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Discrete Mathematics

Chapter 9 Graphs

§9.1 Graphs and Graph Models

What are Graphs?

General meaning in everyday math: A plot or chart of
numerical data using a coordinate system.

NotNot

Technical meaning in discrete mathematics: A particular class
of discrete structures (to be de�ned) that is useful for
representing relations and has a convenient webby-looking
graphical representation.
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Chapter 9 Graphs

§9.1 Graphs and Graph Models

Simple Graphs

Correspond to symmetric binary relations R.

Visual Representation
of a Simple Graph

Visual Representation
of a Simple Graph

A simple graph G = (V ,E ) consists of:

1 A set V of vertices or nodes (V corresponds to the universe of
the relation R).

2 A set E of edges / arcs / links: unordered pairs of [distinct?]
elements u, v 2 V , such that uRv .



Discrete Mathematics

Chapter 9 Graphs
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Example of a Simple Graph

Let V be the set of states in the far-southeastern U.S.:

V = fFL,GA,AL,MS,LA,SC,TN,NCg.

Let

E = ffu, vg j u adjoins vg

=

8<:
{FL,GA},{FL,AL},{FL,MS},{FL,LA},{GA,AL},
{AL,MS},{MS,LA},{GA,SC},{GA,TN},{SC,NC},
{NC,TN},{MS,TN},{MS,AL}

9=; .
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§9.1 Graphs and Graph Models

Multigraphs

Like simple graphs, but there may be more than one edge
connecting two given nodes.

A multigraph G = (V ,E , f ) consists of a set V of vertices, a
set E of edges (as primitive objects), and a function
f : E ! ffu, vg j u, v 2 V ^ u 6= vgg.
E.g., nodes are cities, edges are segments of major highways.

Parallel
edges

Parallel
edges
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§9.1 Graphs and Graph Models

Pseudographs

Like a multigraph, but edges connecting a node to itself are
allowed.

A pseudograph G = (V ,E , f ) where
f : E ! ffu, vg j u, v 2 V g. Edge e 2 E is a loop if
f (e) = fu, ug = fug.
E.g., nodes are campsites in a state park, edges are hiking
trails through the woods.
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§9.1 Graphs and Graph Models

Directed Graphs

Correspond to arbitrary binary relations R, which need not be
symmetric.

A directed graph (V ,E ) consists of a set of vertices V and a
binary relation E on V .

E.g.: V = people, E = f(x , y) j x loves yg.



Discrete Mathematics

Chapter 9 Graphs

§9.1 Graphs and Graph Models

Directed Multigraphs

Like directed graphs, but there may be more than one arc
from a node to another.

A directed multigraph G = (V ,E , f ) consists of a set V of
vertices, a set E of edges, and a function f : E ! V � V .
E.g., V = web pages, E = hyperlinks. The WWW is a
directed multigraph.
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§9.1 Graphs and Graph Models

Types of Graphs: Summary

Summary of the book�s de�nitions.

Keep in mind this terminology is not fully standardized...

Term Edge type Multiple edges? Self-loops?
Simple graph Undir. No No
Multigraph Undir. Yes No
Pseudograph Undir. Yes Yes
Directed graph Directed No Yes
Directed multigraph Directed Yes Yes
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§9.2 Graph Terminology and Special Types of Graphs

Graph Terminology

Adjacent, connects, endpoints, degree, initial, terminal,
in-degree, out-degree, complete, cycles, wheels, n-cubes,
bipartite, subgraph, union.
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§9.2 Graph Terminology and Special Types of Graphs

Adjacency

In an undirected graph G , if u and v are two nodes and
e = fu, vg is an edge in G , then we may say

The vertices u and v are adjacent (or neighbors).
The vertices u and v are endpoints of the edge e.
The edge e is incident with the vertices u and v .
The edge e connects the vertices u and v .
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Chapter 9 Graphs

§9.2 Graph Terminology and Special Types of Graphs

Degree of a Vertex

Let G be an undirected graph, v 2 V a vertex.

The degree of v , denoted by deg(v), is its number of incident
edges. (Except that any self-loops are counted twice.)

A vertex with degree 0 is isolated.

A vertex of degree 1 is pendant.



Discrete Mathematics

Chapter 9 Graphs

§9.2 Graph Terminology and Special Types of Graphs

Handshaking Theorem

Let G be an undirected (simple, multi-, or pseudo-) graph
with vertex set V and edge set E . Then

∑
v2V

deg (v) = 2 jE j .

Corollary Any undirected graph has an even number of vertices
of odd degree.
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Chapter 9 Graphs

§9.2 Graph Terminology and Special Types of Graphs

Directed Adjacency

Let G be a directed (possibly multi-) graph, and e = (u, v) be
an edge of G . Then we say:

u is adjacent to v ; v is adjacent from u.
e comes from u; e goes to v .
e connects u to v ; e goes from u to v .
The initial vertex of e is u.
The terminal vertex of e is v .
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Chapter 9 Graphs

§9.2 Graph Terminology and Special Types of Graphs

Directed Degree

Let G be a directed graph, and v a vertex of G .

The in-degree of v , denoted by deg�(v), is the number of
edges going to v .
The out-degree of v , denoted by deg+(v), is the number of
edges coming from v .
The degree of v , deg(v) = deg�(v) + deg+(v), is the sum of
v�s in-degree and out-degree.
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§9.2 Graph Terminology and Special Types of Graphs

Directed Handshaking Theorem

Let G be a directed (possibly multi-) graph with vertex set V
and edge set E . Then:

∑
v2V

deg� (v) = ∑
v2V

deg+ (v) =
1
2 ∑
v2V

deg (v) = jE j .

Note that the degree of a node is unchanged by whether we
consider its edges to be directed or undirected.
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Special Graph Structures

Special cases of undirected graph structures:

Complete graphs Kn .
Cycles Cn .
Wheels Wn .
n-Cubes Qn .
Bipartite graphs.
Complete bipartite graphs Km,n .
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§9.2 Graph Terminology and Special Types of Graphs

Complete Graphs

For any n 2 N, a complete graph on n vertices, Kn, is a
simple graph with n nodes in which every node is adjacent to
every other node:

8u, v 2 V : u 6= v $ fu, vg 2 E .

K1 K2 K3 K4 K5 K6
K1 K2 K3 K4 K5 K6

Note that Kn has ∑n�1
i=1 i =

n(n�1)
2 edges.
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Cycles

For any n � 3, a cycle on n vertices, Cn, is a simple graph
where V = fv1, v2, � � � , vng and
E = ffv1, v2g, fv2, v3g, � � � , fvn�1, vng, fvn, v1gg.

C3 C4 C5 C6 C7
C8

C3 C4 C5 C6 C7
C8

How many edges are there in Cn?
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Wheels

For any n � 3, a wheel Wn, is a simple graph obtained by
taking the cycle Cn and adding one extra vertex vhub and n
extra edges ffvhub , v1g, fvhub , v2g, � � � , fvhub , vngg.

W3 W4 W5 W6 W7
W8

W3 W4 W5 W6 W7
W8

How many edges are there in Wn?
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n-Cubes (hypercubes)

For any n 2 N, the hypercube Qn is a simple graph consisting
of two copies of Qn�1 connected together at corresponding
nodes. Q0 has 1 node.

Q0
Q1 Q2 Q3

Q4

Q0
Q1 Q2 Q3

Q4

Number of vertices: 2n.

Number of edges: Exercise to try!
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§9.2 Graph Terminology and Special Types of Graphs

n-Cubes (hypercubes) Cont.

For any n 2 N, the hypercube Qn can be de�ned recursively
as follows:

Q0 = ffv0g,?g (one node and no edges).
For any n 2 N, if Qn = (V ,E ), where V = fv1, � � � , vag and
E = fe1, � � � , ebg, then Qn+1 = (VQn+1 ,EQn+1 ) is given by

VQn+1 = V [ fv 01, � � � , v 0ag where v 01, � � � , v 0a are new vertices.
EQn+1 = E [ fe 01, . . . , e 0bg [ ffv1, v 01g, fv2, v 02g, � � � , fva , v 0agg
where if ei = fvj , vkg then e 0i = fv 0j , v 0kg.

How many edges are there in an n-cube?
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§9.2 Graph Terminology and Special Types of Graphs

Bipartite Graphs

A simple graph G = (V ,E ) is called bipartite if V can be
partitiovned into two disjoint sets V1 and V2 such tht every
edge in the graph connects a vertex in V1 and a vertex in V2.

Complete bipartite graphs

K2,3K2,2 K2,3K2,2
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§9.2 Graph Terminology and Special Types of Graphs

Subgraphs

A subgraph of a graph G = (V ,E ) is a graph H = (W ,F )
where W � V and F � E .

G HG H



Discrete Mathematics

Chapter 9 Graphs

§9.2 Graph Terminology and Special Types of Graphs

Graph Unions

The union G1 [ G2 of two simple graphs G1 = (V1,E1) and
G2 = (V2,E2) is the simple graph (V1 [ V2,E1 [ E2).
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§9.3 Representing Graphs and Graph Isomorphism

What Will Be Given?

Graph representations

Adjacency lists.
Adjacency matrices.
Incidence matrices.

Graph isomorphism

Two graphs are isomorphic i¤ they are identical except for
their node names.



Discrete Mathematics

Chapter 9 Graphs

§9.3 Representing Graphs and Graph Isomorphism

Adjacency Lists

Adjacency Lists: A table with 1 row per vertex, listing its
adjacent vertices.

f
ec

a
b

d

Vertex Adjacent Vertices
a b, c
b a, c , e, f
c a, b, f
d
e b
f b, c

Directed Adjacency Lists: listing the terminal nodes of each
edge incident from that node.
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Represented by Matrices

Adjacency Matrices: Matrix A = [aij ], where aij is 1 if fvi , vjg
is an edge of G , 0 otherwise.

Incidence Matrices: Matrix M = [mij ], where mij is 1 if edge
ei is incident with vj , 0 otherwise.

v 1

v 3 v 4

v 6

e 2

e 1

e 5

e 4

v 5
e 3

v 2

A =

26666664
0 1 1 0 0 0
1 0 0 0 1 1
1 0 0 0 0 1
0 0 0 0 0 0
0 1 0 0 0 0
0 1 1 0 0 0

37777775 M =

266664
1 1 0 0 0 0
1 0 1 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 0 0 0 1

377775
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§9.3 Representing Graphs and Graph Isomorphism

Graph Isomorphism

De�nition

Simple graphs G1 = (V1,E1) and G2 = (V2,E2) are isomorphic if
and only if 9 a bijection f : V1 ! V2 such that 8a, b 2 V1, a and
b are adjacent in G1 i¤ f (a) and f (b) are adjacent in G2.

f is the �renaming� function that makes the two graphs
identical.

The de�nition can easily be extended to other types of graphs.
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§9.3 Representing Graphs and Graph Isomorphism

Graph Invariants under Isomorphism

Necessary but not su¢ cient conditions for G1 = (V1,E1) to
be isomorphic to G2 = (V2,E2).

jV1 j = jV2 j, jE1 j = jE2 j.
The number of vertices with degree n is the same in both
graphs.
For every proper subgraph H of one graph, there is a proper
subgraph of the other graph that is isomorphic to H.
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Examples of Isomorphism

If isomorphic, label the 2nd graph to show the isomorphism,
else identify di¤erence.

a
b

cd

e
f

a
b

cd

e
f

b

d

a

e
fc

b

d

a

e
fc
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§9.3 Representing Graphs and Graph Isomorphism

Are These Isomorphic?

If isomorphic, label the 2nd graph to show the isomorphism,
else identify di¤erence.

a
b

c

d

e

a
b

c

d

e

Same # of vertices.

Same # of edges.

Di¤erent # of
vertices of degree 2!
(1 vs 3)
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Paths

Paths in undirected graphs

In an undirected graph, a path of length n from u to v is a
sequence of adjacent edges going from vertex u to vertex v .
A path is a circuit if u = v .
A path traverses the vertices along it.
A path is simple if it contains no edge more than once.

Paths in directed graphs

Same as in undirected graphs, but the path must go in the
direction of the arrows.
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§9.4 Connectivity

Connectedness

An undirected graph is connected i¤ there is a path between
every pair of distinct vertices in the graph.

Connected component: connected subgraph

A cut vertex or cut edge separates 1 connected component
into 2 if removed.

Theorem

There is a simple path between any pair of vertices in a connected
undirected graph.
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§9.4 Connectivity

Directed Connectedness

A directed graph is strongly connected i¤ there is a directed
path from a to b for any two vertices a and b.

It is weakly connected i¤ the underlying undirected graph
(i.e., with edge directions removed) is connected.

Note strongly implies weakly but not vice-versa.
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§9.4 Connectivity

Paths & Isomorphism

Note that connectedness, and the existence of a circuit or
simple circuit of length k are graph invariants with respect to
isomorphism.
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§9.4 Connectivity

Counting Paths Using Adjacency Matrices

Let A be the adjacency matrix of graph G .
The number of paths of length k from vi to vj is equal to�
Ak
�
ij . (The notation (M)ij denotes mij where [mij ] =M.)
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Euler Paths and Circuits

An Euler path in G is a simple path containing every edge of
G .

An Euler circuit in a graph G is a simple circuit containing
every edge of G .

DA

B

C

A D

B

C
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Examples

e

cd

b a b

d c

e

a a b

edc
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Examples

a b

dccd

ba a b

c

e d

f
g
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§9.5 Euler and Hamilton Paths

Necessary and Su¢ cient Conditions for Euler Circuits and
Paths

Theorem

A connected multigraph has an Euler circuit i¤ each vertex has
even degree.

Theorem

A connected multigraph has an Euler path (but not an Euler
circuit) i¤ it has exactly 2 vertices of odd degree.
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Constructing Euler Circuits

procedure Euler(G : connected multigraph with all vertices of even
degree)
circuit := a circuit in G
H := G with the edges of this circuit removed
while H has edges
begin

subcircuit := a circuit in H
H := H with the edges of subcircuit removed
circuit := circuit with subcircuit inserted at the appropriate

vertex
end {circuit is an Euler circuit}
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Hamilton Paths and Circuits

A Hamilton path is a path that traverses each vertex in G
exactly once.

A Hamilton circuit is a circuit that traverses each vertex in G
exactly once.
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Examples
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Some Useful Theorems

Theorem (Dirac�s Theorem)

If (but not only if) G is connected, simple, has n � 3 vertices, and
8v : deg(v) � n/2, then G has a Hamilton circuit.

Theorem (Ore�s Theorem)

If G is a simple graph with n vertices with n � 3 such that
deg(u) + deg(v) � n for every pair of nonadjacent vertices u and
v in G, then G has a Hamilton circuit.
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Shortest-Path Problems

Weighted graphs G (V ,E ,w)

V : a vertex set.
E : an edge set.
w : a weighting function on E .

The length of a path, e.g.

w(fa, bg, fb, dg, fd , f g)
= w(fa, bg) + w(fb, dg) + w(fd , f g)
= 1+ 3+ 5

= 9.

The shortest path
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An Example of the Shortest Path

Some paths between a and f .

Path ({a,b},{b,d},{d,f}):
length of ({a,b},{b,d},{d,f}) =
w({a,b})+w({b,d})+w({d,f}) =
1+3+5 = 9
Path ({a,b},{b,e},{e,f}):
length of ({a,b},{b,e},{e,f}) =
w({a,b})+w({b,e})+w({e,f}) =
1+3+1 = 5
Path ({a,c},{c,e},{e,f}):
length of ({a,c},{c,e},{e,f}) =
w({a,c})+w({c,e})+w({e,f}) =
4+3+1 = 8



Discrete Mathematics

Chapter 9 Graphs

§9.6 Shortest-Path Problems

Dijkstra�s Algorithm

procedure Dijkstra(G : a weighted connected simple graph with all
weights positive, a is the source, z is the destination)
// there exists a path from a to z
for i := 1 to n L(vi ) := ∞
L(a) := 0
S := ?
while z /2 S
begin

u := a vertex not in S with L(u) minimal
S := S [ fug
for all vertices v not in S

if L(u) + w(u, v) < L(v) then L(v) := L(u) + w(u, v)
end {L(z) = length of a shortest path from a to z .}
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Example of Dijkstra�s Algorithm

Find the shortest path between a and
f .

Find the shortest path between d and
c .
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Traveling Salesman Problem

The traveling salesman problem asks for the circuit of
minimum total weight in a weighted, complete, undirected
graph that visit each vertex exactly once and returns to its
starting point.

No algorithm with polynomial worst-case time complexity is
known.

c-approximation algorithms: W � W 0 � cW .
W : the total length of an exact solution.
W 0: the total weight of a Hamilton circuit.
c : a constant.
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Planar Graphs

A graph is called planar if it can be drawn in the plane
without any edges crossing. Such a drawing is called a planar
representation of the graph.

Example:
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More Examples
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Euler�s Formula

Let G be a connected planar simple graph with e edges and v
vertices. Let r be the number of regions in a planar
representation of G . Then r = e � v + 2.

Corollary

If G is a connected planar simple graph with e edges and v
vertices, where v � 3, then e � 3v � 6.
Proof.

(1) 2e � 3r . (2) r = e � v + 2.
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Euler�s Formula (Cont.)

Corollary

If G is a connected planar simple graph, then G has a vertex of
degree not exceeding �ve.

Show that K5 is nonplanar using above corollary.

Exercise: If a connected planar simple graph has e edges and
v vertices with v � 3 and no circuits of length three, then
e � 2v � 4.
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Kuratowski�s Theorem

If a graph is planar, any graph is obtained by removing an
edge fu, vg and adding a new vertex w together with edges
fu,wg and fw , vg. Such an operation is called an elementary
subdivision.

The graphs G1 = (V1,E1) and G2 = (V2,E2) are called
homeomorphic if they can be obtained from the same graph
by a sequence of elementary subdivision.

Theorem (Kuratowski�s Theorem)

A graph is nonplanar if and if it contains a subgraph
homeomorphic to K3,3 or K5.
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Examples

Some examples

Is the Petersen graph planar?
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Graph Coloring

A coloring of a simple graph is the assignment of a color to
each vertex of the graph so that no two adjacent vertices are
assigned the same color.

The chromatic number of a graph G , denoted by χ(G ), is the
least number of colors needed for a coloring of this graph.
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Coloring of Maps

Color a map such that two adjacent regions don�t have the
same color.

Each map in the plane can be represented by dual planar
graph.

Ex,

Theorem (The Four Color Theorem)

The chromatic number of a planar graph is no greater than four.
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Example

What is the chromatic number of the graphs?

What is the chromatic number of Kn?

What is the chromatic number of Km,n?
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Frequency Assignment

Broadcast radio system

Two radio stations can�t have the same channel if their
receiving regions are with some overlapping area.
Broadcast stations are represented by vertices.
Tow vertices have an edge if their receiving regions are with
some overlapping area.
Frequency assignment problems is to �nd the smallest number
of channels.
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