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Division, Factors, Multiples

De�nition

Let a, b 2 Z with a 6= 0.
ajb :� �a divides b� :� �9c 2 Z : b = ac�.
�There is an integer c such that c times a equals b.�

We say a is a factor or a divisor of b, and b is a multiple of a.

Example

3 j �12 () T; but 3 j 7 () F.

Example

�b is even� :� 2jb. Is 0 even? Is �4?
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Facts: the Divides Relation

Theorem

8a, b, c 2 Z:

1 aj0 for any a 6= 0.
2 (ajb ^ ajc)! aj(b+ c).
3 ajb ! ajbc.
4 (ajb ^ bjc)! ajc

Proof.

(2) ajb means there is an s such that b = as, and ajc means that
there is a t such that c = at, so b+ c = as + at = a(s + t), so
aj(b+ c) also.
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The Division �Algorithm�

Theorem

For any integer dividend a and divisor d 6= 0, there is a unique
integer quotient q and remainder r 2 N such that (denoted by 3)
a = dq + r and 0 � r < jd j.

8a, d 2 Z^ d 6= 0 (9!q, r 2 Z 3 0 � r < jd j ^ a = dq + r).

We can �nd q and r by: q = ba/dc,r = a� qd .
Really just a theorem, not an algorithm ...

The name is used here for historical reasons.
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The Mod Operator

De�nition (An integer �division remainder�operator)

Let a, d 2 Z with d > 1. Then amod d denotes the remainder r
from the division �algorithm�with dividend a and divisor d ; i.e.
the remainder when a is divided by d .

We can compute (amod d) by: a� d � ba/dc.
In C programming language, �%�= mod.
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Modular Congruence

De�nition

Let a, b 2 Z and m 2 Z+. Then a is congruent to b modulo m,
written �a � b(modm)�, if and only if mja� b.

Also equivalent to (a� b)modm = 0.
Note: this is a di¤erent use of �:��than the meaning �is
de�ned as� I�ve used before.

Visualization of mod.
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Useful Congruence Theorems

Let a, b 2 Z and m 2 Z+. Then,
a � b (modm) () 9k 2 Z : a = b+ km.
Let a, b, c , d 2 Z and m 2 Z+. Then, if a � bmodm and
c � d modm, we have

a+ c � b+ d modm, and
ac � bd modm

Problem

Prove!!!
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Prime Numbers

De�nition (Prime)

An integer p > 1 is prime i¤ it is not the product of any two
integers greater than 1,

p > 1^ :9a, b 2 N : a > 1, b > 1, ab = p.

The only positive factors of a prime p are 1 and p itself.

Some primes: 2, 3, 5, 7, 11, 13, � � �

De�nition (Composite)

Non-prime integers greater than 1 are called composite, because
they can be composed by multiplying two integers greater than 1.
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The Fundamental Theorem of Arithmetic

Theorem

Every positive integer has a unique representation as the product
of a non-decreasing series (its "Prime Factorization") of zero or
more primes. E.g.,

1 = (product of empty series) = 1;

2 = 2 (product of series with one element 2);

4 = 2 � 2 (product of series 2, 2);
2000 = 2 � 2 � 2 � 2 � 5 � 5 � 5;
2001 = 3 � 23 � 29;
2002 = 2 � 7 � 11 � 13;
2003 = 2003.
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Theorem

If n is a composit integer, then n has a prime divisor less than or
equal to

p
n.

Theorem

There are in�nitely many primes.

Problem

Are all numbers in the form 2n � 1 for n 2 Z+ primes?
22 � 1 = 3, 23 � 1 = 7, and 25 � 1 = 31 are primes.
24 � 1 = 15 and 211 � 1 = 2047 = 23 � 89 are composites.
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Greatest Common Divisor

De�nition

The greatest common divisor gcd(a, b) of integers a, b (not both
0) is the largest (most positive) integer d that is a divisor both of
a and of b.

d = gcd(a, b) = maxd ja^d jb d .

d ja ^ d jb ^ (8e 2 Z : (eja ^ ejb)! d � e).

Example

gcd(24, 36) =?

Solution

Positive common divisors: 1, 2, 3, 4, 6, 12. The greatest one is 12.
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GCD Shortcut

If the prime factorizations are written as a = pa11 p
a2
2 � � � pann and

b = pb11 p
b2
2 � � � pbnn , then the GCD is given by

gcd (a, b) = pmin(a1,b1)1 pmin(a2,b2)2 � � � pmin(an ,bn)n .

Example

a = 84 = 2 � 2 � 3 � 7 = 22 � 31 � 71;
b = 96 = 2 � 2 � 2 � 2 � 2 � 3 = 25 � 31 � 70;
gcd(84, 96) = 22 � 31 � 70 = 2 � 2 � 3 = 12.
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Relative Primality

De�nition (Coprime)

Integers a and b are called relatively prime or coprime i¤ their GCD
is 1. E.g.,

21 and 10 are coprime. 21 = 3 � 7 and 10 = 2 � 5, so they have
no common factors > 1, so their GCD is 1.

De�nition (Relatively prime)

A set of integers fa1, a2, � � � g is (pairwise) relatively prime if all
pairs ai , aj for i 6= j are relatively prime. E.g.,

f7, 8, 15g is relatively prime, but f7, 8, 12g is not relatively
prime.
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Least Common Multiple

De�nition (Least Common Multiple (LCM))

lcm(a, b) of positive integers a and b is the smallest positive
integer that is a multiple both of a and of b.

m = lcm(a, b) = minajm^bjm m.
ajm ^ bjm ^ (8n 2 Z : (ajn ^ bjn)! (m � n)).

Example

lcm (6, 10) = 30

If the prime factorizations are written as a = pa11 p
a2
2 � � � pann

and b = pb11 p
b2
2 � � � pbnn ,then the LCM is given by

lcm (a, b) = pmax(a1,b1)1 pmax(a2,b2)2 � � � pmax(an ,bn)n .
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Topics

Euclidean algorithm for �nding GCD�s.

Base-b representations of integers.

Especially: binary, hexadecimal, octal.
Also: Two�s complement representation of negative numbers.

Algorithms for computer arithmetic.

Binary addition, multiplication, division.
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Euclid�s Algorithm for GCD

Finding GCDs by comparing prime factorizations can be
di¢ cult if the prime factors are unknown.

Euclid discovered that for all integers a and b,

gcd (a, b) = gcd ((amod b) , b) .

Sort a, b so that a > b, and then (given b > 1)
(amod b) < a, so problem is simpli�ed.
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Example (Euclid�s Algorithm Example)

Find gcd (372, 164).

Solution

gcd (372, 164) = gcd (372 mod 164, 164);

372 mod 164 = 372� 164 b372/164c = 372� 164 � 2 =
372� 328 = 44.

gcd (164, 44) = gcd (164mod 44, 44);

164mod 44 = 164� 44 b164/44c = 164� 44 � 3 =
164� 132 = 32.

gcd (44, 32) = gcd (44mod 32, 32) = gcd (12, 32);
gcd (32, 12) = gcd (32mod 12, 12) = gcd (8, 12);
gcd (12, 8) = gcd (12mod 8, 8) = gcd (4, 8);
gcd (8, 4) = gcd (8mod 4, 4) = gcd (0, 4) = 4.
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Euclid�s Algorithm Pseudocode

procedure gcd(a, b: positive integers)
while b 6= 0

r = amod b; a = b; b = r ;
return a;

Sorted inputs are not necessary.

The number of while loop iterations is O (logmax (a, b)).
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Base-b Number Systems

De�nition (The�base b expansion of n�)

For any positive integers n and b, there is a unique sequence
akak�1 � � � a1a0 of digits ai < b such that

n =
k

∑
i=0
aibi .

Ordinarily we write base-10 representations of numbers (using
digits 0� 9).
10 isn�t special; any base b > 1 will work.
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Particular Bases of Interest

Base b = 10 (decimal): used only because we have 10 �ngers
10 digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Base b = 2 (binary): used internally in all modern computers
2 digits: 0, 1. (�Bits�=�binary digits.�)

Base b = 8 (octal): octal digits correspond to groups of 3 bits
8 digits: 0, 1, 2, 3, 4, 5, 6, 7.

Base b = 16 (hexadecimal): hex digits give groups of 4bits
16 digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,A,B,C ,D,E ,F
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Converting to Base b

Informal algorithm to convert any integer n to any base b > 1:

1 To �nd the value of the rightmost (lowest-order) digit, simply
compute nmod b.

2 Now replace n with the quotient bn/bc.
3 Repeat above two steps to �nd subsequent digits, until n is
gone (i.e., n = 0).

Problem

Write down the pseudocode.
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Addition of Binary Numbers

procedure add(an�1 � � � a0, bn�1 � � � b0: binary representations of
non-negative integers a and b)

carry = 0
for bitIndex = 0 to n� 1 {go through bits}
begin

bitSum = abitIndex + bbitIndex + carry {2-bit sum}
sbitIndex = bitSummod 2 {low bit of sum}
carry = bbitSum/2c {high bit of sum}

end
sn = carry
return sn � � � s0 {binary representation of integer s}
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Multiplication of Binary Numbers

procedure multiply(an�1 � � � a0, bn�1 � � � b0: binary representations
of a, b 2 N)

product = 0
for i = 0 to n� 1

if bi = 1 then product = add(an�1 . . . a00i , product)
return product

an�1 . . . a00i : i extra 0-bits appended after an�1 . . . a0.
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Modular Exponentiation

procedure mod_exp(b 2 Z, n = (ak�1ak�2 . . . a0)2, m 2 Z+)
x = 1
power = bmodm
for i = 0 to k � 1
begin

if ai = 1 then x = (x � power)modm
power = (power � power)modm

end
return x
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Extended Euclidean Algorithm

If a and b are positive integers, then there exist integers s and
t such that gcd(a, b) = sa+ tb.

Example

Express gcd(252, 198) = 18 as a linear comination of 252 and 198.

Solution

Step 1: Euclidean algorithm

gcd(252, 198) = gcd(54, 198) 252 = 1� 198+ 54
= gcd(54, 36) 198 = 3� 54+ 36
= gcd(36, 18) 54 = 1� 36+ 18
= gcd(18, 0)
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Solution ((Cont.))

Step 2: Backward substitution

18 = 54� 36
= 54� (198� 3� 54)
= 4� 54� 198
= 4� (252� 198)� 198
= 4� 252� 5� 198.
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Some Lemmas

Lemma

If a, b, and c are positive integers such that gcd(a, b) = 1 and
ajbc, then ajc.

Proof.

Since gcd(a, b) = 1,9s, t: sa+ tb = 1.
Multiply by c, then sac + tbc = c.
* ajsac and ajtbc ) ajsac + tbc

Lemma

If p is a prime and pja1a2 . . . an where each ai is an integer, then
for some i, pjai .
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Cancellation Rule

Theorem

Let m be a positive integer and let a, b, and c be integers. If
ac � bc(modm) and gcd(c ,m) = 1, then a � b(modm).

Proof.

Since ac � bc(modm), ac � bc = c(a� b) � 0(modm).
In other words, mjc(a� b).
* gcd(c ,m) = 1 ) mja� b.
a � b(modm).
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Existence of Inverse

De�nition

a, b, and m > 1 are integers. If ab � 1modm, b is called an
inverse of a modulo m.

Theorem

If a and m are relatively prime integers and m > 1, then an inverse
of a modulo m exists. Furthermore, this inverse is unique modulo
m.

Proof.

Since a and m are relatively prime, i.e. gcd(a,m) = 1, there exist
integers s and t such that 1 = sa+ tm. Then,

1 sa � 1modm.
2 s is unique.
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Example

Find the inverse of 5 modulo 7.
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Chinese Remainder Theorem

Theorem (Chinese Remainder Theorem)

Let m1,m2, � � � ,mn be pairwise relatively prime positive integers,
and m = m1m2 � � �mn. The system

x � a1(modm1)
x � a2(modm2)

...

x � an(modmn)

has a unique solution modulo m.
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Solutions

Let Mk = m/mk for k = 1, 2, � � � , n.
Since gcd(mk ,Mk ) = 1, we can �nd yk such that
Mkyk � 1modmk for k = 1, 2, � � � , n.
Let x � a1M1y1 + a2M2y2 + � � �+ anMnyn modm.
Note that Mj � 0modmk whenever j 6= k.
We have x � akMkyk � ak modmk .
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Example

Find the solution of the system

x � 2(mod 3)
x � 3(mod 5)
x � 2(mod 7)

Solution

m = 3 � 5 � 7
M1 = m/3 = 35, y1 � (M1)�1 � 2(mod 3)
M2 = m/5 = 21,y2 � (M2)�1 � 1(mod 5)
M3 = m/7 = 15, y3 � (M3)�1 � 1(mod 7)
x = 2 � 35 � 2+ 3 � 21 � 1+ 2 � 15 � 1 = 233 � 23(mod 105).
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Variations of CRT

Example

Find the solution of the system

x � 2(mod 3)
x � 3(mod 5)
x � 2(mod 7)
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Fermat�s Little Theorem

Theorem

If p is prime and a is an integer not divisible by p, then

ap�1 � 1(mod p).

Furthermore, for every integer a we have

ap � a(mod p).
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RSA Systems

Choose two large prime p and q.

n = pq: modulus
e: encryption key which is coprime to (p � 1)(q � 1)
d : decryption key such that de � 1mod(p � 1)(q � 1)

M: message

RSA encryption:

C � Me mod n: ciphertext (the encrypted message)

RSA decryption:

M � Cd mod n
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Example

Here is an example of RSA.

Let p = 43, q = 59, and n = pq = 2537.

Choose e = 13 and d = 937.

gcd(13, (p � 1)(q � 1)) = gcd(13, 42� 58) = 1.
d = e�1 mod(p � 1)(q � 1)

Assume M = 1819

Encryption: C � Me mod n

C = 181913 mod 2537 = 2081.

Decryption: M � C d mod n
M = 2081937 mod 2537 = 1819.
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Why Does It Work?

Correctness

Cd � (Me )d = Mde = M1+k (p�1)(q�1)(mod n).
By Fermat�s Little Theorem, we have

C d � M � (Mp�1)k (q�1) � M � 1 � M(mod p).
C d � M � (Mq�1)k (p�1) � M � 1 � M(mod q).

By Chinese Remainder Theorem, we have

C d � M(mod n).

The factor decomposition is a hard problem
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Public Key System

Make n and e public. (e is call public key and d is call private
key.)
A wants to send a secret message to B

A uses B�s public key to encrypt the message and then sends
the ciphertext to B.
After B receives the ciphertext, he can use his own private key
to decrypt the ciphertext.

A wants to send a message to B and prove his identity

A �rst generates a hash value from the message and encrypts
the hash value by his own private key and then sends the
plaintext message and the encrypted hash value to B.
After B receives the message, he decrypts the hash value by
A�s public key. Besides, he also generates a hash value from
the plaintext message. If both match, it proves the message
comes from A.
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