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§4.1 Mathematical Induction

A powerful, rigorous technique for proving that a predicate
P (n) is true for every natural number n, no matter how large.

Essentially a �domino e¤ect�principle.

Based on a predicate-logic inference rule:

BasisStep : P (0)

InductiveStep : 8n � 0, (P (n)! P (n+ 1))
Conclusion : ) 8n � 0, P (n)

The First Principle of Mathematical Induction.
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Outline of an Inductive Proof

Want to prove 8n P (n). . .
1 Base case (or basis step): Prove P (0).
2 Inductive step: Prove 8n � 0 P (n)! P (n+ 1). E.g. use a
direct proof:

Let n 2 N, assume P (n). (inductive hypothesis)
Under this assumption, prove P (n+ 1).

3 Inductive inference rule then gives 8n P (n).

Example

Prove that the sum of the �rst n odd positive integers is n2. That
is, prove:

8n � 1 :
n

∑
i=1
(2i � 1) = n2| {z }

P (n)



Discrete Mathematics

Chapter 4 Induction and Recursion

§4.1 Mathematical Induction

Proof.

Base Case: Let n = 1. The sum of the �rst 1 odd positive
integer is 1 which equals 12.

Inductive Step: Prove 8n � 1 : P (n)! P (n+ 1). Let
n � 1, assume P (n), and prove P (n+ 1).

n+1

∑
i=1
(2i � 1) =

 
n

∑
i=1
(2i � 1)

!
+ (2 (n+ 1)� 1)

= n2 + 2n+ 1

= (n+ 1)2

So, according to the inductive inference rule, the property
is proved.
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Generalizing Induction

Can also be used to prove 8n � c P (n) for a given constant
c 2 Z, where maybe c 6= 0.

In this circumstance, the base case is to prove P (c) rather
than P (0), and the inductive step is to prove 8n � c
(P (n)! P (n+ 1)).

Induction can also be used to prove 8n � c P (an) for an
arbitrary series fang.
Can reduce these to the form already shown.



Discrete Mathematics

Chapter 4 Induction and Recursion

§4.1 Mathematical Induction

Example

Prove that 8n > 0, n < 2n.
Solution

Let P (n) = (n < 2n).

1 Base case: P (1) =
�
1 < 21

�
= (1 < 2) = T.

2 Inductive step: For n > 0, prove P (n)! P (n+ 1).
Assuming n < 2n, prove n+ 1 < 2n+1. Note

n+ 1 < 2n + 1 (by inductive hypothesis)

< 2n + 2n (because 1 < 2 = 2 � 20 � 2 � 2n�1 = 2n)
= 2n+1

3 So n+ 1 < 2n+1, and we�re done.
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Harmonic Numbers

Theorem

The harmnoic numbers Hj for j = 1, 2, 3, � � � are

Hj = 1+
1
2
+
1
3
+ � � �+ 1

j
.

Then, H2n � 1+ n
2 .

Proof.

BASIS STEP
INDUCTIVE STEP
CONCLUSION
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De Morgan�s Law

Theorem

If A1,A2, � � � ,An are subsets of a universal set U and n � 2, then
we have

n\
j=1

Aj =
n[
j=1

Aj and
n[
j=1

Aj =
n\
j=1

Aj .

Proof.

BASIS STEP
INDUCTIVE STEP
CONCLUSION
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The Inclusion-Exclusion Principle

Theorem

If A1,A2, � � � ,An are �nite sets and n � 1, we have����� n[
i=1

Ai

����� = ∑
i=1
jAi j � ∑

1�i<j�n
jAi \ Aj j+ ∑

1�i<j<k�n
jAi \ Aj \ Ak j

� � � � .

Proof.

BASIS STEP
INDUCTIVE STEP
CONCLUSION
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§4.2: Strong Induction Second Principle of Induction

Characterized by another inference rule:

P (0)

8n � 0 :

P is true in all previous casesz }| {
(80 � k � n P (k)) ! P (n+ 1)

) 8n � 0 : P (n)

Di¤erence with the 1st principle is that the inductive step uses
the fact that P (k) is true for all smaller k < n+ 1, not just
for k = n.
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Example of Second Principle

Example

Show that every n > 1 can be written as a product p1p2 . . . ps of
some series of s prime numbers.

Solution

Let P (n) =�n has that property�.

1 Base case: For n = 2, let s = 1, p1 = 2.

2 Inductive step: Let n � 2. Assume 82 � k � n: P (k).
Consider n+ 1. If prime, let s = 1, p1 = n+ 1. Else
n+ 1 = ab, where 1 < a � n and 1 < b � n. Then
a = p1p2 . . . pt and b = q1q2 . . . qu . Then
n+ 1 = p1p2 . . . ptq1q2 . . . qu , a product of s = t + u primes.

3 So, P (n) is true for all n > 1.
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Another 2nd Principle Example

Example

Prove that every amount of postage of 12 cents or more can be
formed using just 4-cent and 5-cent stamps.

Solution

Let P (n) =�n can be formed using 4-cent and 5-cent stamps."

1 Base case: 12 = 3 (4), 13 = 2 (4) + 1 (5), 14 = 1 (4) + 2 (5),
15 = 3 (5), so 812 � n � 15, P (n).

2 Inductive step: Let n � 15. Assume 812 � k � n P(k). Note
n+ 1 = (n� 3) + 4 and 12 � n� 3 � n. Since P (n� 3),
add a 4-cent stamp to get postage for n+ 1.

3 So, P (n) is true for all n � 12.
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Examples

1 Consider a game in which two players take turns removing any
positive number of matches they want from one of two piles
of matches. The player who removes the last match wins the
game. Show that if the two piles contain the same number of
matches initially, the second player can always guarantee a
win.

2 A simple polygon with n sides, where n is an integer with
n � 3, can be triangulated into n� 2 triangles.

Lemma (For the 2nd example)

Every simple polygon has an interior diagonal.
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Validity of Induction

Proof that 8k � 0 P (k) is a valid consequent:
Given any k � 0,
8n � 0 (P (n)! P (n+ 1)) (antecedent 2) trivially implies
8n � 0 (n < k)! (P (n)! P (n+ 1)), or
(P (0)! P (1)) ^ (P (1)! P (2)) ^ . . . ^
(P (k � 1)! P (k)).

Repeatedly applying the hypothetical syllogism rule to
adjacent implications k � 1 times then gives P (0)! P (k).

P (0) (antecedent #1) and modus ponens give P (k). Thus
8k � 0 P (k).
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Recursive De�nitions

In induction, we prove all members of an in�nite set have
some property P by proving the truth for larger members in
terms of that of smaller members.

In recursive de�nitions, we similarly de�ne a function, a
predicate or a set over an in�nite number of elements by
de�ning the function or predicate value or set-membership of
larger elements in terms of that of smaller ones.
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Recursion

Recursion is a general term for the practice of de�ning an
object in terms of itself (or of part of itself).

An inductive proof establishes the truth of P (n+ 1)
recursively in terms of P (n).

There are also recursive algorithms, de�nitions, functions,
sequences, and sets.
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Recursively De�ned Functions

Simplest case: One way to de�ne a function f : N ! S (for
any set S) or series an = f (n) is to:

De�ne f (0).
For n > 0, de�ne f (n) in terms of f (0),. . .,f (n� 1).

E.g.: De�ne the series an :� 2n recursively:

Let a0 :� 1.
For n > 0, let an :� 2an�1.
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Another Example

Suppose we de�ne f (n) for all n 2 N recursively by:

Let f (0) = 3.
For all n 2 N, let f (n+ 1) = 2f (n) + 3

What are the values of the following?

f (1) = 9, f (2) = 21, f (3) = 45, f (4) = 93
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Recursive de�nition of Factorial

Give an inductive de�nition of the factorial function
F (n) :� n! :� 2 � 3 � . . . � n.

Base case: F (0) :� 1
Recursive part: F (n) :� n � F (n� 1).

F (1) = 1
F (2) = 2
F (3) = 6
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The Fibonacci Series

The Fibonacci series fn�0 is a famous series de�ned by

f0 :� 0, f1 :� 1, fn�2 :� fn�1 + fn�2.

0

1 1

2 3

5 8

13
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Inductive Proof about Fib. Series

Theorem

For all n 2 N, fn < 2n.

Proof.

Prove the theorem by induction.

Base cases:
f0 = 0 < 20 = 1
f1 = 1 < 21 = 2

�
the base cases of recursive def�n

Inductive step: Use the 2nd principle of induction (strong
induction). Assume 8k < n, fk < 2k . Then

fn = fn�1 + fn�2
< 2n�1 + 2n�2 < 2n�1 + 2n�1 = 2n.

So, fn < 2n is proved.
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Exercise

Problem

Let fn denote the Fibonacci numbers. Show that whenever n � 3,
fn > αn�2, where α = (1+

p
5)

2 .

Problem (Lamé�s Theorem)

Let a and b be positive integers with a � b. Then the number of
divisions used by the Euclidean algorithm to �nd gcd (a, b) is less
than or equal to �ve times the number of decimal digits in b.
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Recursively De�ned Sets

An in�nite set S may be de�ned recursively, by giving:

A small �nite set of base elements of S .
A rule for constructing new elements of S from
previously-established elements.
Implicitly, S has no other elements but these.

Example

Let 3 2 S , and let x + y 2 S if x , y 2 S
What is S?
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The Set of All Strings

Given an alphabet ∑, the set ∑� of all strings over ∑ can be
recursively de�ned as�

ε 2 Σ� (ε :� ��, the empty string)
(λ 2 Σ�) ^ (x 2 Σ)! λx 2 Σ�

Problem

Prove that this de�nition is equivalent to our old one

∑� =
[
n2N

∑n .
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Tree Structures � Rooted Trees

The set of rooted trees, where a rooted tree consists of a set
of vertices containing a distinguished vertex called the root,
and edges connecting these vertices, can be de�ned
recursively by these steps:

BASIS STEP: A single vertex r is a rooted tree.
RECURSIVE STEP: Suppose that T1,T2, . . . ,Tn are disjoint
rooted trees with roots r1, r2, . . . , rn respectively. Then the
graph formed by starting with a root r , which is not in any of
the rooted trees T1,T2, . . . ,Tn , and adding an edge from r to
each of the vertices r1, r2, . . . , rn is also a rooted tree.
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Examples of Rooted Trees
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Tree Structures � Binary Trees

The set of extended binary trees can be de�ned recursively by
these steps:

BASIS STEP: A empty set is an extended binary tree.
RECURSIVE STEP: If T1 and T2 are disjoint extended binary
trees, there is an extended binary tree, denoted by T1 � T2,
containing of a root r together with edges connecting the root
to each of the roots of the left subtree T1 and the right
subtree T2 when these trees are nonempty.
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Example of Extended Binary Trees
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Recursive de�nitions can be used to describe algorithms as
well as functions and sets.

Example (A procedure to compute an)

procedure power (a 6= 0 : real, n 2 N)
if n = 0 then return 1
else return a � power (a, n� 1)



Discrete Mathematics

Chapter 4 Induction and Recursion

§4.4 Recursive Algorithms

E¢ ciency of Recursive Algorithms

The time complexity of a recursive algorithm may depend
critically on the number of recursive calls it makes.

E.g., modular exponentiation to a power n can take log (n)
time if done right, but linear time if done slightly di¤erently.

Compute bn modm, where m � 2, n � 0, and 1 � b < m.
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Modular Exponentiation Alg. #1

Use the fact that bn = b � bn�1 and that
x � y modm = x � (y modm)modm. (Prove!!!)

Example (Returns bn modm by using bn = b � bn�1.)
procedure mpower (b � 1, n � 0,m > b 2 N)

if n = 0 then return 1 else
return (b �mpower (b, n� 1,m))modm

Note this algorithm takes Θ (n) steps!
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Modular Exponentiation Alg. #2

Use the fact that b2k = bk �2 = (bk )2.

Example (Returns bn modm by using b2k = (bk )2.)

procedure mpower (b, n,m)
if n = 0 then return 1
else if 2 j n then

return mpower (b, n/2,m)2 modm
else return (mpower (b, n� 1,m) � b)modm

What is its time complexity?

Θ (log n) steps
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Modular Exponentiation Alg. #2

Use the fact that b2k = bk �2 = (bk )2.

Example (Returns bn modm by using b2k = (bk )2.)

procedure mpower (b, n,m)
if n = 0 then return 1
else if 2 j n then

return mpower (b, n/2,m)2 modm
else return (mpower (b, n� 1,m) � b)modm

What is its time complexity?

Θ (log n) steps
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A Slight Variation

Example

procedure mpower(b, n,m)
if n = 0 then return 1
else if 2jn then

return
�
mpower (b, n/2,m) �
mpower (b, n/2,m)

�
modm

else return (mpower (b, n� 1,m) � b)modm

Nearly identical but takes Θ (n) time instead!

The number of recursive calls made is critical.
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Recursive Euclid�s Algorithm

Example (Recursive Euclid�s Algorithm)

procedure gcd (a, b 2 N)
if a = 0 then return b
else return gcd (bmod a, a)

Note recursive algorithms are often simpler to code than
iterative ones. . .

However, they can consume more stack space, if your
compiler is not smart enough.
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Merge Sort

Example (Merge Sort)

procedure sort (L = `1, . . . , `n)
if n > 1 then

m = bn/2c // this is rough 1
2 -way point

L = merge (sort (`1, . . . , `m) , sort(`m+1, . . . , `n))
return L

The merge takes Θ (n) steps, and merge-sort takes
Θ (n log n).
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Example (Merge routine)

procedure merge (A,B : sorted lists)
L = empty list
i = 0; j = 0; k = 0;
while i < jAj _ j < jB j // jAj is length of A

if i == jAj then Lk = Bj ; j = j + 1
else if j == jB j then Lk = Ai ; i = i + 1
else if Ai < Bj then Lk = Ai ; i = i + 1
else Lk = Bj ; j = j + 1
k = k + 1

return L
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Ackermann�s Function

Problem

Find the value A (1, 0) , A (0, 1) , A (1, 1) ,and A (2, 2) according to
the following recursive de�nition

A (m, n) =

8>><>>:
2n if m = 0
0 if m � 1 and n = 0
2 if m � 1 and n = 1

A (m� 1,A (m, n� 1)) if m � 1 and n � 2

.
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