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Recurrence Relations

De�nition

A recurrence relation (R.R., or just recurrence) for a sequence
fang is an equation that expresses an in terms of one or more
previous elements a0, � � � , an�1 of the sequence, for all n � n0.

De�nition

A particular sequence (described non-recursively) is said to solve
the given recurrence relation if it is consistent with the de�nition of
the recurrence.

A given recurrence relation may have many solutions.



Discrete Mathematics

Chapter 7 Advanced Counting Techniques

§7.1 Recurrence Relations

Example

Consider the recurrence relation

an = 2an�1 � an�2 for any n � 2.

Which of the following are solutions?

an = 3n: 2an�1 � an�2 = 2(3(n� 1))� (3(n� 2)) = 3n
(Yes)

an = 2n: 2an�1 � an�2 = 2(2n�1)� (2n�2) 6= 2n (No)
an = 5: 2an�1 � an�2 = 2(5)� (5) = 5 (Yes)
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Example Applications

Example

Recurrence relation for growth of a bank account with P% interest
per given period:

Mn = Mn�1 + (P/100)Mn�1.

Example

Growth of a population in which each organism yields 1 new one
every period starting 2 periods after its birth.

Pn = Pn�1 + Pn�2 (Fibonacci relation).
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Solving Compound Interest RR

Mn = Mn�1 + (P/100)Mn�1

= (1+ P/100)Mn�1

= rMn�1 (let r = 1+ P/100)
= r(rMn�2)

= r � r � (rMn� 3)) . . . and so on to . . .

= rnM0
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Tower of Hanoi Example

Problem

Get all disks from peg 1 to peg 2.

Only move 1 disk at a time.

Never set a larger disk on a smaller one.

Peg #1 Peg #2 Peg #3Peg #1 Peg #2 Peg #3
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Hanoi Recurrence Relation

Solution

Let Hn = # moves for a stack of n disks.
Optimal strategy:

Move top n� 1 disks to spare peg. (Hn�1 moves)
Move bottom disk. (1 move)

Move top n� 1 to bottom disk. (Hn�1 moves)

Note: Hn = 2Hn�1 + 1.
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Solving Tower of Hanoi RR

Solution

Hn = 2Hn�1 + 1

= 2(2Hn�2 + 1) + 1 = 22Hn�2 + 2+ 1

= 22(2Hn�3 + 1) + 2+ 1 = 23Hn�3 + 22 + 2+ 1
...

= 2n�1H1 + 2n�2 + . . . + 2+ 1
= 2n�1 + 2n�2 + . . . + 2+ 1 (since H1 = 1)

=
n�1
∑
i=0
2i

= 2n � 1.
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Solving Recurrences

De�nition

A linear homogeneous recurrence of degree k with constant
coe¢ cients is a recurrence of the form

an = c1an�1 + . . . + ckan�k ,

where the ci are all real, and ck 6= 0.
The solution is uniquely determined if k initial conditions
a0, a1, . . . , ak�1 are provided.

What does linear means?

If sn and tn are solutions, for any real c and d , csn + dtn is
solution, too.



Discrete Mathematics

Chapter 7 Advanced Counting Techniques

§7.2 Solving Linear Recurrence Relations

Solving LiHoReCoCos

Basic idea: Look for solutions of the form an = rn, where r is
a constant.

Bring an = rn back to the recursive equation.

rn = c1rn�1 + � � �+ ck rn�k ,
i.e., rn�k (r k � c1r k�1 � � � � � ck ) = 0.

The characteristic equation:

r k � c1r k�1 � � � � � ck = 0.

The solutions (characteristic roots) can yield an explicit
formula for the sequence.
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Solving 2-LiHoReCoCos

Consider an arbitrary 2-LiHoReCoCo:

an = c1an�1 + c2an�2.

It has the characteristic equation (C.E.):

r2 � c1r � c2 = 0.

Theorem

If this CE has 2 roots r1 6= r2, then

an = α1rn1 + α2rn2 for n � 0 for some constant α1, α2.
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Example

Solve the recurrence an = an�1 + 2an�2 given the initial conditions
a0 = 2, and a1 = 7.

Solution

Here c1 = 1 and c2 = 2. Then, the characteristic equation is
r2 � r � 2 = 0. We can get r = 2 or r = �1. So, assume

an = α12n + α2(�1)n.

To �nd α1 and α2, solve the equations by the initial conditions
a0 = 2 and a1 = 7:

a0 = 2 = α120 + α2(�1)0
a1 = 7 = α121 + α2(�1)1

) α1 + α2 = 2
2α1 � α2 = 7

We can get α1 = 3 and α2 = �1. So, an = 3 � 2n � (�1)n.
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Example

Solve the recurrence relation an = 7an�1 � 10an�2 for n � 2 with
a0 = 2 and a1 = 1 by characteristic equations.

Solution

Let an = rn.

Then, the C.E. is r2 � 7r + 10 = 0.
There are two distinguish root r = 2 and r = 5. So, the two
basic solution is 2n and 5n.

Assume an = α12n + α25n. From a0 = 2, we have
α1 + α2 = 2. From a1 = 1, we have 2α1 + 5α2 = 1 Thus, we
can get α1 = 3 and α2 = �1.
So, an = 3 � 2n � 5n.
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k-LiHoReCoCos

Consider a k-LiHoReCoCo: an = ∑k
i=1 cian�i .

It�s C.E. is: r k �∑k
i=1 ci r

k�i = 0.

Theorem

If this has k distinct roots ri , then the solutions to the recurrence
are of the form

an =
k

∑
i=1

αi rni

for all n � 0, where the αi are constants.

Example

Solve an = 2an�1 + 5an�2 � 6an�3.
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The Case of Degenerate Roots

Theorem

If the C.E. r2 � c1r � c2 = 0 has only 1 root r0, then

an = α1rn0 + α2nrn0 ,

for all n � 0, for some constants α1 and α2.

Proof.

Quiz!
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Example

Find all solutions to an = 4an�1 � 4an�2 for a0 = 1 and a1 = 0?

Solution

The corresponding C.E. is r2 � 4r + 4 = 0. So, we have a
root r = 2 with a multiplicity 2. Therefore, the solution of the
recurrence relation is an = α12n + α2n2n.

From a0 = 1, α1 = 1. From a1 = 0, we have 2α1 + 2α2 = 0.
So, we can get α1 = 1 and α2 = �1. Thus,

an = 2n � n2n.
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Degenerate k-LiHoReCoCos

Theorem

Suppose there are t roots r1, � � � , rt with multiplicities m1, . . . ,mt .
Then,

an =
t

∑
i=1

 
mi�1
∑
j=0

αi ,jnj
!
rni

for all n � 0, where all the αi ,j are constants.

Example

1 Solve an = 6an�1 � 12an�2 + 8an�3.
2 Solve an = 3an�1 � 4an�3.
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Linear Nonhomogeneous Recurrence Relations with
Constant Coe¢ cients (LiNoReCoCos)

De�nition

Linear nonhomogeneous RRs with constant coe¢ cients may (unlike
LiHoReCoCos) contain some terms F (n) that depend only on n
(and not on any ai�s)

an = c1an�1 + � � �+ ckan�k| {z }+F (n)
The associated homogeneous

recurrence relation.
(associated LiHoReCoCo)
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Solutions of LiNoReCoCos

Theorem

If an = p (n) is any particular solution to the LiNoReCoCo

an =

 
k

∑
i=1
cian�i

!
+ F (n) ,

then all its solutions are of the form

an = p (n) + h (n) ,

where an = h (n) is any solution to the associated homogeneous
RR

an =
k

∑
i=1
cian�i .
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Example

Find all solutions to an = 3an�1 + 2n. Which solution has a1 = 3?

Solution

The associated 1-LiHoReCoCo is hn = 3hn�1, whose solutions
are all of the form hn = α3n. Thus the solutions to the
original problem are all of the form an = α3n + pn. So, all we
need to do is �nd one pn that works.

If the extra term F (n) is a degree-t polynomial in n, you
should try a degree-t polynomial as the particular solution pn.
In this case, try pn = cn+ d (pn = 3pn�1 + 2n). Then,
cn+ d = 3(c(n� 1) + d) + 2n, i.e.
(�2c + 2)n+ (3c � 2d) = 0.
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Solution ((Cont.))

Solve the system
�
�2c + 2 = 0
3c � 2d = 0 . Then, we have c = 1 and

d = 3/2. So,

pn = n+
3
2
.

Now, we know that solutions to our example are of the form

an = hn + pn = α3n + n+
3
2
.

Solve α by the given case a1 = 3. From 3 = α � 31 + 1� 3
2 , we

have α = 11/6. So, the answer is

an =
7
6
3n + n+

3
2
.
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Example

Solve the recurrence relation an = 7an�1 � 10an�2 + 16n+ 5 for
n � 2 with a0 = 0 and a1 = 4 by characteristic equations.

Solution

Let an = hn + pn. For the homogeneous part
(hn = 7hn�1 � 10hn�2), we have hn = α12n + α25n. Now, assume
pn = an+ b and pn = 7pn�1 � 10pn�2 + 16n+ 5. Then, we have

(an+ b) = 7 (a (n� 1) + b)� 10 (a (n� 2) + b) + 16n+ 5.

This is a polynomial equation of n.
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Solution (Cont.)

By comparson the coe¢ cent, we can get a = 4 and b = 57
4 . Thus,

an = hn + pn = α12n + α25n + 4n+
57
4
.

From a0 = 0, we have α1 + α2 = � 57
4 . From a1 = 1, we have

2α1 + 5α2 = � 69
4 . Thus, we can get α1 = �18 and α2 =

15
4 . So,

an = (�18) 2n + 15
4 5

n + 4n+ 57
4 .
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Divide & Conquer R.R.s

Many types of problems are solvable by reducing a problem of
size n into some number a of independent subproblems, each
of size �

� n
b

�
, where a � 1 and b > 1.

The time complexity to solve such problems is given by a
recurrence relation

T (n) = aT
�ln
b

m�
+ g (n) .
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Divide & Conquer Examples

Example (Binary search)

Break list into 1 sub-problem (smaller list) (so a = 1) of size
�
� n
2

�
(so b = 2). So,

T (n) = T
�ln
2

m�
+ c (g (n) = c constant).

Example (Merge sort)

Break list of length n into 2 sublists (a = 2), each of size �
� n
2

�
(so b = 2), then merge them, in g (n) = Θ (n) time. So

T (n) = 2T
�ln
2

m�
+ cn (roughly for some c).
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Fast Multiplication Example

The ordinary grade-school algorithm takes Θ
�
n2
�
steps to

multiply two n-digit numbers.

This seems like too much work!

So, let�s �nd an asymptotically faster multiplication algorithm!

To �nd the product cd of two 2n-digit base-b numbers,
c = (c2n�1c2n�2 � � � c0)b and d = (d2n�1d2n�2 . . . d0)b , �rst,
we break c and d in half

c = bnC1 + C0,

d = bnD1 +D0.

and then...
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Derivation of Fast Multiplication

cd = (bnC1 + C0) (bnD1 +D0)

= b2nC1D1 + bn (C1D0 + C0D1) + C0D0
= b2nC1D1 + C0D0

+bn (C1D0 + C0D1 + (C1D1 � C1D1) + (C0D0 � C0D0))
=

�
b2n + bn

�
C1D1 + (bn + 1)C0D0

+bn (C1D0 � C1D1 � C0D0 + C0D1)
=

�
b2n + bn

�
C1D1 + (bn + 1)C0D0

+bn (C1 � C0) (D0 �D1)
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Recurrence Rel. for Fast Mult.

Notice that the time complexity T (n) of the fast multiplication
algorithm obeys the recurrence

T (2n) = 3T (n) +Θ (n) .

In other words,
T (n) = 3T (

n
2
) +Θ(n)

So a = 3 and b = 2.
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The Master Theorem

Theorem

Consider a function f (n) that, for all n = bk for all k 2 Z+,
satis�es the recurrence relation

f (n) = af
�n
b

�
+ cnd

with a � 1, integer b > 1, real c > 0, d � 0. Then,

f (n) 2

8<:
O
�
nd
�

if a < bd

O
�
nd log n

�
if a = bd

O
�
nlogb a

�
if a > bd
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Example (The master theorem)

Recall that complexity of fast multiply was

T (n) = 3T
�n
2

�
+Θ (n) .

Thus, a = 3, b = 2, and d = 1. Since a > bd , case 3 of the
master theorem applies. So,

T (n) = O
�
nlogb a

�
= O

�
nlog2 3

�
which is O

�
n1.58...�.

The new algorithm is strictly faster than ordinary Θ
�
n2
�
multiply!
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Generating Functions

De�nition

The (ordinary) generating function for the sequence
a0, a1, � � � , ak , � � � of real numbers is the in�nite series

G (x) = a0 + a1x + � � �+ akxk + � � � =
∞

∑
i=0
aix i .

Example

1 If ai = 1 for i = 0, 1, � � � , G (x) = 1+ x + x2 + � � � = 1
1�x .

2 If ai = 1
i ! for i = 0, 1, � � � , G (x) = 1+

1
1!x +

1
2!x

2 + � � � = e.
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Counting Problem 1

Example

Find the number of solutions of e1 + e2 + e3 = 17.

Solution

The answer is equal to the coe¢ cient of x17 in the expansion of

(1+ x + x2 + . . .)(1+ x + x2 + . . .)(1+ x + x2 + . . .).
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Example

What is the answer if 2 � x1 � 8, 3 � x2 � 9, and 4 � x3 � 10.
Solution

The answer is equal to the coe¢ cient of x17 in the expansion of

(x2 + x3 + � � �+ x8)(x3 + x4 + � � �+ x9)(x4 + x5 + � � �+ x10).

Problem

How to handle other more general cases, e.g. even numbers, odd
numbers?
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Counting Problem 2

Example

How many ways to pay r dollars into a vending machine with
tokens worth $1, $2, and $5.

Solution

If the order in which the tokens are inserted doesn�t matter, the
answer is given by the coe¢ cient of x r in the generating function

G (x) =
�
1+ x + x2 + � � �

� �
1+ x2 + x4 + � � �

��
1+ x5 + x10 + � � �

�
.
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Solution ((Cont.))

If the order in which the tokens are inserted matters and exactly n
tokens are used, the answer is the coe¢ cient of x r in the
generating function

G (x) =
�
x + x2 + x5

�n
.

If the order in which the tokens are inserted matters, the answer is
the coe¢ cient of x r in the generating function

G (x) = 1+
�
x + x2 + x5

�
+
�
x + x2 + x5

�2
+ � � �

=
1

1� (x + x2 + x5) .



Discrete Mathematics

Chapter 7 Advanced Counting Techniques

§7.4 Generating Functions

Extended Binomial Theorem

De�nition

Let u be a real number and k a nonnegative integer. Then the
extended binomial coe¢ cient is de�ned by�

u
k

�
=

(
u(u�1)���(u�k+1)

k ! if k > 0;
1 if k = 0.

Theorem

Let x be a real number with jx j < 1 and let u be a real number.
Then

(1+ x)u =
∞

∑
k=0

�
u
k

�
xk .

This can be explained by the Taylor expansion.
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Useful Generating Functions

(1+ x)n =
n

∑
k=0

�
n
k

�
xk =

�
n
0

�
+

�
n
1

�
x +

�
n
2

�
x2 + � � �+

�
n
n

�
xn

1
1� x =

∞

∑
k=0

xk = 1+ x + x2 + x3 + � � �

1

(1� x)2
=

∞

∑
k=0

(k + 1) xk = 1+ 2x + 3x2 + 4x3 + � � �

ex =
∞

∑
k=0

xk

k !
= 1+ x +

x2

2!
+
x3

3!
+ � � �

ln (1+ x) =
∞

∑
k=1

(�1)k

k
xk = x � x

2

2
+
x3

3
� x

4

4
+ � � �
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Solve Recurrence Relation: Example (1)

Example

Solve the recurrence relation ak = 3ak�1 for k = 1, 2, � � � and
initial condition a0 = 2.

Solution

Let G (x) be the generating function for the sequence fang. Then

G (x) =
∞

∑
k=0

akx
k =

 
∞

∑
k=1

3ak�1x
k

!
+ a0

= 3x

 
∞

∑
k=1

ak�1x
k�1
!
+ 2

= 3xG (x) + 2.
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Solution ((Cont.))

Thus, we have

G (x) =
2

1� 3x = 2
∞

∑
k=0

(3x)k =
∞

∑
k=0

�
2 � 3k

�
xk .

So,
ak = 2 � 3k .
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Solve Recurrence Relation: Example (2)

Example

Solve the recurrence relation an = 8an�1 + 10n�1 with the initial
condition a1 = 9.

Solution

From a1 = 8a0 + 100 and a1 = 9, we have a0 = 1. Let G (x) be
the generating function w.r.t. fang.

G (x) =
∞

∑
k=0

akx
k =

 
∞

∑
k=1

�
8ak�1 + 10

k�1
�
xk
!
+ a0

= 8x
∞

∑
k=1

ak�1x
k�1 + x

∞

∑
k=1

(10x)k�1 + 1

= 8xG (x) +
x

1� 10x + 1.
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Solution ((Cont.))

So, we have

G (x) =
1� 9x

(1� 8x) (1� 10x) =
1
2

�
1

1� 8x +
1

1� 10x

�
=

1
2

 
∞

∑
k=0

8kxk +
∞

∑
k=0

10kxk
!

=
∞

∑
k=0

1
2

�
8k + 10k

�
xk .

Therefore,

an =
1
2

�
8k + 10k

�
.
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Example

Solve the recurrence relation an = 7an�1 � 10an�2 for n � 2 with
a0 = 2 and a1 = 1 by generating functions.

Solution

First, �nd the close form of the generating functions.

G (x) =
∞

∑
n=0

anxn =

 
∞

∑
n=2

anxn
!
+ a1x + a0

=

"
∞

∑
n=2

(7an�1 � 10an�2) xn
#
+ x + 2

= 7x

 
∞

∑
n=2

an�1xn�1
!
� 10x2

 
∞

∑
n=2

an�2xn�2
!
+ x + 2

= 7x (G (x)� a0)� 10x2G (x) + x + 2
= 7xG (x)� 10x2G (x)� 13x + 2.
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Solution ((Cont.))

So, we have G (x)
�
10x2 � 7x + 1

�
= �13x + 2.

G (x) =
�13x + 2

10x2 � 7x + 1 =
�13x + 2

(1� 2x) (1� 5x)

=
a

(1� 2x) +
b

(1� 5x) .

Then, we can solve a = 3 and b = �1.

G (x) =
3

(1� 2x) �
1

(1� 5x) = 3
∞

∑
n=0

(2x)n �
∞

∑
n=0

(5x)n

=
∞

∑
n=0

(3 � 2n � 5n) 2xn.

Thus, an = 3 � 2n � 5n.
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§7.4 Generating Functions

Example

Solve the recurrence relation an = an�1 + 2an�2 + 2n for n � 2
with a0 = 4 and a1 = 12 by generating function.
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Solution

Find the close form of the generating function.

G (x) =
∞

∑
n=0

anxn =

 
∞

∑
n=2

anxn
!
+ a1x + a0

=

"
∞

∑
n=2

(an�1 + 2an�2 + 2n) xn
#
+ 12x + 4

= x

 
∞

∑
n=2

an�1xn�1
!
+ 2x2

 
∞

∑
n=2

an�2xn�2
!

+

 
∞

∑
n=2

(2x)n
!
+ 12x + 4

= x (G (x)� a0) + 2x2G (x) +
4x2

1� 2x + 12x + 4

= xG (x) + 2x2G (x) + 8x + 4.
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Solution ((Cont.))

So, we have

G (x)
�
�2x2 � x + 1

�
=

4x2

1� 2x � 13x + 2 =
�12x2 + 4
1� 2x ,

and

G (x) =
�12x2 + 4

(1� 2x)2 (1+ x)

=
a

(1� 2x)2
+

b
(1� 2x) +

c
(1+ x)

=
(�2b+ 4c) x2 + (a� b� 4c) x + (a+ b+ c)

(1� 2x)2 (1+ x)
.
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§7.4 Generating Functions

Solution ((Cont.))

Then, we can solve a = 6
9 , b =

38
9 , and c = �

8
9 .

G (x)

=
6
9

1

(1� 2x)2
+
38
9

1
(1� 2x) �

8
9

1
(1+ x)

=

 
∞

∑
n=0

6
9
(n+ 1) 2nxn

!
+

 
∞

∑
n=0

38
9
2nxn

!
�
 

∞

∑
n=0

8
9
(�1)n xn

!

=
∞

∑
n=0

�
6
9
(n+ 1) 2n +

38
9
2n +

8
9
(�1)n

�
xn.

Thus, an = 6
9 (n+ 1) 2

n + 38
9 2

n + 8
9 (�1)

n.
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§7.5 Inclusion-Exclusion

Theorem

For �nite sets A1,A2, � � � ,An,���� [1�i�nAi
���� = ∑

1�i�n
jAi j � ∑

1�i<j�n
jAi \ Aj j

+ ∑
1�i<j<k�n

jAi \ Aj \ Ak j � � � � .

Especially, if A and B are sets, then jA[ B j = jAj+ jB j � jA\ B j.

Proof.

The proof is given later. Please go down three pages to �nd the
proof outline.
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§7.5 Inclusion-Exclusion

Example

How many positive integers not exceeding 1000 are divisible by 7
or 11?

Solution

Let A (and B, respectively) be a set of integers not exceeding 1000
are divisible by 7 (and 11, respectively). Then,

jAj =
� 1000

7

�
= 142, jB j =

� 1000
11

�
= 90, and

jA\ B j =
� 1000
77

�
= 12.

jA[ B j = jAj+ jB j � jA\ B j = 142+ 90� 12 = 220.
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§7.5 Inclusion-Exclusion

Example

A total of 1232 students have taken a course in Spanish, 879 have
taken a course in French, and 114 have taken a course in Russian.
Further, 103 have taken courses in both Spanish and French, 23
have taken courses in both Spanish and Russian, and 14 have
taken courses in both French and Russian. If 2092 students have
taken at least one of Spanish, French, and Russian, how many
students have taken a course in all three languages?
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§7.5 Inclusion-Exclusion

Solution

Let S, F , and R be sets of students who have taken a course in
Spanish, French, and Russian, respectively.

jS j = 1232, jF j = 879, jR j = 114.
jS \ F j = 103, jS \ R j = 23, jF \ R j = 14.
jS \ F \ R j = 2092.

So, from

jS [ F [ R j = jS j+ jF j+ jR j
� jS \ F j � jS \ R j � jF \ R j
+ jS \ F \ R j ,

we have
jS \ F \ R j = 2092� 1232� 879� 114+ 103+ 23+ 14 = 7.



Discrete Mathematics

Chapter 7 Advanced Counting Techniques

§7.5 Inclusion-Exclusion

Proof of the inclusion-exclusion principle.

Prove by mathematical induction.

jA1 [ A2 [ � � � [ (An [ An+1)j

=

  
∑

1�i�n�1
jAi j

!
+ jAn [ An+1j

!

�

0BBB@
 

∑
1�i<j�n�1

jAi \ Aj j
!

+

�
∑

1�i�n�1
jAi \ (An [ An+1)j

�
1CCCA

+

0BBBB@
 

∑
1�i<j<k�n�1

jAi \ Aj \ Ak j
!

+

 
∑

1�i<j�n�1
jAi \ Aj \ (An [ An+1)j

!
1CCCCA

� � � �
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§7.5 Inclusion-Exclusion

(Cont.)

=

  
∑

1�i�n�1
jAi j

!
+ jAn j+ jAn+1j � jAn \ An+1j

!

�

0BBB@
 

∑
1�i<j�n�1

jAi \ Aj j
!

+

�
∑

1�i�n�1
j(Ai \ An) [ (Ai \ An+1)j

�
1CCCA

+

0BBBB@
 

∑
1�i<j<k�n�1

jAi \ Aj \ Ak j
!

+

 
∑

1�i<j�n�1
j(Ai \ Aj \ An) [ (Ai \ Aj \ An+1)j

!
1CCCCA

� � � �
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§7.5 Inclusion-Exclusion

(Cont.)

=

  
∑

1�i�n�1
jAi j

!
+ jAn j+ jAn+1j � jAn \ An+1j

!

�

0BBBB@
 

∑
1�i<j�n�1

jAi \ Aj j
!

+

 
∑

1�i�n�1
jAi \ An j+ jAi \ An+1j

� jAi \ An \ An+1j

!
1CCCCA

+

0BBBB@
 

∑
1�i<j<k�n�1

jAi \ Aj \ Ak j
!

+

 
∑

1�i<j�n�1
jAi \ Aj \ An j+ jAi \ Aj \ An+1j

� jAi \ Aj \ An \ An+1j

!
1CCCCA

� � � �
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§7.5 Inclusion-Exclusion

(Cont.)

= ∑
1�i�n

jAi j � ∑
1�i<j�n

jAi \ Aj j

+ ∑
1�i<j<k�n

jAi \ Aj \ Ak j � � � � .
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§7.6 Applications of Inclusion-Exclusion

Example

How many onto functions are there from a set with six elements to
a set with three elements.

Proof.

Assume the elements in the codomain are b1, b2, b3. Let U be the
set of all possible functions and Pi for i = 1, 2, 3 be the set of
functions that does not map to bi . Then,��P1 [ P2 [ P3�� = jU � (P1 [ P2 [ P3)j

= jU j �

24 jP1j+ jP2j+ jP3j
� (jP1 \ P2j+ jP1 \ P3j \ jP2 \ P3j)

+ jP1 \ P2 \ P3j

35
= 36 �

�
3
1

�
26 +

�
3
2

�
16 +

�
3
3

�
06

= 540.
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§7.6 Applications of Inclusion-Exclusion

Derangement

De�nition

�A derangement is a permutation of objects that leaves no object
in its original position. For example, 23154 is a dearangemetn of
34521.

Theorem

The number of derangement of a set with n elements is

Dn = n!
�
1� 1

1!
+
1
2!
� 1
3!
+ � � �+ (�1)n 1

n!

�
.
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