
An Efficient Tile-Based ECO Router with Routing Graph
Reduction and Enhanced Global Routing Flow*

Jin-Yih Li
Design Automation Department

Taiwan Semiconductor Manufacturing Company Ltd.
Hsin-Chu 300, Taiwan

jyliv@tsmc.com

Yih-Lang Li
Computer and Information Science Department

National Chaio-Tung University
Hsin-Chu 300, Taiwan

ylli@cis.nctu.edu.tw

ABSTRACT
Engineering Change Order (ECO) routing is frequently

requested in the later design stage for the purpose of delay and
noise optimization. ECO routing is complicated by huge existing
obstacles and the requests for various design rules. Tile-based
routers have work with fewer nodes of the routing graph than grid
and connection-based routers; however, the number of nodes of
the tile-based routing graph has grown to over a thousand millions
for SOC designs. This work depicts a new ECO routing design
flow with routing graph reduction and enhanced global routing
flow. Routing graph reduction reduces the complexity of nodes by
removing redundant tiles and aligning neighboring tiles to merge
adjacent block tiles. Routing graph reduction reduces tile
fragmentation such that the ECO router can run twice as fast
without sacrificing routing quality. Enhanced global routing flow
incorporates ECO global routing with extended routing and GCell
restructuring to prevent routing failure in a routable routing. The
ECO router with new design flow can perform up to 20 times
faster than the original tile-based router, at the cost of only a very
small decline in routing quality.

Categories and Subject Descriptors
B.7.2 [Hardware]: Integrated Circuits— Design Aids: Placement
and Routing

General Terms: Algorithms, Design, Performance

Keywords: ECO routing, gridless router, tile-based router,
connection-based router, global routing

1. INTRODUCTION
In the era of deep submicron (DSM) technology and SoC

design, multi-million gate designs raise new challenges for layout
optimization, where interconnect optimization becomes a
dominant factor by the trend of ongoing shrinkage of the devices,
wire width and wire space required by wires. Wire sizing and wire
spacing have been surveyed [1], with reference to different design
rules on critical or sensitive nets for eliminating excess delay and
noise.

ECO routing, which is usually a point-to-point routing
operation, is commonly requested toward the end of the design
process to optimize delay and noise or to complete an imperfect
layout. Many existing interconnections, inevitably flattened
traverse operation, different design rules for delay and noise issues,
and the possible need for re-extracting a routing environment make
ECO routing highly complicated. A gridless router is more flexible
than the grid router in accommodating different design rules. A
straightforward realization of the gridless router uses fine uniform
grids, or manufacturing grids. Although it can accommodate
various routing rules, the induced huge routing graph for a large
design makes this method inapplicable because it requires too
much searching time and memory space. Different models have
been investigated to reduce the routing graph, [2-15], of which the
connection graph and the tile-based graph are the most popular
types . In [5], a connection graph was constructed by extending
lines through the boundaries of all obstacles until they intersect
with other obstacles or boundaries of the routing region. Its
drawback is its inconvenient pre-construction and representation.
Cong [6, 7, 8] presented an implicit connection graph whose
extended lines may pass through obstacles. The implicit
connection graph has the advantages of fast graph creation and the
guarantee ability to find an optimal path, although it has more
nodes and edges than that in [5]. The implicit graph behavior
necessitates the performance of query operation to determine the
legality of next move. As a matter of fact, the connection-graph
model generates too many graph nodes to allow a fast path search
for a large design.

The tile-based model [9-15] is another gridless approach, in
which the routing region are partitioned by obstacles into space
tiles and block tiles, and represented using a corner-stitching data
structure [16]. Figure 1(a) shows a horizontal tile plane with the

* This work was partially supported by the National Science
Council of Taiwan by Grant No. NSC 92-2220-E-009-031.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, or republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a
fee.
ISPD'05, April 3–6, 2005, San Francisco, California, USA.
Copyright ACM 1-59593-021-3/05/0004...$5.00.

maximum horizontally stripped property. A space tile
corresponds to a node of the tile-based routing graph and an edge
is present between two nodes if the related space tiles are adjacent
to each other. Figure 1(b) presents the related routing graph in Fig.
1.(a). The path is sought by tile propagation between two adjacent
tiles of a layer or two overlapping tiles of neighboring layers. Both
connection graph and tile-based approaches can be used to find an
optimal path for ECO point-to-point routing, but a large design,
such as a chip-set design, can yield several hundred million tiles
for a single routing layer. Therefore, the routing graph must be
simplified to accelerate ECO routing.

This work focuses on increasing the tile-based point-to-point
routing speed. The rest of this paper is organized as follows.
Section 2 briefly reviews the tile-based router and defines basic
terminology. Section 3 presents the new design flow for increasing
the ECO routing speed. Section 4 presents the routing graph
reduction and Section 5 presents the enhanced global routing flow.
Section 6 discusses the experimental results obtained using a real
design. Finally, Section 7 draws conclusions.

(a) (b)

Figure 1. Tile-based graph.

Figure 2. Redundant tiles.

2. PRELIMINARIES
2.1 Tile-Based Router

Tile-based routers have been developed and thoroughly
investigated. Fast queries and powerful geometric Boolean
operations on the corner-stitching tile plane make routing efficient.
The concept behind the tile-based router is to route the centerline
of a path along the space tiles on corner-stitching tile planes that
are generated by adding the contours of width ws + ww/2- 1/2 to all
existing shapes, where ws is the space rule of the net to be routed
to all shapes of the same layer as the routed net and ww is the wire
width. The contours can guarantee that the newly created path
will not induce any design rule violation. In multi-layer routing,
the available via regions at which the center of a new via can be
placed can also be calculated in a similar way.

Tile-based point-to-point routing consists of two stages - tile
propagation and path construction [14]. Tile propagation is
undertaken to reach the target in all possible ways over the space
tiles of a single layer and across adjacent layers. Single-step tile
propagation is from the current space tile to its neighboring space
tile of the same layer or an adjacent layer; the neighboring space
tile of an adjacent layer is the adjacent-layer space tile that can
accommodate a via that connects the current space tile to itself.
Tile propagation applies a pre-defined cost function to guide the
search for the path; it then finds an optimal list of free tiles. In
multi-layer routing, the tile list may include tiles in different layers.
Finally, path construction generates a minimum-corner path that
passes through the list of tiles.

2.2 Terminology
The following definitions are used in this work.

Definition. (essential/redundant tile) If a space tile can contribute
to further propagation, it is called an essential tile; otherwise, it is
called a redundant tile.

Definition. (conjunct tile) A tile, A, is referred to as a conjunct tile
of tile B if a single-step tile propagation from A to B on the same
layer or across adjacent layers is feasible.

Definition. (one-conjunct) A space tile is said to be one-conjunct
if it has only a single conjunct tile.

Definition. (0-conjunct) A space tile is said to be 0-conjunct if it
has no conjunct tile.

Definition. (global cell) An entire layout is partitioned into tiles.
Each tile is referred to as a global cell (GCell).

Definition. (Active GCell) Connected GCells, the result of ECO
global routing, which are used to guide tile propagation are called
active GCells.

Definition. (Idle GCell) Gcells that are not active GCells are
called idle GCells.

Figure 2 illustrates these definitions. Figure 2 depicts three
redundant tiles, T1, T2 and T3. For instance, T1 and T3 can be
reached by tile propagation from their top neighboring space tile
and a neighboring space tile of an adjacent layer, respectively;
however, tile propagation from T1 or T3 can not explore any new
space tile. Accordingly, T1 and T3 are the one-conjunct space tiles
and tile T2 is 0-conjunct. Notably, T3 is accessible only from a tile
of another layer through the via region. If T3 is accessible from
more than two tiles of other layers through the via region, then it
is an essential tile.

3. ECO ROUTING DESIGN FLOW
The tile-based router comprises three stages - corner-stitching

tile plane construction, tile propagation and path construction.
The complexity of the visited graph nodes is to be reduced during
routing to increase the routing speed. A new ECO routing design
flow, which contains Routing Graph Reduction (RGR) and
Enhanced Global Routing Flow (EGRF) is proposed. RGR
includes the removal of redundant tiles and the alignment of

Block Tile
Space Tile
Via Region

Block Tile: 10

Space Tile: 16

neighboring tiles; the former removes space tiles that do not
contribute to further tile propagation; the latter shrinks space tiles
in an attempt to merge adjacent block tiles. During the alignment
of neighboring tiles, extended blockage is prevented from reducing
the number of conjunct tiles of the shrunk space tile. RGR can not
only improve routing performance but also preserve routability.
EGRF incorporates ECO global routing with extended routing and
GCell restructuring to prevent failure in a routable routing.
Traditionally, detailed routing follows global routing, and a new
global routing may be requested if detailed routing fails to find a
path. The flow is enhanced by introducing extended routing and
GCell restructuring. Besides, each GCell has six internal edges
used to configure the connectivity, which indicates a path that
passes through itself and connects two neighboring GCells, among
its four neighboring GCells. Extended routing is applied by
expanding the range of the GCell through which the routing path
cannot pass, and then rerouting the extended GCell. If extended
routing also fails, then the internal edges of those active Gcells that
cannot reach to their neighboring GCells by tile propagation are
restructured. Two adjacent GCells can be connected in three ways
in a single direction; for instance, a GCell can be connected to its
right neighbor from top to right, from left to right, or from bottom
to right. If no path that connects two adjacent Gcells exists, then
GCell restructuring breaks that connectivity in a manner to
prevent subsequent global routing from involving these two
GCells in the same way. Section 5 presents more details
concerning the GCell’s internal edge. Visited GCells are used as
start points, and global routing is performed again to yield new
results following GCell restructuring. This process is repeated
until a feasible path is identified or all GCells have been visited.
Figure 3 depicts the proposed new ECO routing design flow.

Figure 3. New ECO routing design flow.

4. ROUTING GRAPH REDUCTION
The corner-stitching tile planes of a design with numerous

existing obstacles are generally fragmented. This phenomenon

increases the computational complexity of tile propagation. This
section presents two methods – the removal of redundant tiles and
the alignment of neighboring tiles - to reduce tile fragmentation.

4.1 Removing Redundant Tiles
The process of t ile propagation was observed. Many paths are

terminated because they enter a space tile that has no exit that
allows further tile propagation. Such space tiles do not contribute
to routing, but they increase the problem of tile fragmentation.
Clearly the redundant tiles are the one-conjunct space tiles and the
0-conjunct space tile.

The corner-stitching data structure supports fast neighbor
finding and area enumeration that visits each tile exactly once.
Accordingly, the redundant tiles can be efficiently removed by
examining one-conjunct and 0-conjunct space tiles within an
enumeration operation over the entire tile plane. Notably, only the
redundant space tiles are changed into block tiles without merging
them with their neighboring block tiles; the intermediate tile plane
is not maximally horizontally or vertically stripped because
merging during enumeration may disrupt the order of enumeration.
After the enumeration operation has been completed, the tile plane
is reconstructed to preserve the maximally horizontal or vertical
strip. Figure 4(a) shows an intermediate tile plane during the
removal of redundant tiles, where T1, T2 and T3 are initially space
tiles. Figure 4(b) displays the final result of removing redundant
tiles and the tile complexity is reduced by seven tiles.

Essential tiles may become redundant after their neighboring
redundant tiles have been removed, as depicted in Fig. 5(a).
Initially, tiles T1 and T2 are essential tiles. After the redundant tile
T3 is removed, T2 becomes redundant, as shown in Fig. 5(b). Also
T1 becomes a redundant tile after T2 is removed.

 (a) (b)

Figure 4. Removal of redundant tiles.

(a) (b)

Figure 5. Essential tiles become redundant tiles.

Tile
Propagation

Path
Construction

Neighbor Tiles
Alignment

Feasible Solution
Found

Extended
Routing

No Feasible
Solution

Success

Fail

Build corner-stitching

tile planes

Routing Graph Reduction

Global
Routing

Redundant Tiles
Removal

GCell
Restructuring

Figure 6. Neighboring Tiles Alignment.

4.2 Aligning Neighboring Tiles
This section illustrates the alignment of neighboring tiles using

the tile plane of the maximally horizontal strip. On a maximally
horizontally stripped tile plane, the adjacent block tiles typically
form ragged left and right boundaries. Ragged boundaries cause tile
fragmentation. The basic idea is to shrink space tiles to align them
with the ragged border such that the neighboring block tiles can
merge, as depicted in Fig. 6. In Fig. 6, tiles T4 and T5 are shrunk, so
tiles T1 and T2 are enlarged such that they can be merged to
become a tile, where A and B are the reduction regions; leftward
shrinkage is applied to T4, and rightward shrinkage is applied to T5.
Here, a rightward/leftward shrinkage on Ti is considered and a
rightward/leftward shrinking is applied to Ti’s left/right border.

(a)

(b)

Figure 7. Two illegal shrinkings.

Notably, not all space tiles can be shrunk. If a space tile, say
T1, is to be shrunk to be merged with another tile, say T2, then a
feasible shrinking must conform to the following two rules.

Rule 1. A shrinking cannot obstruct an existing path from T1 to its
neighboring tile, say T3, of the same layer. Figure 7(a) depicts an
illegal shrinking that does not satisfy this property. Figure 7(a)
shows an original routing path between tiles T1 and T3. However,
this path will disappear if a leftward shrinking is performed on T1
to align it with T2.

Rule 2. A shrinking cannot obstruct an existing path from T1 to its
neighboring tile in adjacent layer. This rule requires that no via
region can overlap the reduction region. In Fig. 7(b), a leftward
shrinking of T1 will wipe out a routing path that is connected to an
adjacent-layer space tile.

Before the shrinking process can be introduced, the following
notation is presented.

• Ta: currently processed space tile.
• l(Ti)/r(Ti): x-coordinate of tile Ti’s left/right edge.

• RLS(Ti)/RRS(Ti): leftward/rightward shrinking on Ti.
• l(RLS(Ti))/r(RLS(Ti)): stop/start position of a leftward shrinking

on Ti.
• l(RRS(Ti))/r(RRS(Ti)): start/stop position of a rightward

shrinking on Ti.
• Nrt(Ti): rightmost top neighbor of tile Ti.
• Ntr(Ti): topmost right neighbor of tile Ti.
• Nlb(Ti): leftmost bottom neighbor of tile Ti.
• Nbl(Ti): bottommost left neighbor of tile Ti.

Figure 8 lists four cases of shrinkage during enumeration to
elucidate how to decide whether a shrinking on a space tile is
feasible. Only space tiles are considered because shrinking a
useless space region will neither reduce routability nor produce
incorrect routing results. In contrast, shrinking block tiles may
make a path across present blockages. Ta’s top and bottom
neighbors differentiate these four cases. Only Rule 1 is discussed
in the following since Rule 2 is clear.

(a) (b)

Figure 9. Shrinking Case (1).

 (a) (b)

Figure 10. Shrinking Case (2).

Case (1): Nrt(Ta) is a space tile and the candidate to be shrunk. The
goal is to perform an RLS(Nrt(Ta)), where l(RLS(Nrt(Ta))) =
r(Ta) and r(RLS(Nrt(Ta))) = r(Nrt(Ta)). Rule 1 requires that
a top or bottom neighboring space tile of Nrt(Ta), say T1,
cannot exist, such that l(RLS(Nrt(Ta))) ≤ l(T1) <
r(RLS(Nrt(Ta))). Figure 9(a) depicts legal shrinking, while
Fig. 9(b) shows illegal shrinking.

Case (2): Nrt(Ta) is a block tile and Ta is the candidate to be shrunk.
The goal is to perform an RLS(Ta), where l(RLS(Ta)) =
l(Nrt(Ta)) and r(RLS(Ta)) = r(Ta). Rule 1 requires that a
bottom neighbor space tile of Ta, , say T1, cannot exists
such that l(RLS(Ta)) ≤ l(T1) < r(RLS(Ta)). Figure 10(a)
depicts a legal shrinking, while Fig. 10(b) shows an illegal
shrinking.

Case (3): Nlb(Ta) is a space tile and the candidate to be shrunk. The
goal is to perform an RRS(Nlb(Ta)), where l(RRS(Nlb(Ta))) =

Ta

case 1 case 2

Ta

case 3

Ta

Ta

case 4
Figure 8. Four shrinking cases.

Block Tile

Space Tile

Via Region

Reduction Region

l(Nlb(Ta)) and r(RRS(Nlb(Ta))) = l(Ta). Rule 1 dictates that
a top or bottom neighboring space tile of Nlb(Ta), say T1,
cannot exist, such that l(RRS(Nlb(Ta))) < r(T1) ≤
r(RRS(Nlb(Ta))).

Case (4): Nlb(Ta) is a block tile and Ta is the candidate to be shrunk.
The goal is to perform an RRS(Ta), where l(RRS(Ta)) = l(Ta)
and r(RRS(Ta)) = r(Nlb(Ta)). Rule 1 dictates that a top
neighbor space tile of Ta, say T1, cannot exist, such that
l(RRS(Ta)) < r(T1) ≤ r(RRS(Ta)).

Tiles are only shrunk during enumeration to maintain the
correct enumeration order. After the enumeration was completed,
the tile plane was reconstructed to preserve the maximum
horizontal strip.

5. ENHANCED GLOBAL ROUTING FLOW
Global routing is used to guide the detailed routing to reduce the

range of the path search. A new global routing may be requested if
detailed routing fails to find a path. The flow is enhanced by
introducing extended routing and GCell restructuring to guarantee
the finding of a feasible solution to routable routing.

5.1 Global Routing Graph
The entire layout is partitioned into several global cells

(GCell). The GC(i,j) is defined as the GCell at the i-th column and
j-th row. The global routing graph G(V,E) is defined as follows;
each GCell corresponds to a node of G(V,E) and an edge exists
between two nodes if their related partitions are adjacent. The V(i,j)
is defined as the vertex at the i-th column and j-th row. Each GCell
and its related vertex have six common internal edges - nw, ws, se,
en, ns and ew. The nw edge represents the connectivity between
the partition’s north and west boundaries and the se edge
represents the connectivity between the partition’s south and east
boundaries. The connectivity of an internal edge is either
connected or disconnected. A connected nw edge of a partition, say
Pi, indicates the existence of a routing path across Pi , which
connects Pi‘s north and west neighbors. For instance, if V(i,j)’s
internal edge nw is disconnected, then no path connects nodes
V(i,j+1) and V(i-1,j) across V(i,j). All internal edges are set to be
initially connected.

 Most likely, an ECO routing region is very congested and
numerous existing obstacles fragment available routing regions, so
finding a straight path across a GCell is difficult and the path may
be zigzag. Accordingly, the via region is more important than the
wire region in helping a path to pass through a congested region.
Estimating the routability of the resources based on the via region
model for ECO global routing differs greatly from doing so for
traditional global routing, which mainly calculates the utilization
ratio for the regions. If a GCell has more available via resources,
then a path that passes through it can be more easily found. The
availability of via resources is estimated from the total area of the
available via regions, which is calculated quickly by enumerating
the space tiles on the via tile planes. The via capacity, VC, of a
GCell is defined as,

VC= VA/A, (1)

where VA is the total area of the available via region of the GCell,
and A is the area of the GCell. Each vertex in G is assigned a cost,
c, which is inversely proportional to VC. Cost c is defined by a
piecewise linear function as,

≤
>

=
tVCifVCk
tVCifVC

c
/
/1 (2)

where t is a threshold value, and k is an amplification scalar.
Experimental observations reveal the predicament of obtaining a
path through the GCell when VC <0.01, so the cost is amplified
by multiplying it by a scalar. Also, each edge of G is assigned a
length cost, lc, to indicate the net timing factor. The length cost lc
is set to be 2/t, and the total cost is to add up every visited vertex
cost c and their length cost lc. Based on the cost design, the global
router can avoid passing through the vertex with little via resource
at the expense of using more wire length. For those nets with
timing constraints, the total length cost of a path can not exceed its
timing budget; therefore, the global router may find a path
containing some congested region in order to meet its timing
budget.

 Dijkstra’s algorithm is applied in G to find the minimum-cost
path that connects two terminals to be routed. The active GCells
are the those on the minimum-cost path, and their related nodes
associated with G(V,E) are referred to as active nodes. Further
propagation entirely out of active GCells is prohibited and the
path along such propagation is called an idle path. In Fig. 11,
GC(i,j) is an active GCell, while GC(i-1,j) is not. The path node
p1 can propagate into tiles T2 and T3 at p2 and p3, respectively . p3
enters a space tile wholly within an idle GCell, so the path p3→p1
is an idle path. To maintain idle paths, each idle GCell stores the
idle paths inside itself in its own heap, called the idle-path heap.
The idle paths of an idle GCell will be popped up and become
active for further propagation when the idle GCell is selected and
becomes active during subsequent global routing.

5.2 Extended Routing & GCell Restructuring
This section describes the solution to the problem when the

router cannot find a feasible path along the active GCells. Figure
12(b) is an example of routing failure. Figure 12(a) shows the
active GCells of a global routing from s to t and the propagation
status: darker GCells stand for the visited GCells. A visited GCell

T3

T1

 i i-1

 j T2

P3 P2

P1

Figure 11. Tile propagation outside the active

through which a path does not pass is called a blocked GCell.
Accordingly, GC(1,6), GC(1,5), GC(1,4), GC(1,3), GC(2,3),
GC(3,3) and GC(4,3) are visited GCells, and GC(4,3) is a blocked
GCell. A blocking wall can be imagined to block all of the paths in
GC(4,3), to propagate to the next GCell, GC(5,3). Two methods
are proposed to solve this problem. The first is to expand the
search range around the blocked GCell, in a process called
extended routing. The second is the GCells restructuring. Based on
the previous routing results, the internal edges of the visited
GCells are restructured to prevent the subsequent global routing
from including as a routing path the two GCells that are connected
by a disconnected internal edge, and then a new list of active
GCells is rescheduled by performing a new global routing.

 (a) (b)

Figure 12. An example of extended routing

5.2.1 Extended Routing
Extended routing is conducted to expand the search scope by a

half of the width of a GCell around the blocked GCell. The tile
propagation starts from the path nodes in the idle-path heaps of
those idle GCell adjacent to the blocked GCell. For example,
GC(4,3) is the blocked GCell in Fig. 12(b), and the search scope is
expanded around GC(4,3). The path nodes in the idle-path heaps
of GC(4,4) and GC(4,2) will be popped up for further
propagation. Extended routing increases the capacity to connect
two active Gcells. Figure 12(c) depicts a successful connection
between GC(3,3) and GC(5,3).

5.2.2 GCell Restructuring
If an extended routing still cannot pass through a blocked GCell,

the active GCells are rescheduled to find another path. Before a
new global routing is restarted, the internal edges’ connectivity
states of the active GCells must be modified to reflect the blocking
information between the GCells. In Fig. 13(a), GC(i,j) is the
blocked GCell. Clearly, no path passes through GC(i,j) and
connects GC(i-1,j) to GC(i+1,j) and GC(i,j+1). The internal
edges’ connectivity states of the active GCells can be very easily
determined. The connectivity states of the internal edges of GC(i,j)
are to be determined and the routing direction through GC(i,j) is
from left to right; only the idle-path heaps of GC(i,j+1) and GC
(i,j-1) need to be checked. If the idle-path heaps of GC(i,j-1) and
GC(i,j+1) are empty, then the connectivity states of edges nw and
ws should be disconnected. Meanwhile, the connectivity state of
edge ew must be set to disconnected if GC(i,j) is a blocked GCell.
In Fig. 13(a), the connectivity states of edges nw, ws and ew are
set to disconnected.

After the internal edges have been restructured, a new global
routing is performed using the visited GCells as the start vertices,
as shown in Fig. 13(a). Based on the updated connectivity states
of the internal edges, the results of new global routing will not
select the blocked path. The active GCells used in the next tile
propagation include the new active GCells and the visited GCells.
The new active GCells were idle GCells before. Some of them
must be adjacent to the visited GCells and at least one of them
must have a nonempty idle-path heap. These nonempty idle-path
heaps are popped up to initiate the new tile propagation. In Fig.
13(b), GC(3,2), GC(3,1), GC(4,1) and GC(5,1) are new active
GCells, and GC(3,2), which is adjacent to the old active GCell,
GC(3,3), must have a nonempty idle-path heap.

 (a) (b)

 (c) (d)

Figure 13. GCell restructuring and rescheduling.

GCell restructuring and rescheduling may be repeated several
times during the tile propagation. In Fig. 13(c), tile propagation
stops again at GC(4,1). Therefore, active GCells are restructured
and rescheduled, as shown in Fig. 13(d). The path nodes in the
idle-path heaps of GC(4,2) may come from GC(4,3,), GC(4,1) and
GC(3,2), and they will be popped up for further propagation.
Notably, when the active GCells are rescheduled, the number of
active GCells increases. The visited GCell will be revisited if
newly entering paths are of lower cost than before. The worst case
is to make all of the GCells active such that the tile propagation
propagates over the whole tile plane. Accordingly, a feasible
solution will always be found for a routable routing. Additionally,
even when the worst case happens, the routing speed does not
substantially drop off because most of the routing regions that
have already been visited are not visited again as a result of good
routing resource estimation.

6. EXPERIMENTAL RESULTS
A tile-based ECO router with a new routing design flow

proposed in this work were implemented using C++ language.
The routing was undertaken using a 2.4GHz Pentium4 PC with
1GB RAM using a real VLSI design that consists of 114,155
standard cells and contains 632,634 metal-2 rectangles, 399,993
metal-3 rectangles, 399,852 via-12 vias and 618,218 via-23 vias.

Table 1 presents the number of tiles of the metal2-layer and
metal3-layer planes. The results without routing graph reduction
are listed at the second column, and the data in the third column is
obtained after the routing graph has been reduced. The number of
tiles is reduced by 57%. Table 2 lists the pre-process time before
routing. The second column presents the times taken to construct
corner-stitching planes and the third column presents the time
required for RGR, where the former is necessary for both
traditional approach and the newly proposed design flow in this
work, and the later is the additional computation time required by
this work.

Seven p2p routings were performed using three methods to
yield the routing statistics, including the routing time (tile
propagation time), the length of the wire and the number of vias.
The second column in Table 3 concerns pure tile propagation, and
the third column concerns the application of routing graph
reduction. The routing graph reduction reduces the routing time by
approximately 50%, as shown in column T1. The speed of the
ECO router can be approximately doubled, as shown in column
T2. The wire length and the number of vias are almost the same.

Table 1.The number of tiles of the tile planes.

Origin After RGR # of Tiles

Layer
#Block
Tiles

#Space
Tiles

#Block
Tiles

#Space
Tiles

Met2 1067179 973528 470325 380798

Met3 591120 541706 289144 218444

Total 3173533 (C1) 1358711 (C2)

Reduction rate 0.571

※ Reduction rate: (C1-C2)/C1

Table 2. The pre-process time.
Pre-process CS Plane Construction (Tcs) RGR (Trgr)

Time (second) 21.656 5.889

Table 4 shows the results of the new ECO routing design flow,
and the right two items in the second column reveal how many
times the extended routing and GCell restructuring and
rescheduling are performed. The routing time is around 85% lower
than for the pure tile-based router, as shown in column T3. The
increase in wire length ranges from 3% to 30%, as shown in
column W. The wire is much longer for TEST5 because the start
terminal is located in a very dense region, so the global router
cannot easily find a good global path.

7. CONCLUSIONS
In this paper, a new ECO routing design flow with routing

graph reduction and enhanced global routing flow is proposed.
Routing graph reduction reduces the node complexity of the

routing graph by removing redundant tiles and aligning neighboring
tiles in an attempt to merge adjacent block tiles. Routing graph
reduction reduces tile fragmentation such that the ECO router can
perform two times faster than the traditional tile-based router
without sacrificing routing quality. Additionally, a newly
enhanced global routing flow that incorporates ECO global routing
with extended routing and GCell restructuring can prevent routing
failure in a routable design. Compared with the traditional tile-
based router, the runtime can be reduced by around 85%.

8. REFERENCES
[1] J. Cong, L. He, C.-K. Koh, and P. Madden, “Performance

optimization of VLSI interconnect layout,” Intergr. VLSI J.,
vol. 21, no. 1–2, pp. 1–94, Nov. 1996.

[2] T. Ohtsuki, “Gridless routers— New wire routing algorithms
based on computational geometry, in Proc. Int. Conf. Circuits
and Systems, pp. 802–809, May 1985.

[3] K. L. Clarkson, S. Kapoor, and P. M. Vaidya, “Rectilinear
shortest paths through polygonal obstacles in O(n(log n))
time,” in Proc. 3rd Annual Symp. Computational Geometry,
1987, pp. 251–257.

[4] Y. Wu, P. Widmayer, M. Schlag, and C. Wong, “Rectilinear
shortest paths and minimum spanning trees in the presence
of rectilinear obstacles,”IEEE Trans. Computers, vol. C-36,
no. 1, pp. 321–331, 1987.

[5] S.Zheng, J.S. Lim, and S. Iyengar, “Finding obstacle-avoiding
shortest paths using implicit connection graphs,”IEEE Trans.
Computer-Aided Design, vol. 15, no. 1, pp. 103-110, Jan.
1996.

[6] J. Cong, J. Fang, and K. Khoo, “An implicit connection graph
maze routing algorithm for ECO routing,” in Proc. Int.
Conference Computer-Aided Design, pp. 163–167, Nov.
1999.

[7] J. Cong, J. Fang, and K. Khoo,“DUNE: A multilayer gridless
routing system with wire plan-ning,”in Proc. Int. Symp.
Physical Design, Apr. 2000, pp. 12–18.

[8] J. Cong, J. Fang, and K. Khoo,“DUNE - A multilayer
gridless routing system,”IEEE Trans. Computer-Aided
Design, vol. 20, no. 5, pp. 633–647, May. 2001.

[9] M. Sato, J. Sakanaka, and T. Ohtsuki, “A fast line-search
method based on a tile plane,” in IEEE Int. Symp. Circuits
and Systems, pp. 588–591, May 1987.

[10] A. Margarino, A. Romano, A. De Gloria, F. Curatelli, and P.
Antognetti, “A tile-expansion router,”IEEE Trans.
Computer-Aided Design, vol. CAD-6, pp. 507–517, July
1987.

[11] R. Eric Lunow, “A Channelless, Multilayer Router,”in 25th
ACM/IEEE Design Automation Conference, pp. 667 – 671,
1988.

[12] L. C. Liu, H.-P. Tseng, and C. Sechen, “Chip-level area
routing,” in Proc. Int. Symp. Physical Design, pp. 197–204,
Apr. 1998.

[13] C. Tsai, S. Chen, and W. Feng, “An H-V Alternating Router,”
IEEE Trans. Computer-Aided Design, vol. 11, pp. 976–991,
Aug. 1992.

[14] J. Dion and L. M. Monier,“Contour: A tile-based gridless
router,”Western Research Laboratory, Palo Alto, CA,
Research Report 95/3.

[15] Zhaoyun Xing and Russell Kaog, “Shortest Path Search
Using Tiles and Piecewise Linear Cost Propagation,”IEEE
Trans. Computer-Aided Design, vol. 21, no. 2, pp. 145–158,
Feb. 2002.

[16] J. K. Ousterhout, “Corner Stitching: Adata-structuring
technique for VLSI layout tools,” IEEE Trans. Computer-
Aided Design, vol. CAD-3, pp.87–100, Jan. 1984.

Table 3. Apply Routing Graph Reduction.

Pure tile-based router Apply RGR Test
name RT (Ta) WL (Wa) #Vias (Va) RT (Tb) WL (Wb) #Vias (Vb) T1(%) T2(%)

TEST1 128.3 12035.07 480 65.8 12035.08 480 48.7 44.2

TEST2 82.6 11553.93 478 41.8 11553.96 478 49.5 42.3

TEST3 73.9 11399.45 394 38.3 11399.48 394 48.2 39.4

TEST4 65.3 9667.94 398 33.1 9667.97 398 49.3 40.3

TEST5 52.2 11194.86 508 26.5 11194.92 508 49.7 38.0

TEST6 121.5 12618.18 498 64.4 12618.21 498 47.0 42.2

TEST7 147.1 11732.99 502 75.6 11733.03 502 48.7 44.7

※T1 : (Ta-Tb)/Ta, T2 : (Ta-(Tb+Trgr))/Ta

※RT : routing time(second) , WL: wire length(um)

Table 4. Apply ECO Global Routing with Routing Graph Reduction.

New ECO routing design flow

Test name RT (Tc) WL (Wc) #Vias (Vc) #ER #GCRS T3(%) W (%) V(%)

TEST1 8.56 12497.55 184 0 0 88.7 3.8 -61.6

TEST2 4.62 12607.58 530 1 0 87.2 9.1 10.8

TEST3 4.28 12173.36 536 0 0 86.2 6.7 36.0

TEST4 4.62 10687.03 416 4 4 83.9 10.5 4.5

TEST5 5.29 14437.81 588 4 2 78.5 28.9 15.7

TEST6 5.56 13533.45 516 0 0 90.5 7.2 3.6

TEST7 6.92 13097.15 262 1 0 91.2 11.6 -47.8

 The global routing partitions the layout to 28x28 GCells and each GCell’s width is about 122 pitches. ※

 ※ ER : Extended Routing, GCRS: GCell restructuring and rescheduling

 ※ RT : routing time(second), WL: wire length(um), T3 : (Ta-(Tc+ Trgr))/Ta , W : (Wc-Wa)/Wa , V: (Vc-Va)/Va

