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§8.1 Relations and Their Properties

Binary Relations

De�nition

Let A and B be any two sets. A binary relation R from A to B,
written R : A$ B, is a subset of A� B. The notation aRb means
(a, b) 2 R.

If aRb, we may say �a is related to b (by relation R)�, or �a
relates to b (under relation R)�.

Example

<: N $ N :� f(n,m) j n < mg. a < b means (a, b) 2<.

A binary relation R corresponds to a predicate function
PR : A� B ! fT ,Fg de�ned over the 2 sets A and B.
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Examples of Binary Relations

Let A = f0, 1, 2g and B = fa, bg. Then
R = f(0, a), (0, b), (1, a), (2, b)g is a relation from A to B.
For instance, we have 0Ra, 0Rb, etc..

Can we have visualized expressions of relations?

Let A be the set of all cities, and let B be the set of the 50
states in the USA. De�ne the relation R by specifying that
(a, b) belongs to R if city a is in state b. For instance,
(Boulder,Colorado), (Bangor,Maine), (Ann Arbor,Michigan),
(Middletown,New Jersey), (Middletown,New York),
(Cupertino,California), and (Red Bank,New Jersey) are in R.

�eats� :� f(a, b) j organism a eats food bg.
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Complementary Relations

De�nition

Let R : A$ B be any binary relation. Then, R : A$ B, the
complement of R, is the binary relation de�ned by

R :� f(a, b) j (a, b) /2 Rg = (A� B)� R.

Note this is just R if the universe of discourse is U = A� B;
thus the name complement.

The complement of R is R.
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Inverse Relations

De�nition

Any binary relation R : A$ B has an inverse relation
R�1 : B $ A, de�ned by

R�1 :� f(b, a) j (a, b) 2 Rg.

Examples

1 <�1= f(b, a) j a < bg = f(b, a) j b > ag =>.
2 If R : People ! Foods is de�ned by "aRb , a eats b", then

bR�1a, b is eaten by a.
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Examples

Example

Let A = f1, 2, 3, 4, 5g and R : A$ A :� f(a, b) : a j bg. What
are R and R�1?

Solution

R =
�
(1, 1) , (1, 2) , (1, 3) , (1, 4) , (1, 5) , (2, 2) , (2, 4) ,
(3, 3) , (4, 4) , (5, 5)

�

R =

8<:
(2, 1) , (2, 3) , (2, 5) , (3, 1) , (3, 2) , (3, 4) , (3, 5) ,
(4, 1) , (4, 2) , (4, 3) , (4, 5) , (5, 1) , (5, 2) , (5, 3) ,
(5, 4)

9=;
R�1 =

�
(1, 1) , (2, 1) , (3, 1) , (4, 1) , (5, 1) , (2, 2) , (4, 2) ,
(3, 3) , (4, 4) , (5, 5)

�
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Combining Relations

Since relations from A to B are subsets of A�B, two relations
from A to B can be combined through set operations.

Let A = f1, 2, 3g and B = f1, 2, 3, 4g. The relations
R1 = f(1, 1), (2, 2), (3, 3)g and
R2 = f(1, 1), (1, 2), (1, 3), (1, 4)g can be combined to obtain

R1 [ R2 = f(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (3, 3)g ,
R1 \ R2 = f(1, 1)g ,
R1 � R2 = f(2, 2), (3, 3)g
R2 � R1 = f((1, 2), (1, 3), (1, 4)g .

Quiz: What is R1 � R2?
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Composite Relations

Let R : A$ B, and S : B $ C . Then the composite S � R of
R and S is de�ned as: S � R = f(a, c) j aRb ^ bScg .
Example 1 Function composition f � g is an example.
Example 2 A = f1, 2, 3g, B = fa, b, c , dg, C = fx , y , zg.

R : A$ B, R = f(1, a), (1, b), (2, b), (2, c)g.
S : B $ C , S = f(a, x), (a, y), (b, y), (d , z)g.
S � R = f(1, x), (1, y), (2, y)g.
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Relations on a Set

De�nition

A (binary) relation from a set A to itself is called a relation on the
set A.

E.g., the "<" relation from earlier was de�ned as a relation
on the set N of natural numbers.

The identity relation IA on a set A is the set f(a, a) j a 2 Ag.
Let A be the set f1, 2, 3, 4g. Which ordered pairs are in the
relation R = f(a, b) j a divides bg?
How many relations are there on a set with n elements?
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Re�exivity

De�nition

A relation R on A is re�exive if 8a 2 A, aRa. A relation is
irre�exive i¤ its complementary relation is re�exive.

E.g., the relation �:� f(a, b) j a � bg is re�exive.
E.g., < is irre�exive.

"irre�exive" 6="not re�exive"!
"likes" between people is not re�exive, but not irre�exive
either. (Not everyone likes themselves, but not everyone
dislikes themselves either.)
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Example 7 from Textbook

Example

Consider the following relations on f1, 2, 3, 4g.

R1 = f(1, 1), (1, 2), (2, 1), (2, 2), (3, 4), (4, 1), (4, 4)g ,
R2 = f(1, 1), (1, 2), (2, 1), (2, 2)g ,
R3 = f(1, 1), (1, 2), (1, 4), (2, 1), (2, 2), (3, 3), (4, 1), (4, 4)g ,
R4 = f(2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3)g ,

R5 =

�
(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3),
(3, 4), (4, 4)

�
,

R6 = f(3, 4)g .

Which of these relations are re�exive, irre�exive, and not re�exive?
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Symmetry & Antisymmetry

De�nition

A binary relation R on A is symmetric i¤
(a, b) 2 R $ (b, a) 2 R, i.e. R = R�1.

E.g., = (equality) is symmetric, and < is not.
"is married to" is symmetric, and "likes" is not.

A binary relation R is antisymmetric if
(a, b) 2 R ^ (b, a) 2 R ! a = b.

E.g., < is antisymmetric, and "likes" is not.

Which relations from Example 7 are symmetric and which are
antisymmetric?
If R1 is symmetric and R2 is antisymmetric, is it true that
R1 \ R2 = ??
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Transitivity

De�nition

A relation R is transitive i¤

8a, b, c : (a, b) 2 R ^ (b, c) 2 R ! (a, c) 2 R.

A relation is intransitive if it is not transitive.

E.g., "is an ancestor of" is transitive, and "likes" is
intransitive.

Which of the relations in Example 7 are transitive?

Is the "divides" relations on the set of positive integers
transitive?

"is within 1 mile of" is . . . ?
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The Power of A Relation

De�nition

The nth power Rn of a relation R on a set A can be de�ned
recursively by �

R0 :� IA;
Rn+1 :� Rn � R for all n � 0.

The negative powers of R can also be de�ned if desired, by
R�n :� (R�1)n.
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Whether A Relation Is Transitive Or Not?

Theorem

The relation R on a set A is transitive if and only if Rn � R for all
n = 1, 2, 3, � � � .

Think about what (a, b) 2 Rk means?
How to prove an "if and only if" statement?

Let R = f(1, 1), (2, 1), (3, 2), (4, 3)g. Find the powers Rn for
n = 2, 3, � � � .
Let R = f(1, 2), (1, 3), (2, 2), (2, 3), (4, 3)g. Find the powers
Rn for n = 2, 3, � � � .
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n-ary Relations

De�nition

An n-ary relation R on sets A1, � � � ,An, written R : A1, � � � ,An, is
a subset R � A1 � � � � � An.

The sets Ai are called the domains of R.

The degree of R is n.

R is functional in domain Ai if it contains at most one n-tuple
(� � � , ai , � � � ) for any value ai within domain Ai .
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Relational Databases

A relational database is essentially an n-ary relation R.

A domain Ai is a primary key for the database if the relation
R is functional in Ai .

A composite key for the database is a set of domains
fAi ,Aj , � � � g such that R contains at most 1 n-tuple
(� � � , ai , � � � , aj , � � � ) for each composite value
(ai , aj , � � � ) 2 Ai � Aj � � � � .
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Selection Operators

Let A be any n-ary domain A = A1 � � � � � An, and let
C : A! fT ,Fg be any condition (predicate) on elements
(n-tuples) of A.

Then, the selection operator sC is the operator that maps any
(n-ary) relation R on A to the n-ary relation of all n-tuples
from R that satisfy C .

I.e., 8R � A,

sC (R) = R \ fa 2 A j sC (a) = Tg
= fa 2 R j sC (a) = Tg.
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Selection Operator Example

Suppose we have a domain
A = StudentName � Standing � SocSecNos.
Suppose we de�ne a certain condition on A,

UpperLevel(name, standing , ssn)

: � [(standing = junior) _ (standing = senior)]

Then, sUpperLevel is the selection operator that takes any
relation R on A (database of students) and produces a relation
consisting of just the upper-level classes (juniors and seniors).
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Projection Operators

Let A = A1 � � � � � An be any n-ary domain, and let
fikg = (i1, . . . , im) be a sequence of indices all falling in the
range 1 to n.

That is, where 1 � ik � n for all 1 � k � m.

Then the projection operator on n-tuples

Pfik g : A! Ai1 � � � � � Aim

is de�ned by

Pfik g (a1, � � � , an) = (ai1 , � � � , aim ) .
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Projection Example

Suppose we have a ternary (3-ary) domain
Cars = Model � Year � Color . (n = 3)
Consider the index sequence fikg = f1, 3g. (m = 2)
Then the projection Pfik g simply maps each tuple
(a1, a2, a3) = (model , year , color) to its image:

(ai1 , ai2) = (a1, a3) = (model , color).

This operator can be usefully applied to a whole relation
R � Cars (database of cars) to obtain a list of model/color
combinations available.
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Join Operator

Puts two relations together to form a sort of combined
relation.

If the tuple (A,B) appears in R1, and the tuple (B,C )
appears in R2, then the tuple (A,B,C ) appears in the join
J(R1,R2).

A, B, C can also be sequences of elements rather than single
elements.
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Join Example

Suppose R1 is a teaching assignment table, relating Professors
to Courses.

Suppose R2 is a room assignment table relating Courses to
Rooms and Times.

Then J(R1,R2) is like your class schedule, listing
(professor , course, room, time).
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Representing Relations

Some ways to represent n-ary relations:

With an explicit list or table of its tuples.
With a function from the domain to fT ,Fg.

Some special ways to represent binary relations:

With a zero-one matrix.
With a directed graph.
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Using Zero-One Matrices

To represent a relation R by a matrix MR = [mij ], let mij = 1
if (ai , bj ) 2 R, else 0.
E.g., Joe likes Susan and Mary, Fred likes Mary, and Mark
likes Sally. The 0� 1 matrix representation of that �Likes�
relation:

















100
010
011

Mark
Fred
Joe

SallyMarySusan
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Examples

Example

Let S = fSpring,Summer,Fall,Winterg and
F = fApple,Berry,Cherry,Duriang. Which ordered pairs are in the
relation R represented by the matrix?

Apple Berry Cherry Durian
Spring 1 0 1 0
Summer 0 0 1 1
Fall 0 1 0 0
Winter 1 0 0 0
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Zero-One Re�exive, Symmetric

Terms: re�exive, non-re�exive1, irre�exive, symmetric,
asymmetric2, and antisymmetric.

These relation characteristics are very easy to recognize by
inspection of the zero-one matrix.

Reflexive:
all 1’s on diagonal

Irreflexive:
all 0’s on diagonal

Symmetric:
all identical

across diagonal

Antisymmetric:
all 1’s are across

from 0’s









































































0
0

101
0

0

01
1

0
0

0
0

1
1

1
1

any
thing

any
thing

any
thing

any
thing anything

anything

Reflexive:
all 1’s on diagonal

Irreflexive:
all 0’s on diagonal

Symmetric:
all identical

across diagonal

Antisymmetric:
all 1’s are across

from 0’s









































































0
0

101
0

0

01
1

0
0

0
0

1
1

1
1

any
thing

any
thing

any
thing

any
thing anything

anything

1A relation R on A is non-re�exive if it is not re�exive.
2A relation R on A is asymmetric if 8a, b 2 A : aRb ! bRa.
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Matrix Operation v.s. Relation Operations

MR1[R2 =MR1 _MR2 ; MR1\R2 =MR1 ^MR2 .

_ and ^ are element-wise Boolean operators.

MS�R =MR �MS ; MR n = (MR )
n.

� denotes Boolean matrix multiplications.

MR�1 = (MR )
T .

Quiz: If R is a symmetric relation, MR is a symmetric matrix.
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Using Directed Graphs

A directed graph or digraph G = (VG ,EG ) is a set VG of
vertices (nodes) with a set EG � VG � VG of edges
(arcs, links). Visually represented using dots for nodes, and
arrows for edges. Notice that a relation R : A$ B can be
represented as a graph GR = (VG = A[ B,EG = R).
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Digraph Re�exive, Symmetric

It is extremely easy to recognize the
re�exive/irre�exive/symmetric/antisymmetric properties by
graph inspection.

PP
PP

PP
PP
PP

PP

Reflexive:
Every node

has a selfloop

Irreflexive:
No node

links to itself

Symmetric:
Every link is
bidirectional

PP PP
Antisymmetric:

No link is
bidirectional

PP PP

PP

Asymmetric, nonantisymmetric Nonreflexive, nonirreflexive

PP
PP

PP
PP
PP

PP

Reflexive:
Every node

has a selfloop

Irreflexive:
No node

links to itself

Symmetric:
Every link is
bidirectional

PP PP
Antisymmetric:

No link is
bidirectional

PP PP

PP

Asymmetric, nonantisymmetric Nonreflexive, nonirreflexive
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Closures of Relations

For any property X , the �X closure�of a set (or relation) R is
de�ned as the �smallest� superset of R that has the given
property.

The re�exive closure of a relation R on A is obtained by
adding (a, a) to R for each a 2 A. I.e., it is R [ IA.
The symmetric closure of R is obtained by adding (b, a) to R
for each (a, b) in R. I.e., it is R [ R�1.
The transitive closure or connectivity relation of R is obtained
by repeatedly adding (a, c) to R for each (a, b) and (b, c) in
R. I.e., it is

R� =
[
n2Z+

Rn.



Discrete Mathematics

Chapter 8 Relations

§8.4 Closures of Relations

Paths in Digraphs/Binary Relations

De�nition

A path of length n from node a to b in the directed graph G (or
the binary relation R) is a sequence (a, x1), (x1, x2), � � � , (xn�1, b)
of n ordered pairs in EG (or R). A path of length n � 1 from a to
a is called a circuit or a cycle.

Theorem

There exists a path of length n from a to b in R if and only if
(a, b) 2 Rn.

An empty sequence of edges is considered a path of length 0
from a to a.
If any path from a to b exists, then we say that a is connected
to b. (�You can get there from here.�)
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Simple Transitive Closure Algorithm

Lemma

Let A be a set with n element, and let R be a relation on A. If
there is a path of length at least one in R from a to b, then there
is such a path with length not exceeding n.

procedure transClosure(MR : rank-n 0-1 matrix)
// A procedure computes R� with 0-1 matrices.
A := B :=MR ;
for i := 2 to n begin

A := A�MR ; B := B_A;
end
return B

This algorithm takes Θ(n4) time.
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A Faster Transitive Closure Algorithm

procedure transClosure(MR : rank-n 0-1 matrix)
A := B :=MR ;
for i := 2 to dlog2 ne begin

A := A�A; // A represents R2
i
.

B := B_A; // �add� into B.
end
return B

This algorihtm takes only Θ(n3logn) time, BUT NOT
CORRECT.
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Roy-Warshall Algorithm

procedure Warshall(MR : rank-n 0-1 matrix)
W :=MR ;
for k := 1 to n

for i := 1 to n
for j := 1 to n

wij := wij _ (wik ^ wkj )
return W {This represents R�.}

Uses only Θ(n3) operations!
wij = 1 means there is a path from i to j going only through
nodes � k.
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Examples

Example

Find the symmetric closure, re�exive closure, and transitive closure
of the following relation.

PPPP
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Equivalence Relations

De�nition

An equivalence relation (e.r.) on a set A is simply any binary
relation on A that is re�exive, symmetric, and transitive.

E.g., "=" itself is an equivalence relation.

For any function f : A! B, the relation �have the same f
value�, or =f :� f(a1, a2) j f (a1) = f (a2)g is an equivalence
relation.

E.g., let m = �mother of�, then =m :� �have the same
mother� is an e.r..
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Examples of E.R.�s

Examples

�Strings a and b are the same length.�

�Integers a and b have the same absolute value.�

�Real numbers a and b have the same fractional part (i.e.,
a� b 2 Z ).�
�Integers a and b have the same residue modulo m.� (for a
given m > 1)
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Equivalence Classes

De�nition

Let R be any equivalence relation on a set A. The equivalence
class of a is

[a]R :� fb j aRbg . (optional subscript R)

It is the set of all elements of A that are �equivalent� to a
according to the E.R. R.

Each such b (including a itself) is called a representative of
[a]R .
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Equivalence Class Examples

�Strings a and b are the same length.�

[a] = the set of all strings of the same length as a.

�Integers a and b have the same absolute value.�

[a] = the set fa,�ag.

�Real numbers a and b have the same fractional part (i.e.,
a� b 2 Z ).�

[a] = the set f� � � , a� 2, a� 1, a, a+ 1, a+ 2, � � � g.

�Integers a and b have the same residue modulo m.� (for a
given m > 1)

[a] = the set f� � � , a� 2m, a�m, a, a+m, a+ 2m, � � � g.
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Partitions

De�nition

A partition of a set A is the set of all the equivalence classes
fA1,A2, . . . g for some e.r. on A.

Example

Let m 2 Z+. For any a, b 2 Z, we de�ne aRb i¤ m j a� b. Then,
R is an e.r., and f[0] , [1] , � � � , [m� 1]g is a partition of Z for R.

The Ai�s are all disjoint and their union is equal to A.

They �partition� the set into pieces. Within each piece, all
members of the set are equivalent to each other.
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Partial Orderings

De�nition

A relation R on a set S is called a partial ordering or partial order
if it is re�exive, antisymmetric, and transitive. A set S together
with a partial ordering R is called a partially ordered set, or poset,
and is denoted by (S ,R).

The �greater than or equal� relation � is a partial ordering on
the set of integers.

The divisibility relation j is a partial ordering on the set of
positive integers.

The inclusion relation � is a partial ordering on the power set
of a set S .
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Total Orderings

De�nition

If (S ,4) is a poset and every two elements of S are comparable, S
is called a totally ordered set or linearly ordered set, and 4 is called
a total order or a linear order. A totally ordered set is also called a
chain.

E.g., (N,�).
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Lexicographic Order

(A1,41) and (A1,42) are posets. For any
(a1, a2), (b1, b2) 2 A1 � A2, we say (a1, a2) 4 (b1, b2) if and
only if a1 41 b1 or both a1 = b1 and a2 42 b2.
The lexicographic order of the Cartesian product of posets is a
partial order.

Please prove this by yourself.



Discrete Mathematics

Chapter 8 Relations

§8.6 Partial Orderings

Hasse Diagrams

Digraphs for �nite posets can be simpli�ed by following ideas.

1 Remove loops at every vertices.
2 Remove edge that must be present because of the transitivity.
3 Arrange each edge so that its initial vertex is below its
terminal vertex.

4 Remove all the arrows.

The simpli�ed diagrams are called Hasse diagrams.



Discrete Mathematics

Chapter 8 Relations

§8.6 Partial Orderings

Example of Hasse Diagrams
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Example of Hasse Diagrams (Cont.)
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Maximal and Minimal Elements

De�nition

a is a maximal (resp., minimal) element in the poset (S ,4) if
there is no b 2 S such that a � b (resp., b � a).

De�nition

a is the greatest (resp., least) element of the poset (S ,4) if b 4 a
(resp., a 4 b) for all b 2 S .

Lemma

Every �nite nonempty poset (S ,4) has a minimal element.
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Maximal and Minimal Elements (Cont.)

De�nition

A is a subset of of a poset (S ,4).
u 2 S is called an upper bound (resp., lower bound) of A if
a 4 u (resp., u 4 a) for all a 2 A.
x 2 S is called the least upper bound (resp., greatest lower
bound) of A if x is an upper bound (resp., lower bound) that
is less than every other upper bound (resp., lower bound) of A.

De�nition

(S ,4) is a well-ordered set if it is a poset such that 4 is a total
ordering and every nonempty subset of S has a least element.

E.g., (Z+,�) is well-ordered but (R,�) is not.
There is "well-ordered induction".
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Lattices

De�nition

A partially ordered set in which every pair of elements has both a
least upper bound and a greatest lower bound is called a lattice.
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Example

Determine whether the posets (f1, 2, 3, 4, 5g , j) and
(f1, 2, 4, 8, 16g , j) are lattices.
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Topological Sorting

Motivation: A project is make up of 20 di¤erent tasks. Some
tasks can be completed only after others have been �nished.
How can an order be found for these tasks?

Topological sorting: Given a partial ordering R, �nd a total
ordering 4 such that a 4 b whenever aRb. 4 is said
compatible with R.
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Topological Sorting for Finite Posets

procedure topological_sort(S : �nite poset)
k := 1
while S 6= ?
begin

ak := a minimal element of S
S := S � fakg
k := k + 1

end {a1, a2, � � � , an is a compatible total ordering of S}
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