Discrete Mathematics Examples of Ch. 2

Chih-Wei Yi

Dept. of Computer Science National Chiao Tung University

March 27, 2010

Sets

Example

Explicitly express the following sets.

1
$$A = \{x \mid x \in \emptyset\}.$$

2 $B = \{x \in \mathbb{N} \mid 0 \le x^2 \le 50\}.$
3 $C = \{x^2 \mid x \in \mathbb{N} \land 0 \le x^2 \le 50\}.$
4 $D = \{x^2 \in \mathbb{N} \mid 0 \le x^2 \le 50\}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

L_Sets

Example

Let $A = \{1, 2, 3\}$, $B = \{3, 4\}$ and $C = \{A, B\}$. Write down the following sets and their cardinality.

- 1 $A \cap B$.
- **2** B A.
- **3** 2^{*A*}.
- **4** 2^{A-B} .
- 5 C².
- 6 *B^A*.
- $A \times B \times C.$

L_Sets

Example

Prove $\overline{A \cap B} = \overline{A} \cup \overline{B}$ by (1) logical equivalences; (2) membership table; and (3) explanation of $\overline{A \cap B} \subseteq \overline{A} \cup \overline{B}$ and $\overline{A} \cup \overline{B} \subseteq \overline{A \cap B}$.

Example

Wath are the distributive laws of sets?

Example

Give an example of the principle of inclusion-exclusion.

Give a definition in logical expression of following terminologies about function $f : A \rightarrow B$.

- 1 One-to-one.
- 2 Onto.
- 3 Increasing.
- 4 Strictly increasing.
- 5 Domain.
- 6 Codomain.
- 7 Range.
- 8 The image of $S \subseteq A$.
- 9 The pre-image of $T \subseteq B$.

Give and simply the negative statement of the answer of Q1 and Q2 in the previous question set.

Example

Prove that $f(x) = \sin x$ is not a one-to-one function on $[0, \pi]$.

Example

Prove that $f(x) = x^2$ is not a onto function from [0, 10] to [0, 101].

Let $f(x) = x^2 + 2x + 1$ and $g(x) = \sin x$. Asswer the following questions.

1
$$(f \circ g)(0)$$
.

2
$$(f \circ g)([0, \pi/4])$$
.

3 Is it correct that $f(S \cup T) = f(S) \cup f(T)$ for all S, T that are contained in the domain of f.

Example

Study the ceiling and floor functions.

Let $f(x) = x^2 + 2x + 1$ and $g(x) = \sin x$. Asnuer the following questions.

1
$$(f \circ g)(0)$$
.

- **2** $(f \circ g)([0, \pi/4])$.
- 3 Is it correct that $f(S \cup T) = f(S) \cup f(T)$ for all S, T that are contained in the domain of f.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Prove that the cardinality of the set of all positive even numbers and the set of all positive odd numbers are the same.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Example

Prove that ${\mathbb N}$ and ${\mathbb Z}$ have the same cardinality.

Example

Prove that rational numbers are countable.

Give values of the following equations.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

1
$$\sum_{i=1}^{5} \sum_{j=1}^{10} i^2 + ij + j^2.$$

2 $\sum_{x \in A} x^2$ for $A = \{1, 3, 5, 7\}.$
3 $\prod_{i=1}^{10} 2.$