p− c j,i‖)+
m−1

∑
i=1

αl,iφsl (‖p− cl,i‖)

+αl,mφsl (‖p− cl,m‖) . (7)

In this way, the displacement vector for the point p is progressively updated. The accumulation process terminates when

l = L and m = KL, that is, Tl(p) = TL,KL
l (p). Because only three coefficients of an RBF are estimated at a time, the

proposed method avoids the searching in a huge parameter space and thus the whole optimization process is quite fast.

2.3.3 Objective function

Coefficient estimation for each RBF is an optimization process that minimizes an objective function:

C(It , Is,T) =−SCR(It , Is,T)+λE(T) , (8)

where T is the spatial mapping between the target image It and the source image Is, SCR measures the image similarity

by CR, the smoothness regularization function E calculates the deformation energy of T, and the parameter λ compro-

mises the measurements SCR and E. The Laplacian model and the thin-plate model are widely applied to regularize the

structure deformation in image registration [62]. Due to the computational efficiency, we adopt the Laplacian model in
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this work:

E(T) =
1
V

∫ ∫ ∫ [(
∂T
∂x

)2

+
(

∂T
∂y

)2

+
(

∂T
∂ z

)2
]

dxdydz , (9)

where V is the volume involved in the estimation. The Nelder-Mead downhill simplex method is utilized to optimize

the objective function. Fig. 3(e) demonstrates that the proposed non-rigid method can well register the corresponding

anatomical structures.

2.3.4 Implementation issues

In the optimization process of non-rigid registration, iterative calculation of image transformation contributes to the ma-

jor computation burden, particularly when registering high resolution image volumes. The hierarchical decomposition

of the non-rigid transformation model and the compact support property of Wendland’s RBFs are both beneficial to the

alleviation of this heavy burden. However, the execution time of non-rigid registration is still large. Some implemen-

tation techniques described below are helpful to further improve the efficiency. First, we construct a volume pyramid

with L′ levels for each MR image volume, generally L′ ≤ L. When evaluating the objective function, the K j RBFs, φs j (·)

with support extent s j, j = 1, . . . ,L, are associated with the j′-th level of volume pyramid, where j′ = j when j≤ L′ and

j′= L′ when j > L′. This hierarchical architecture enables a coarse-to-fine optimization that helps to avoid the local traps

and improves the computational efficiency. Second, one lookup table is constructed beforehand for each support extent

level of Wendland’s RBFs to avoid the repeated function evaluations. Therefore, updating the deformation field with the

RBF φs j (·) in Eq. (7) requires only three subtractions, one table lookup, three multiplications, and three additions.

2.4 Correlation ratio

The image similarity function has strong influence on registration results. Statistical measurements such as MI [23,

76], NMI [69], and CR [60] have been used in multimodal image registration [83,57,33]. These measurements are also

adequate to unimodal image registration because they are robust to the noise, the different intensity contrast, and the

intensity inhomogeneity. In this work, CR is adopted because it is superior in accuracy, efficiency, and robustness [60,

56,39].

For the voxels of the same tissue in the target image, CR measures the intensity dispersion for their corresponding

points in the source image. Let N be the number of voxels in the overlapping region Ω between the source image Is and



12

the target image It . We divide the whole intensity range into NB bins: Bi, i = 1, . . . ,NB. Let Xi denote a set of voxels in the

region Ω of the source image satisfying that their corresponding voxels in the target image have intensities belonging

to the same intensity bin, Bi, as shown in Fig. 8. That is,

Xi = {p | p ∈Ω , It(F(p)) ∈ Bi} , (10)

where F can be the spatial transformation function Tr, T′r, Tg, or T in this work. Notice that N1 + N2 + · · ·+ NNB = N,

where Ni is the number of voxels in Xi. Image similarity based on CR is calculated by

SCR(It , Is,F) = 1− 1
Var(Is(Ω))

NB

∑
i=1

Ni

N
Var(Is(Xi)) , (11)

where function Var(Is(Ω)) and Var(Is(Xi)) evaluate the intensity variances of source image in Ω and Xi, respectively.

The voxels belonging to the same tissue generally have similar intensities. In the target image, therefore, the voxels

having intensities within each intensity bin Bi very likely belong to the same tissue. If the source and target images are

well aligned, voxels in Xi of the source image should also belong to the same tissue and hence the intensity variance of

Xi should be small. Consequently, larger CR value indicates higher image similarity and hence better alignment.

2.5 Evaluation of registration performance

This section introduces the methods used to evaluate the performance of the proposed affine and non-rigid registration

algorithms, including the data sets and the approaches used for comparisons.

2.5.1 Registration algorithms for performance comparisons

The proposed affine registration method in BIRT was compared with Statistical Parametric Mapping 2 (SPM2) [10],

Automated Image Registration version 5.2.5 (AIR5) [79], and FMRIB’s Linear Image Registration Tool version 5.5

(FLIRT) [39]. The proposed non-rigid registration method in BIRT was compared with SPM2 [7], Hierarchical At-

tribute Matching Mechanism for Elastic Registration version 1.0 (HAMMER) [66], and Diffeomorphic Anatomical

Registration Through Exponentiated Lie algebra (DARTEL) [5] in SPM5. BIRT was implemented in C++ and the pro-

grams of other algorithms were downloaded from their webpages. All registration experiments were executed on a PC

with an AMD Opteron 1.4 GHz processor running Linux.
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2.5.2 Data sets with known spatial mapping relation

T1-weighted head MR images acquired on a 1.5 Tesla GE MR scanner (3D-FSPGR pulse sequence; TR = 8.67 ms,

TE = 1.86 ms, TI = 400 ms, NEX = 1, flip angle = 15◦, bandwidth = 15.63 kHz) were used to construct simulation

data in our experiments. Both the experiments of affine and non-rigid registration quantitatively measured the alignment

accuracy and execution efficiency using two sets of images, each set with 30 images, with different spatial resolutions

(256×256×124, voxel size = 1.02×1.02×1.5 mm3 and 128×128×34, voxel size = 2×2×5 mm3). The registration

error was evaluated by the average deviation of the estimated displacement vectors from the ground-truth ones, and the

computational efficiency was compared according to the average execution time for registering an image pair.

Both the low- and high- resolution data sets applied in the experiment of affine registration were constructed by

applying 30 times of affine transformation to each of the 30 MR images originally scanned, each time with random

transformation parameters uniformly distributed within [−π/15, π/15] in radian, [−15 mm, 15 mm], [−0.05, 0.05], and

[−0.01, 0.01] for rotation, translation, scaling, and shearing, respectively. In the accuracy evaluation, each originally

scanned MR image was regarded as the source image and the randomly transformed images were regarded as the

target images, one at a time. The known random transformations provided the ground truths of corresponding points.

Moreover, the rigid parameters of the ground truths with the same image set were also used to evaluate the accuracy of

the rigid transformation estimated by the proposed method.

Three sets of source-target pairs of brain images, low and high resolution, with known deformation fields were

constructed by applying SPM2, HAMMER, and DARTEL to nonlinearly register 30 originally scanned MR images to

a specified target image. We regarded the originally scanned images, the deformed images, and the deformation fields

obtained by each registration method as the source images, the target images, and the ground truths of deformation,

respectively, to evaluate the performance of other three algorithms. These materials facilitate the performance evaluation

in a more objective way because the results are not biased toward a specific deformation type. The value to threshold

the TDOG image can affect the performance of our non-rigid registration method, in terms of alignment accuracy

and computational efficiency. Therefore, the constructed image pairs were also used to evaluate the influences of the

thresholding level.
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2.5.3 Parameters of registration algorithms

In our experiments, the parameters of the compared methods were set to their default values, except AIR5. The intensity

thresholds in AIR5 were set to the values which can exclude most of the background voxels and the scales of Gaussian

kernels were determined by the best average accuracy. Two necessary preprocesses in HAMMER, brain extraction and

tissue segmentation, were accomplished by Brain Extraction Tool version 2.1 (BET2) [68] and FMRIB’s Automated

Segmentation Tool version 4.1 [82], which are parts of the FMRIB’s Software Library [67]. For our affine and non-rigid

methods, we set the FWHM of the Gaussian variances (σ2
1 , σ2

2 ) in TDOG to be (4 mm, 3 mm). The proposed non-rigid

method applied BET2 to obtain brain masks and the RBF support extent was set to be 1.5 times of the subregion width.

2.6 Effects of registration accuracy on VBM analysis

This section introduces the experiment designed to investigate the influence of registration accuracy on the results of

VBM analysis, including the construction of image groups and the criteria used for quantitative evaluation.

2.6.1 Construction of image groups

Six groups of GM images were generated by applying TPS transformation to deform a phantom GM image obtained

from BrainWeb [25]. This avoids the segmentation step in VBM protocol [8,34] such that the analysis results were not

confounded by segmentation error. One normal group and five patient groups with different scales of volume differences

were generated in this experiment, in which each group contained 30 subjects and all the images were 157×189×156

with voxel size 1.0 mm3. Some related techniques for generating brain images with volumetric changes can be found in

[40,20,19].

A total of 208 control points on the cortical surface of the cerebrum and cerebellum were selected to create MR brain

images with or without volume difference in the cerebellum. Thirty of these points, referred as manipulating points, were

identified on the exterior cortical surface of the cerebellum and were used to generate difference patterns with different

scales. The other 178 points were used to fix anatomical structures, in which 38 points were selected from the interior

surface of the cerebellum and 140 points were placed on the surface of the cerebral cortex. Fig. 12(a) illustrates the

placement of these control points.
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MR brain images of the normal subjects and patients were constructed by the following procedures. There are three

steps in the generation of a patient image. First, we moved the manipulating points toward the cerebellum center. The

displacement magnitude, that is, the volume difference scale, was parameter-controlled. Second, all the 208 control

points were moved by a random vector with uniformly distributed magnitude within 2 mm in order to model the inter-

subject structure variation. In the last step, we applied TPS transformation to construct a patient image according to

these 208 control points. The construction procedure for a normal subject was the same as that for a patient, except the

scale of volume difference was set to zero. In our experiments, the magnitude of the volume difference was uniformly

distributed within different scales. Figs. 12(b) to (g) show the examples of the constructed images with difference scale

of 0 mm (normal subject), 2 mm, 3 mm, 4 mm, 5 mm, and 6 mm, respectively.

2.6.2 Accuracy assessment of VBM analysis

Two non-rigid registration algorithms, SPM2 and BIRT, were applied in the VBM analysis procedure. Normal subjects

and patients were first registered to the GM phantom and the obtained deformation fields were used to modulate the

deformed images for GM volume estimation [8]. The modulated images were convolved by a Gaussian kernel (FWHM

= 4 mm) and the resulted images were statistically analyzed by using two-sample t-test.

We examined the VBM analysis procedure and defined proper ground truths for quantitative comparison. VBM

structure analysis uses a registration method to normalize all subjects into the same stereotaxic space such that the corre-

sponding structures are aligned and the structure variances between subjects can be removed. Therefore, the MR images

transformed by a perfect registration method should be identical to the target (the GM phantom in this experiment).

According to this viewpoint, the structural discrepancies discovered by the VBM analysis with a perfect registration

method were the subtraction between the phantom image (that is, the perfectly registered images of normal subjects)

and the phantom image modulated by the TPS deformation field (that is, the perfectly registered patient images). We

applied Gaussian kernel (FWHM = 4 mm) to smooth the obtained ground truths of different scales of volume differences

because the same kernel was applied to convolve the normalized and modulated subjects before the statistical analysis.

Correlation coefficient provides another quantitative measurement showing that whether accurate registration can

facilitate VBM procedure to reveal more accurate statistical inferences. The voxels with higher values in the Gaussian

smoothed ground truth indicate that there are larger volume differences between groups. For an accurate VBM analysis,
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the positions of these voxels in the t-map obtained from VBM results should have higher significance. Therefore, the

higher correlation coefficient between the ground truth and the t-map implies that the VBM analysis can reveal regions

with volume differences more accurately.

3 Experimental results

This section presents our experimental results, including the validation of registration performance and the investigation

for the influences of registration accuracy upon VBM analysis.

3.1 Comparison of affine registration algorithms

Table 1 lists the performance comparisons for affine registration algorithms in terms of execution time and mean regis-

tration error calculated from all image voxels. For BIRT, the performance indices of the estimation for rigid parameters

and the affine registration across four multi-resolution levels are listed in the table. The results of our experiment using

high- (low-) resolution images showed that BIRT can achieve better accuracy than other algorithms in 76 (28) seconds,

which is longer than that of SPM2 (SPM2 and AIR5) within 30 seconds. We can observe that the initial rigid transfor-

mation estimated by the proposed method is quite accurate, which was 1.46 (2.62) mm in the alignment of high- (low-)

resolution images when only the rigid parameters of the ground truths are considered. It is apparent that the alignment

error of the subsequent affine registration decreases rapidly from coarse to fine levels. Fig. 9 plots the sorted registration

accuracy for all methods. The relatively low increasing rate indicates that BIRT can stably register brain image volumes.

This figure also shows that the accuracy of about 95% cases was smaller than 0.1 mm by using the proposed method in

this experiment. From Table 1 and Fig. 9, we can see that good spatial resolution of images can benefit the alignment

accuracy for all compared methods at the expense of longer execution time. Nevertheless, BIRT was less sensitive to

image resolution in contrast to other algorithms.

3.2 Determination of TDOG threshold

Fig. 10 illustrates the performance of our non-rigid method with respect to different settings of the Gaussian variances

and TDOG threshold. Our experimental results showed that a smaller TDOG threshold, which increases the amount
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of structure information, generally resulted in better alignment accuracy at the expense of longer execution time. We

can observe that both the alignment accuracy and computational efficiency of our non-rigid method converged when

the threshold was smaller than −5. Gaussian variances also determine the amount of the structure information, coarse

or fine. With the same thresholding level, it can be observed that the Gaussian variances providing coarse structure

information commonly resulted in efficient registration process at the cost of high alignment error. Our experimental re-

sults also showed that the TDOG threshold had greater influences upon the registration performance for high-resolution

images compared to that for low-resolution images. Compromising the registration accuracy and execution efficiency,

we empirically determined the values of the FWHMs of the Gaussian variances σ2
1 and σ2

2 and the TDOG thresholding

level to be 4 mm, 3 mm, and 0, respectively.

3.3 Comparison of non-rigid registration algorithms

Table 2 shows the evaluation results of BIRT (both the affine and non-rigid methods), SPM2, HAMMER, and DARTEL,

in which the registration error was calculated from the voxels in the brain area. Both the experiments using high- and

low- resolution images indicated that the registration error of BIRT steadily decreased across five deformation levels

and achieved better accuracy than other algorithms in a short period of time. It can be observed that HAMMER, DAR-

TEL, and BIRT performed better for the simulation images constructed by SPM2, compared to other data sets. The

registration accuracy of BIRT at the second (third) deformation level was comparable to that of SPM2 with the high-

(low-) resolution HAMMER and DARTEL data sets. The registration errors of HAMMER and BIRT for the images

constructed by DARTEL were relatively higher than those for other data sets. On the other hand, in the experiments

using high-resolution images, DARTEL did not perform as well for the alignments of the HAMMER data set as that of

the SPM2 data set. Figure 11 illustrates the sorted accuracy for the experiments of all data sets. From the increasing rate

of the profiles, we can see that the registration processes of all non-rigid methods were quite stable, except for SPM2

with the DARTEL data set and HAMMER with the low-resolution DARTEL data set. Our experimental results also in-

dicated that the alignment of high-resolution images can achieve better accuracy at the expense of longer execution time

compared to the registration of low-resolution data. Notice that the execution efficiency of DARTEL did not improve

significantly for low-resolution images, possibly because DARTEL imports data with the same spatial resolution, 1.5

mm3.
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3.4 Effects of registration accuracy on VBM analysis

Fig. 13 shows the results of VBM analyses using two different registration algorithms, SPM2 and BIRT. It can be seen

that the revealed patterns of volume difference (p < 0.005) using BIRT are more focal in all cases. This figure also

depicts that the VBM analysis using SPM2 non-rigid registration presents more false volume differences, particularly

in the groups with larger difference scales. Comparing the ground truths with the VBM results of various thresholds for

significance level, we obtained the receiver operating characteristics (ROC) of each registration algorithm. According

to the ROC curves shown in Fig. 14, BIRT is superior to SPM2 with respect to sensitivity and specificity. Table 3 lists

the correlation coefficients between the ground truths and the t-maps. Apparently, BIRT has higher values and thus is

superior to SPM2 in all cases.

4 Discussion

The proposed affine method registers brain images by optimizing the twelve parameters subsequent to the estimation of

the rigid transformation. Generally, rigid parameters are highly coupled and are critical to accurate registration results.

Due to the use of structure information, BIRT can robustly estimate the orientation and position differences between MR

images of the brains and the estimation error is small in our experiments. Therefore, the rigid transformation can provide

a good initial for the optimization of all affine parameters, even if there are large orientation differences, as the example

shown in Fig. 15. Both FLIRT and BIRT can find the correct orientation in such cases. However, FLIRT achieves this

goal by searching in a large space of parameters at the expense of longer execution time than that of BIRT. Experimental

results showed that the proposed affine method performs well in terms of accuracy, efficiency, and stability.

The determination of brain MSP is an essential step in our affine registration algorithm. In general, previously

published methods [4,49,73] can be applied to locate the MSP in the proposed procedure. In this work, we propose

a new MSP location method based on the TDOG image. Because of the structural properties of MSP revealed in the

TDOG image, the orientation of MSP can be estimated by a closed-form solution and the further refinement is very time

efficient. As shown in Table 1, the major computational burden of our method is from the Gaussian filtering procedure in

the TDOG image computation. Because the TDOG image is necessary for the subsequent non-rigid registration process,

the proposed MSP location method only slightly increases the whole computation with the centroid estimation, the PCA

computation of 3× 3 matrices, and the following optimization procedure. Moreover, the TDOG image and the PCA
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procedure can reduce the influence of noise and intensity inhomogeneity. Even when the neck and shoulder regions are

included in the images and could largely bias the estimation of brain centroid, the MSP can also be robustly located by

the proposed affine method, as the example shown in Fig. 16.

Extracting the brain region beforehand is usually beneficial to registration accuracy because the inter-subject vari-

ation of non-brain structures are relatively large [80]. Nevertheless, brain extraction is not included as a necessary step

in the proposed affine method for the generality of methodology. Notice that the estimation to brain orientation in the

proposed affine method is only adequate to the registration of brain images because it uses the information specific to

brain structures. Therefore, it is not a solution to general rigid registration problems.

A non-rigid registration method in BIRT applies Wendland’s RBFs to model image deformation field hierarchically,

in which all RBFs are adaptively deployed near the important structures of brains. Execution efficiency is an important

issue for the alignment of 3-D images, especially for those applications which apply registration intensively, such as

VBM analysis. Some characteristics of the proposed method can greatly reduce the computational complexity. First, the

adaptive placement decreases the number of the required RBFs. Second, coefficient estimation for one RBF at a time can

greatly reduce the parameter search space and hence accomplish the registration task rapidly. In this way, the structure

topology is always preserved in the modeling of deformation fields. Third, because of the compact support property of

the Wendland’s RBFs, there are only a few functions involved in the transformation calculation for each image point.

Fourth, some implementation skills, such as the use of pyramid images and the lookup tables of the RBFs, are also

quite beneficial to further improve the efficiency of image registration. Experimental results demonstrated that BIRT

can accurately align brain images in a relatively short period of time compared with SPM2, HAMMER, and DARTEL.

The spatial normalization transforming MR brain images into the same stereotaxtic space for statistical comparison

is an essential step in VBM analysis. It is commonly believed that the registration accuracy greatly affects the analysis

results. However, to the best of our knowledge, there is still no quantitative study addressing this issue. Deviation of the

VBM analysis was majorly contributed by the smoothing, the voxel-wise statistics, and the alignment errors of image

registration. In this work, we constructed MR images of subjects with or without volume differences to investigate the

registration errors upon the accuracy of VBM analysis. From the results of the well-controlled experiments, we conclude

that an accurate registration method can facilitate VBM analysis to precisely report the structure differences between

subject groups, in terms of both sensitivity and specificity.
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BIRT can also be applied to register images of different modalities other than T1-weighted images. Our affine

method is applicable to the alignment of brain images in which the MSP and CC have sufficiently large intensity contrast

with the neighboring tissues. Additional preprocessing is required to invert the intensity contrast of brain tissues if the

intensities in the MSP region are higher than those of CC. On the other hand, the proposed non-rigid registration method

is general and suitable for the registration of images with similar structures.

In conclusion, we have proposed image registration, affine and non-rigid, which utilize the structure information

derived from image derivatives. Experimental results indicated that the proposed BIRT methods can rapidly align brain

structures with high accuracy compared to several other existing algorithms. An experiment using MR image groups

with or without volume differences was also conducted to demonstrate that accurate registration can improve VBM

analysis, in terms of both the sensitivity and the specificity.
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Fig. 1 The TDOG foreground reveals the regions with relatively low intensities. (a) One axial slice of a T1-weighted MR brain image. (b)

The pixel intensity profile on the scan line X. (c) An example of DOG kernel. (d) The results obtained by convolving DOG kernel to the scan

line X. (e) Image overlay of the the 2D TDOG foreground (in red color) on the axial slice.

Fig. 2 Flowchart of the proposed affine registration method. The brain MSPs in the source and target images are determined according to the

TDOG images and are then overlapped together. The alignment on the overlapped MSPs is achieved by maximizing the image similarity. The

obtained rigid parameters are further refined and then applied to initialize the affine registration of brain images.

Fig. 3 Registration between the source image (a) and the target image (f) by using the proposed BIRT methods. The slices shown from (b) to

(e) illustrate the results of the MSP overlapping, alignment on the overlapped MSP, affine registration, and non-rigid registration, respectively.

The white line in (a) indicates the estimated MSP of the source image whereas those in (b), (c), and (f) indicate the estimated MSP of the target

image. The arrows in (d) and (e) indicate those areas with stepwise improved alignment refined by the proposed affine and non-rigid methods.

Fig. 4 Brain MSP estimation and refinement. (a) TDOG image is more planarly distributed nearby the MSP (top), compared to other regions

(middle). Applying PCA to the TDOG image, the eigenvector corresponding to the smallest eigenvalue gives an estimate to the MSP normal

(bottom). (b) The MSP estimated with an analytical solution. (c) The MSP refined by maximizing the number of foreground TDOG voxels.

Fig. 5 Segmentation of CC on MSP. (a) The circular area centered at the gravity of brain MSP, O, is considered in the segmentation of CC.

(b) Only one connected region, the CC on MSP, is found in the first thresholding step locates the CC. (c) Excess non-brain tissues can bias the

estimation of the circular area considered in the CC segmentation. (d) The intensity differences between CC and the surrounding tissues are

not significant and thus many connected regions, the candidates of CC, are found in the first thresholding step. (e) Applying Otsu’s method

[54], the calculated intensity threshold can distinguish the CC from other tissues.

Fig. 6 Flowchart of the proposed non-rigid registration method. Non-brain regions of the target brain are first removed to obtain a brain mask,

which is then used to extract the brain region in the TDOG image of the target brain and construct the brain-only TDOG. The deformation

field is modeled by a set of Wendland’s RBFs hierarchically distributed at the anatomical structures revealed in the brain-only TDOG.

Fig. 7 The whole brain volume is hierarchically divided into eight subregions. An RBF is deployed at the center of a subregion containing

salient structure revealed by the brain-only TDOG. This figure illustrates the RBF distributions at four levels, in which a red square represents

a subregion deployed with an RBF.

Fig. 8 CR measures the intensity dispersion for the voxel set Xi in the source image which contains voxels with their corresponding points in

the target image belonging to the same intensity bin Bi.

Fig. 9 Comparison for the stability and accuracy of affine registration algorithms. The solid (dashed) lines show the results of experiments

using 256×256×124 (128×128×34) images with voxel size 1.02×1.02×1.5 (2×2×5) mm3.
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Fig. 10 Influences of the thresholding value in TDOG upon the alignment accuracy and computational efficiency of our non-rigid registration

method. Four different FWHM settings for the Gaussian variances were evaluated, including (12 mm, 11 mm), (8 mm, 7 mm), (4 mm, 3 mm),

and (2 mm, 1 mm). The solid (dashed) lines show the results of experiments using 256×256×124 (128×128×34) images with voxel size

1.02×1.02×1.5 (2×2×5) mm3. Notice that the listed computational efficiency excluded the execution time of the required brain extraction

and affine registration processes.

Fig. 11 Comparison for the stability and accuracy of non-rigid registration algorithms with the simulated images constructed by (a) SPM2,

(b) HAMMER, and (c) DARTEL. The solid (dashed) lines show the results of experiments using 256× 256× 124 (128× 128× 34) images

with voxel size 1.02×1.02×1.5 (2×2×5) mm3.

Fig. 12 The construction of simulated images with different degrees of volume difference in the cerebellum. (a) All the images were con-

structed from the BrainWeb phantom GM (top) by using the TPS transformation. An inferior slice (bottom) of the phantom image illustrates

the distribution of the control points. The red points placed on the exterior cortical surface of the cerebellum are used to generate volume

difference patterns in the cerebellum. The green and the blue points distributed on the interior cortical surface of cerebellum and the cortical

surface of cerebrum, respectively, are used to fix anatomical structures. The following figures illustrated the constructed MR images with

different scales of volume differences: (b) 0 mm (normal subject), (c) 2 mm, (d) 3 mm, (e) 4 mm, (f) 5 mm, and (g) 6 mm.

Fig. 13 The VBM structural analysis results (p < 0.005) using simulated images with different scales of volume differences, in which the

image normalization was performed by using (a) BIRT and (b) SPM2.

Fig. 14 The ROC curves of the simulated VBM structural analyses, in which the red and blue curves represent the results with different scales

of volume differences from 2 mm to 6 mm using BIRT and SPM2, respectively.

Fig. 15 The affine registration for brains with large orientation difference. (a) The ICBM-152 brain template used as the target image. (b) A

T1-weighted image used as the source image. The affine-registered result using (c) BIRT, (d) FLIRT, (e) SPM2, and (f) AIR5.

Fig. 16 Affine registration for the brain images which include the neck regions and partial brain tissues are out of the field of view. (a) Source

image. (b) Source image transformed using the estimated rigid parameters. (c) Affine registered source image. (d) Target image. (e) The

estimated MSP of (d).
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Fig. 1 The TDOG foreground reveals the regions with relatively low intensities. (a) One axial slice of a T1-weighted MR brain image. (b)

The pixel intensity profile on the scan line X. (c) An example of DOG kernel. (d) The results obtained by convolving DOG kernel to the scan

line X. (e) Image overlay of the the 2D TDOG foreground (in red color) on the axial slice.
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Fig. 2 Flowchart of the proposed affine registration method. The brain MSPs in the source and target images are determined according to the

TDOG images and are then overlapped together. The alignment on the overlapped MSPs is achieved by maximizing the image similarity. The

obtained rigid parameters are further refined and then applied to initialize the affine registration of brain images.
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Fig. 3 Registration between the source image (a) and the target image (f) by using the proposed BIRT methods. The slices shown from (b) to

(e) illustrate the results of the MSP overlapping, alignment on the overlapped MSP, affine registration, and non-rigid registration, respectively.

The white line in (a) indicates the estimated MSP of the source image whereas those in (b), (c), and (f) indicate the estimated MSP of the target

image. The arrows in (d) and (e) indicate those areas with stepwise improved alignment refined by the proposed affine and non-rigid methods.
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Fig. 4 Brain MSP estimation and refinement. (a) TDOG image is more planarly distributed nearby the MSP (top), compared to other regions

(middle). Applying PCA to the TDOG image, the eigenvector corresponding to the smallest eigenvalue gives an estimate to the MSP normal

(bottom). (b) The MSP estimated with an analytical solution. (c) The MSP refined by maximizing the number of foreground TDOG voxels.
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Fig. 5 Segmentation of CC on MSP. (a) The circular area centered at the gravity of brain MSP, O, is considered in the segmentation of CC.

(b) Only one connected region, the CC on MSP, is found in the first thresholding step locates the CC. (c) Excess non-brain tissues can bias the

estimation of the circular area considered in the CC segmentation. (d) The intensity differences between CC and the surrounding tissues are

not significant and thus many connected regions, the candidates of CC, are found in the first thresholding step. (e) Applying Otsu’s method

[54], the calculated intensity threshold can distinguish the CC from other tissues.
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Fig. 6 Flowchart of the proposed non-rigid registration method. Non-brain regions of the target brain are first removed to obtain a brain mask,

which is then used to extract the brain region in the TDOG image of the target brain and construct the brain-only TDOG. The deformation

field is modeled by a set of Wendland’s RBFs hierarchically distributed at the anatomical structures revealed in the brain-only TDOG.
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Level 1 Level 2 Level 3 Level 4

Fig. 7 The whole brain volume is hierarchically divided into eight subregions. An RBF is deployed at the center of a subregion containing

salient structure revealed by the brain-only TDOG. This figure illustrates the RBF distributions at four levels, in which a red square represents

a subregion deployed with an RBF.
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Fig. 8 CR measures the intensity dispersion for the voxel set Xi in the source image which contains voxels with their corresponding points in

the target image belonging to the same intensity bin Bi.
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Fig. 9 Comparison for the stability and accuracy of affine registration algorithms. The solid (dashed) lines show the results of experiments

using 256×256×124 (128×128×34) images with voxel size 1.02×1.02×1.5 (2×2×5) mm3.
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Fig. 10 Influences of the thresholding value in TDOG upon the alignment accuracy and computational efficiency of our non-rigid registration

method. Four different FWHM settings for the Gaussian variances were evaluated, including (12 mm, 11 mm), (8 mm, 7 mm), (4 mm, 3 mm),

and (2 mm, 1 mm). The solid (dashed) lines show the results of experiments using 256×256×124 (128×128×34) images with voxel size

1.02×1.02×1.5 (2×2×5) mm3. Notice that the listed computational efficiency excluded the execution time of the required brain extraction

and affine registration processes.
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Fig. 11 Comparison for the stability and accuracy of non-rigid registration algorithms with the simulated images constructed by (a) SPM2,

(b) HAMMER, and (c) DARTEL. The solid (dashed) lines show the results of experiments using 256× 256× 124 (128× 128× 34) images

with voxel size 1.02×1.02×1.5 (2×2×5) mm3.
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Fig. 12 The construction of simulated images with different degrees of volume difference in the cerebellum. (a) All the images were con-

structed from the BrainWeb phantom GM (top) by using the TPS transformation. An inferior slice (bottom) of the phantom image illustrates

the distribution of the control points. The red points placed on the exterior cortical surface of the cerebellum are used to generate volume

difference patterns in the cerebellum. The green and the blue points distributed on the interior cortical surface of cerebellum and the cortical

surface of cerebrum, respectively, are used to fix anatomical structures. The following figures illustrated the constructed MR images with

different scales of volume differences: (b) 0 mm (normal subject), (c) 2 mm, (d) 3 mm, (e) 4 mm, (f) 5 mm, and (g) 6 mm.
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Fig. 13 The VBM structural analysis results (p < 0.005) using simulated images with different scales of volume differences, in which the

image normalization was performed by using (a) BIRT and (b) SPM2.
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Fig. 14 The ROC curves of the simulated VBM structural analyses, in which the red and blue curves represent the results with different scales

of volume differences from 2 mm to 6 mm using BIRT and SPM2, respectively.
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Fig. 15 The affine registration for brains with large orientation difference. (a) The ICBM-152 brain template used as the target image. (b) A

T1-weighted image used as the source image. The affine-registered result using (c) BIRT, (d) FLIRT, (e) SPM2, and (f) AIR5.
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Fig. 16 Affine registration for the brain images which include the neck regions and partial brain tissues are out of the field of view. (a) Source

image. (b) Source image transformed using the estimated rigid parameters. (c) Affine registered source image. (d) Target image. (e) The

estimated MSP of (d).
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Table 1 Performance comparison of affine registration algorithms. The upper and lower parts list the results of experiments using images with

higher and lower spatial resolution, respectively. The first colume lists the mean displacement magnitude (MDM) calculated from the spatial

mapping relation of image pairs. The following seven columns list the averaged performance of the proposed BIRT method step-by-step,

including the MSP overlapping, the alignment on the overlapped MSP, the rigid registration, and the affine registration across four multi-

resolution levels. To demonstrate the accuracy of rigid transformation estimation, the numbers shown in the parentheses of the Error rows are

the average alignment error when only the rigid parameters of the ground truths are considered. The average execution times used to calculate

the TDOG images are listed in the parentheses of the Time rows. Note that the execution time of BIRT is accumulated for each step. The last

three columns list the performance indices for FLIRT, SPM2, and AIR5.

Performance BIRT FLIRT SPM2 AIR5

criteria MDM MSP overlap MSP alignment Rigid Affine

Level 1 Level 2 Level 3 Level 4

Error (mm)H 22.83 9.79 (9.09) 3.34 (1.62) 3.30 (1.46) 2.98 0.78 0.20 0.05 0.28 0.57 3.52

Time (sec)H - 27 (26.89) 45 51 51 53 76 364 442 51 131

Error (mm)L 22.80 9.89 (9.83) 7.80 (3.35) 3.35 (2.62) 3.00 0.76 0.21 0.06 0.37 0.94 4.00

Time (sec)L - 1 (0.99) 9 12 12 13 28 43 120 21 7

H256×256×124 images with voxel size 1.02×1.02×1.5 mm3

L128×128×34 images with voxel size 2×2×5 mm3
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Table 2 Performance comparison of non-rigid registration algorithms. The upper and lower parts show the results of experiments using

images with higher and lower spatial resolution, respectively. For each part, the performance indices with the images constructed by SPM2,

HAMMER, and DARTEL are listed from top to bottom. The first colume lists the mean displacement magnitude (MDM) calculated from the

spatial mapping relation of image pairs. The following six columns list the performance of the proposed BIRT method. The last three columns

list the registration performance of SPM2, HAMMER, and DARTEL. The numbers before and after the slash are the registration error and

the execution time, respectively. The numbers in parentheses show the preprocessing time if required. Note that the execution time of BIRT is

accumulated for each step.

Data set BIRT SPM2 HAMMER DARTEL

MDM Affine L1 L2 L3 L4 L5

SPM2 dataH 17.44/- 2.74/113 (47) 2.67/116 1.55/121 0.77/141 0.33/242 0.19/321 - 0.59/8845 (3766) 0.52/12783 (2145)

HAMMER dataH 14.39/- 2.67/119 (33) 2.53/125 1.96/150 1.22/278 0.65/350 0.34/415 2.07/276 - 1.92/11480 (1950)

DARTEL dataH 14.49/- 2.86/114 (33) 2.02/119 1.86/141 1.60/251 1.12/311 0.78/367 2.26/298 1.01/8646 (3777) -

SPM2 dataL 17.49/- 3.75/45 (8) 3.44/46 2.70/71 1.52/98 0.80/110 0.60/121 - 1.17/781 (135) 2.03/11273 (1011)

HAMMER dataL 13.39/- 2.95/43 (8) 2.82/43 2.64/64 2.05/84 1.36/94 1.03/102 2.02/194 - 2.15/11594 (933)

DARTEL dataL 15.49/- 2.91/32 (8) 2.16/32 2.04/51 1.94/69 1.70/78 1.45/85 2.42/186 2.23/595 (125) -

mm/sec. (sec.)

H256×256×124 images with voxel size 1.02×1.02×1.5 mm3

L128×128×34 images with voxel size 2×2×5 mm3
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Table 3 The correlation coefficients between the ground truths and the t-maps obtained from VBM analysis using BIRT and SPM2 methods.

Scale of volume difference

2 mm 3 mm 4 mm 5 mm 6 mm

SPM2 0.61 0.61 0.63 0.60 0.58

BIRT 0.65 0.67 0.74 0.74 0.74


