

Discrete Mathematics (2009 Spring)

Trees (Chapter 10, 5 hours)

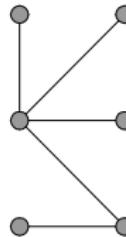
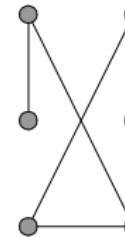
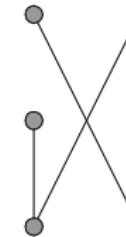
Chih-Wei Yi

Dept. of Computer Science
National Chiao Tung University

June 1, 2009

What's Trees?

- A tree is a connected undirected graph with no simple circuits.

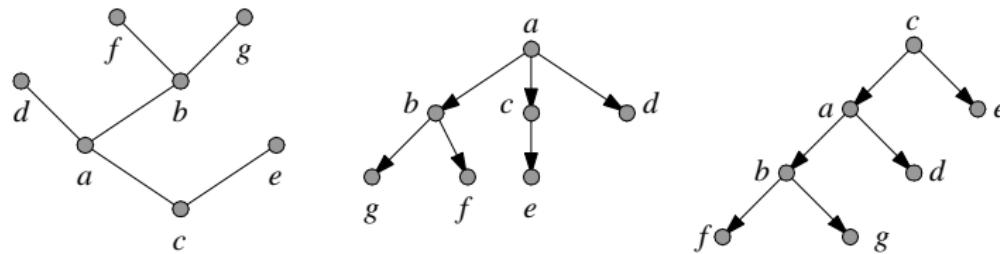


Theorem

An undirected graph is a tree if and only if there is a unique simple path between any two of its vertices.

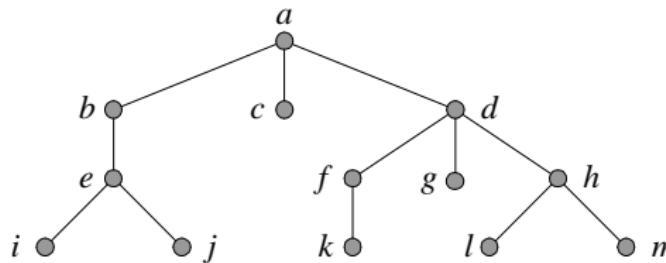
Rooted Trees

- A rooted tree is a tree in which one vertex has been designated as the root and every edge is directed away from the root.



Terminologies of Rooted Trees

- If v is a vertex in T other than the root, the *parent* of v is the unique vertex u such that there is a directed edge from u to v .
- If u is the parent of v , v is called a *child* of u .
- Vertices with the same parent are called *siblings*.



Terminologies of Rooted Trees (Cont.)

- The *ancestors* of a vertex other than the root are the vertices in the path from the root to this vertex, excluding the vertex itself and including the root.
- The *descendants* of a vertex v are those vertices that have v as an ancestor.
- A vertex of a tree is called a *leaf* if it has no children.
- Vertices that have children are called *internal vertices*.
- If a is a vertex in a tree, the *subtree* with a as its root is the subgraph of the tree consisting of a and its descendants and all edges incident to these descendants.

m-Ary Trees

- A root tree is called an *m-ary tree* if every internal vertex has no more than m children. The tree is called a *full m-ary tree* if every internal vertex has exactly m children. An *m-ary tree* with $m = 2$ is called a *binary tree*.
- An *ordered rooted tree* is a rooted tree where the children of each internal vertex are ordered. Ordered rooted trees are drawn so that the children of each internal vertex are shown in order from left to right.
- In an ordered binary tree (usually called just a *binary tree*), if an internal vertex has two children, the first child is called the *left child* and the second child is called the *right child*. The tree rooted at the left child (or right child, resp.) of a vertex is called the *left subtree* (or *right subtree*, resp.) of this vertex.

Properties of Trees

Theorem

A tree with n vertices has $n - 1$ edges.

Theorem

A full m -ary tree with i internal vertices contains $n = mi + 1$ vertices.

Properties of Trees (Cont.)

Theorem

A full m -ary tree with

- 1 *n vertices has $i = (n - 1) / m$ internal vertices and $l = [(m - 1)n + 1] / m$ leaves,*
- 2 *i internal vertices has $n = mi + 1$ vertices and $l = (m - 1)i + 1$ leaves,*
- 3 *l leaves has $n = (ml - 1) / (m - 1)$ vertices and $i = (l - 1) / (m - 1)$ internal vertices.*

Theorem

There are at most m^h leaves in an m -ary tree of height h .

Binary Search Trees

Decision Trees

Prefix Codes

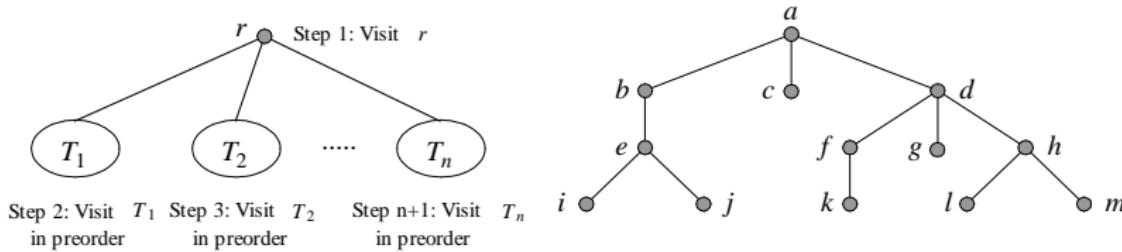
- Huffman coding: a special case of prefix codes

Game Trees

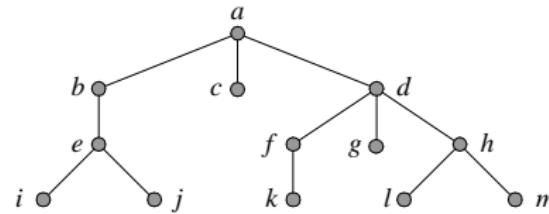
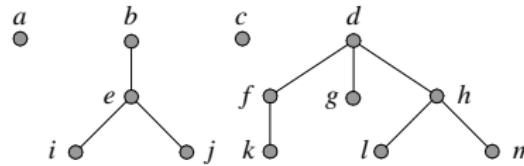
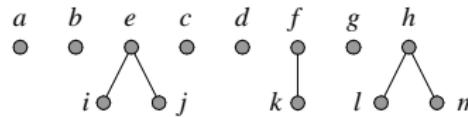
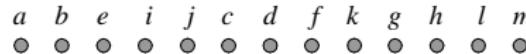
Preorder Traversal

Definition

Let T be an ordered rooted tree with root r . If T consists only of r , then r is the *preorder traversal* of T . Otherwise, suppose that T_1, T_2, \dots, T_n are the subtrees at r from left to right in T . The *preorder traversal* begins by visiting r . It continues by traversing T_1 in preorder, then T_2 in preorder, and so on, until T_n is traversed in preorder.



Examples of Preorder Traversal



Pseudocode of Preorder Traversal

procedure *preorder* (T : ordered rooted tree)

r = root of T

 list r

for each child c of r from left to right

begin

$T(c) :=$ subtree with c as its root

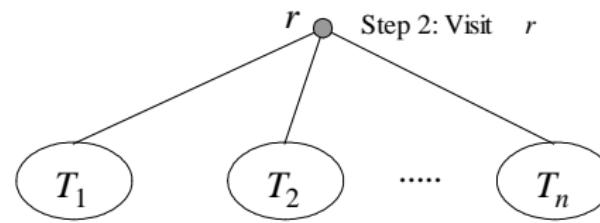
preorder ($T(c)$)

end

Inorder Traversal

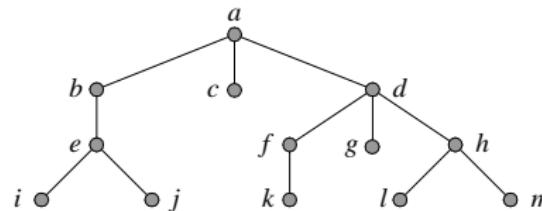
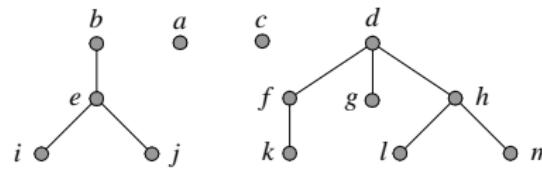
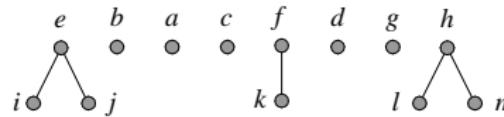
Definition

Let T be an ordered rooted tree with root r . If T consists only of r , then r is the *inorder traversal* of T . Otherwise, suppose that T_1, T_2, \dots, T_n are the subtrees at r from left to right. The *inorder traversal* begins by traversing T_1 in inorder, then visiting r . It continues by traversing T_2 in inorder, then T_3 in inorder, ..., and finally T_n in inorder.



Step 1: Visit T_1 in preorder Step 2: Visit r Step 3: Visit T_2 in preorder Step n+1: Visit T_n in preorder

Examples of Inorder Traversal



i e j b a c k f d g l h m

Pseudocode of Inorder Traversal

procedure *inorder* (T : ordered rooted tree)

r = root of T

if r is a leaf **then** list r

else

begin

$l :=$ first child of r from left to right

$T(l) :=$ subtree with l as its root

inorder ($T(l)$)

list r

for each child c of r except for l from left to right

begin

$T(c) :=$ subtree with c as its root

inorder ($T(c)$)

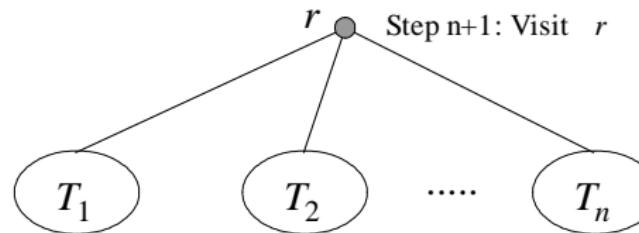
end

end

Postorder Traversal

Definition

Let T be an ordered rooted tree with root r . If T consists only of r , then r is the *postorder traversal* of T . Otherwise, suppose that T_1, T_2, \dots, T_n are the subtrees at r from left to right in T . The *postorder traversal* begins by traversing T_1 in postorder, then T_2 in postorder, ..., then T_n in postorder, and end by visiting r .

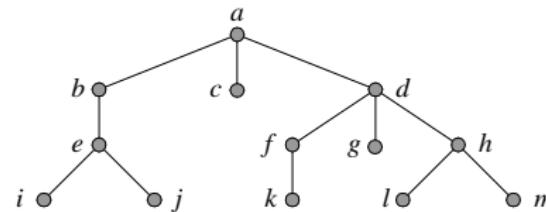
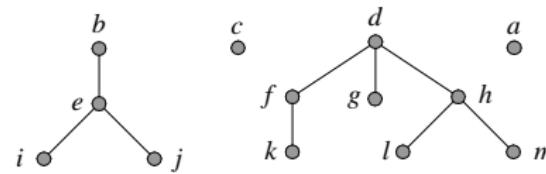
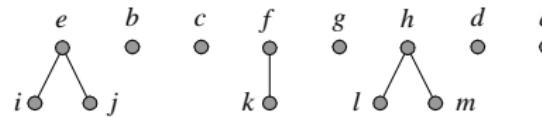


Step 1: Visit T_1
in preorder

Step 2: Visit T_2
in preorder

Step n : Visit T_n
in preorder

Examples of Postorder Traversal



i j e b c k f g l m h d a

Pseudocode of Postorder Traversal

procedure *postorder* (T : ordered rooted tree)

r = root of T

for each child c of r from left to right

begin

$T(c) :=$ subtree with c as its root

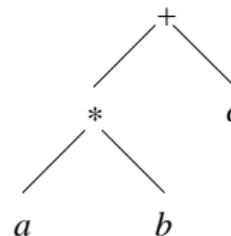
postorder ($T(c)$)

end

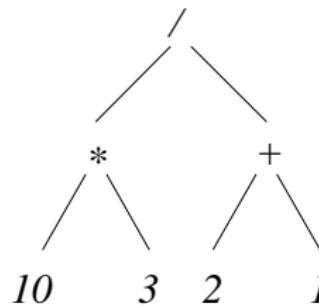
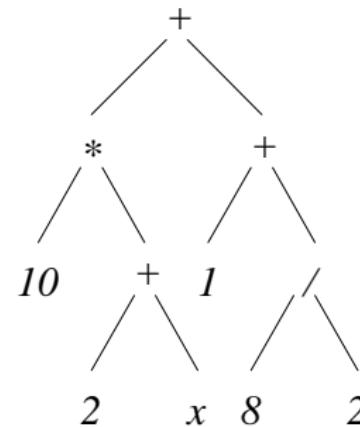
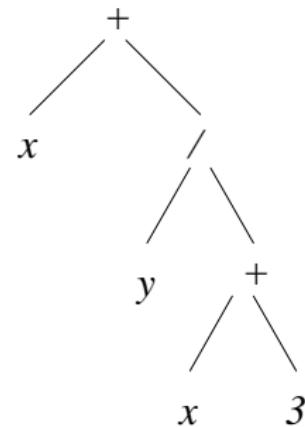
list r

Infix, Prefix, and Postfix Notation

- Examples: infix, prefix, and postfix notations of $a \times b + c$
 - Infix: $a * b + c$
 - Prefix: $+ * abc$ (also called Polish notation)
 - Postfix: $ab * c +$
- Represented by ordered rooted trees.



Examples of Binary Tree Representation



What Is a Spanning Tree?

Definition

Let G be a simple graph. A *spanning tree* of G is a subgraph of G that is a tree containing every vertex of G .

Give Example Here!

Theorem

A simple graph is connected if and only if it has a spanning tree.

Proof.

First, we prove the "IF" part.

Then, we prove the "ONLY IF" part. □

How to Construct Spanning Trees?

- Depth-first search (DFS)
- Breadth-first search (BFS)

Algorithm: Depth-First Search

procedure

$DFS(G : \text{ connected graph with vertices } v_1, v_2, \dots, v_n)$

$T :=$ tree consisting only of the vertex v_1

$visit(v_1)$

procedure $visit(v : \text{ vertex of } G)$

for each vertex w adjacent to v and not yet in T

begin

 add vertex w and edge $\{v, w\}$ to T

$visit(w)$

end

An Example of Depth-First Search

Breadth-First Search

Algorithm: Breadth-First Search

procedure

BFS (G : connected graph with vertices v_1, v_2, \dots, v_n)

$T :=$ tree consisting only of the vertex v_1

$L :=$ empty list

put v_1 in the list L of unprocessed vertices

while L is not empty

begin

remove the first vertex, v , from L

for each neighbor w of v and not yet in T

if w is not in L and not in T **then**

begin

add w to the end of the list L

add w and edge $\{v, w\}$ to T

end

end

An Example of Breadth-First Search

Minimum Spanning Trees

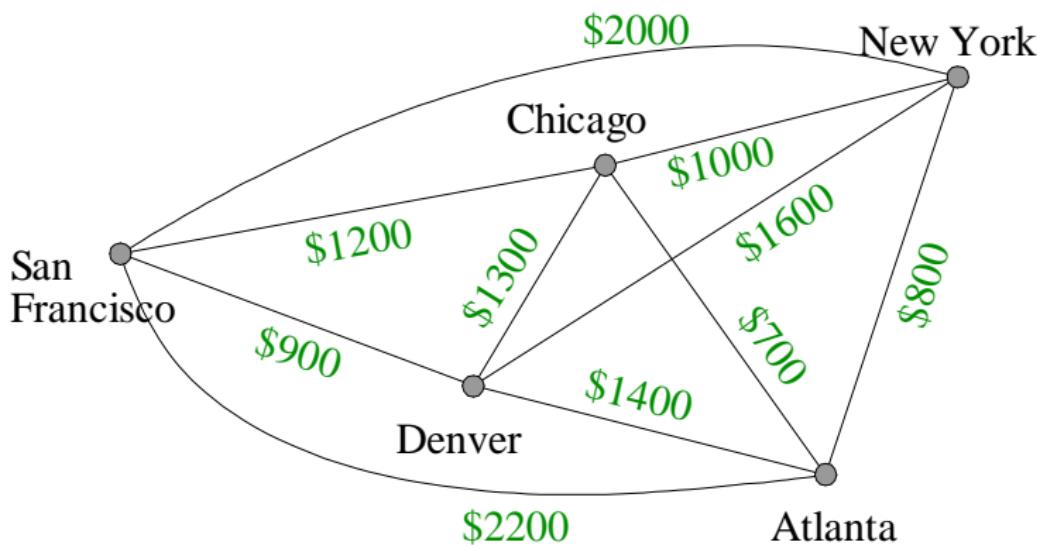
- If T is a spanning tree in a weighted graph $G(V, E, w)$, the weight of T , denoted by $w(T)$, is the sum of weights of edges in T .

$$w(T) = \sum_{e \in T} w(e).$$

- Given a weighted graph $G(V, E, w)$, the minimum spanning tree problem is to find a spanning tree in G that has the smallest weight.

The Cost of a Computer Network

- What is the smallest total cost to maintain a connected network between those five cities?



Some Spanning Trees

$$\blacksquare T_1 = \left\{ \begin{array}{l} \{\text{Chicago,SF}\}, \{\text{Chicago,Denvor}\}, \\ \{\text{Chicago,Atlanta}\}, \{\text{Chicago,NY}\} \end{array} \right\}$$

$$\begin{aligned} w(T_1) &= w(\{\text{Chicago,SF}\}) + w(\{\text{Chicago,Denvor}\}) \\ &\quad + w(\{\text{Chicago,Atlanta}\}) + w(\{\text{Chicago,NY}\}) \\ &= \$1200 + \$1300 + \$700 + \$1000 = \$4200. \end{aligned}$$

$$\blacksquare T_2 = \left\{ \begin{array}{l} \{\text{Chicago,SF}\}, \{\text{SF,Denvor}\}, \\ \{\text{Chicago,Atlanta}\}, \{\text{Atlanta,NY}\} \end{array} \right\}$$

$$\begin{aligned} w(T_2) &= w(\{\text{Chicago,SF}\}) + w(\{\text{SF,Denvor}\}) \\ &\quad + w(\{\text{Chicago,Atlanta}\}) + w(\{\text{Atlanta,NY}\}) \\ &= \$1200 + \$900 + \$700 + \$800 = \$3600. \end{aligned}$$

Some Spanning Trees (Cont.)

$$\blacksquare T_3 = \left\{ \begin{array}{l} \{\text{Chicago, Denvor}\}, \{\text{Denvor, SF}\}, \\ \{\text{Denvor, Atlanta}\}, \{\text{Atlanta, NY}\} \end{array} \right\}$$

$$\begin{aligned} w(T_3) &= w(\{\text{Chicago, Denvor}\}) + w(\{\text{Denvor, SF}\}) \\ &\quad + w(\{\text{Denvor, Atlanta}\}) + w(\{\text{Atlanta, NY}\}) \\ &= \$1300 + \$900 + \$1400 + \$800 = \$4400. \end{aligned}$$

- Problem: Which one is with the smallest weight among all possible spanning trees?

Prim's Algorithm

```
procedure Prim  $\left( G : \begin{array}{l} \text{weighted connected undirected graph} \\ \text{with } n \text{ vertices} \end{array} \right)$ 
   $T :=$  a minimum-weighted edge
  for  $i := 1$  to  $n - 2$ 
  begin
     $e :=$  an edge of minimum weight incident to a vertex in  $T$ 
    and not forming a simple circuit in  $T$  if added to  $T$ 
     $T := T$  with  $e$  added
  end ( $T$  is a minimum spanning tree of  $G$ )
```

An Example of Prim's Algorithm

Choice	Edge	Cost
1	{Atlanta,Chicago}	\$700
2	{Atlanta,NY}	\$800
3	{Chicago,SF}	\$1200
4	{Denver,SF}	\$900
	Total	\$3600

Kruskal's Algorithm

```
procedure Kruskal  $\left( G : \begin{array}{l} \text{weighted connected undirected graph} \\ \text{with } n \text{ vertices} \end{array} \right)$ 
   $T :=$  empty graph
  for  $i := 1$  to  $n - 1$ 
  begin
     $e :=$  an edge in  $G$  with smallest weight that does not form
    a simple circuit when added to  $T$ 
     $T := T$  with  $e$  added
  end ( $T$  is a minimum spanning tree of  $G$ )
```

An Example of Kruskal's Algorithm

- First, sort all edges based on their weight in ascending order.
 - $\{\text{Atlanta,Chicago}\}$, $\{\text{Atlanta, NY}\}$, $\{\text{Denver, SF}\}$,
 $\{\text{Chicago, NY}\}$, $\{\text{Chicago, SF}\}$, $\{\text{Chicago, Denver}\}$,
 $\{\text{Atlanta, Denver}\}$, $\{\text{Denver, NY}\}$, $\{\text{NY, SF}\}$, $\{\text{Atlanta, SF}\}$
- Exam each edge one by one until a spanning tree is constructed.

Choice	Edge	Cost
1	$\{\text{Atlanta, Chicago}\}$	\$700
2	$\{\text{Atlanta, NY}\}$	\$800
3	$\{\text{Denver, SF}\}$	\$900
4	$\{\text{Chicago, SF}\}$	\$1200
	Total	\$3600

Find a Spanning Tree with Minimum Weight

