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Sequences

A sequence or series fang is identi�ed with a generating
function f : S �! A for some subset S � N (often
S = f0, 1, 2, ...g or S = f1, 2, 3, ...g) and for some set A.
If f is a generating function for a series fang, then for n 2 S ,
the symbol an denotes f (n), also called term n of the
sequence.

The index of an is n. (Or, often i is used.)

Many sources just write "the sequence a1, a2, ..." instead of
fang, to ensure that the set of indices is clear.
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Example (In�nite Sequences)

Consider the series fang = a1, a2, � � � where (8n � 1)
an = f (n) = 1

n . Then,

fang = 1,
1
2
,
1
3
, � � � .

Consider the sequence fbng = b0, b1, � � � (note 0 is an index)
where bn = (�1)n. Then,

fbng = 1,�1, 1,�1, � � � .

Note repetitions! fbng denotes an in�nite sequence of 1�s and
�1�s, not the 2-element set f1,�1g.
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Example (Geometric progression)

a, ar , ar2, � � � , arn, � � �
an = arn�1

a is the initial term.
r is the common ratio.

Ex: 3,�6, 12, � � � , 3 � (�2)n�1, � � �

Example (Arithmetic progression)

a, a+ d , a+ 2d , � � � , a+ nd , � � �
an = a+ (n� 1)d

a is the initial term.
d is the common di¤erence.

Ex: 4, 7, 10, � � � , 4+ (n� 1) � 3, � � �
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Recognizing Sequences

Example (What�s the next number?)

1, 2, 3, 4, ... 5 (the 5th smallest number > 0)

1, 3, 5, 7, 9, ... 11 (the 6th smallest odd number > 0)

2, 3, 5, 7, 11, ...13 (the 6th smallest prime number)

Sometimes, you�re given the �rst few terms of a sequence,
and you are asked to �nd the sequence�s generating function,
or a procedure to enumerate the sequence.
The trouble with recognition

The problem of �nding �the�generating function given just an
initial subsequence is not well de�ned. There are in�nitely
many computable functions that will generate any given initial
subsequence. (Prove this!)
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Summation Notation

Given a series fang, an integer lower bound(or limit) j � 0,
and an integer upper bound k � j , then the summation of
fang from j to k is written and de�ned as follows

k

∑
i=j
ai = aj + aj+1 + � � �+ ak .

E.g.,
4

∑
i=2
i2 + 1 = (22 + 1) + (32 + 1) + (42 + 1)

= (4+ 1) + (9+ 1) + (16+ 1)

= 5+ 10+ 17

= 32.

Here, i is called the index of summation.
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Generalized Summations

For an in�nite series, we may write

∞

∑
i=j
ai = aj + aj+1 + � � � .

To sum a function over all members of a set X = fx1, x2, ...g:

∑
x2X

f (x) = f (x1) + f (x2) + � � � .

Or, if X = fx jP(x)g, we may just write:

∑
P (x )

f (x) = f (x1) + f (x2) + � � � .
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More Summation Examples

Example

An in�nite series with a �nite sum

∞

∑
i=0
2�i = 20 + 2�1 + � � � = 1+ 1

2
+
1
4
+ � � � = 2.

Example

Using a predicate to de�ne a set of elements to sum over

∑
(x is prime)^(x<10)

x2 = 22 + 32 + 52 + 72 = 4+ 9+ 25+ 49 = 87.
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Summation Manipulations

Some handy identities for summations:

Distributive law
∑
x
cf (x) = c∑

x
f (x).

Application of commutativity

∑
x
f (x) + g(x) =

�
∑
x
f (x)

�
+

�
∑
x
g(x)

�
.

Index shifting
k

∑
i=j
f (i) =

k+n

∑
i=j+n

f (i � n).
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More summation manipulations

Series splitting

k

∑
i=j
f (i) =

 
m

∑
i=j
f (i)

!
+

 
k

∑
i=m+1

f (i)

!
if j � m < k.

Order reversal
k

∑
i=j
f (i) =

k�j
∑
i=0
f (k � i).

Grouping
2k

∑
i=0
f (i) =

k

∑
i=0
f (2i) + f (2i + 1).
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Example (Euler�s Trick)

Evaluate the summation
n
∑
i=1
i

Solution

There is a simple closed-form formula for the result, discovered by
Euler at age 12!

Consider the sum

1+ 2+ � � �+ n
2
+ (

n
2
+ 1) + � � �+ (n� 1) + n

= (n+ 1) + (n+ 1) + � � �+ (n+ 1).

n
2 pairs of elements, each pair summing to n+ 1, for a total of
n
2 (n+ 1).
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Geometric Progression

A geometric progression is a series of the form
a, ar , ar2, ar3, ..., ar k , where a, r 2 R.

The sum of such a series is given by:

S =
k

∑
i=0
ar i

We can reduce this to closed form via clever manipulation of
summations...
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Geometric Sum Derivation

From S =
n
∑
i=0
ar i ,

rS = r
n

∑
i=0
ar i =

n

∑
i=0
ar i+1 =

n+1

∑
i=1
ar i =

 
n

∑
i=1
ar i
!
+ arn+1

=

 
n

∑
i=0
ar i
!
+
�
arn+1 � a

�
= S +

�
arn+1 � a

�
.

So,
rS � S = a(rn+1 � 1),

and we have

S =
a(rn+1 � 1)
r � 1 .
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Nested Summations

Example

Find
4
∑
i=1

3
∑
j=1
ij .

Solution

4

∑
i=1

3

∑
j=1
ij =

4

∑
i=1

 
3

∑
j=1
ij

!
=

4

∑
i=1
i

 
3

∑
j=1
j

!
=

4

∑
i=1
i(1+ 2+ 3)

=
4

∑
i=1
6i = 6

4

∑
i=1
i = 6(1+ 2+ 3+ 4)

= 6 � 10 = 60.
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Some Shortcut Expressions

n
∑
k=0
ar k = a(r n+1�1)

r�1 , r 6= 1 Geometric series.
n
∑
k=1
k = n(n+1)

2 Euler�s trick.
n
∑
k=1
k2 = n(n+1)(2n+1)

6 Quadratic series.
n
∑
k=1
k3 = n2(n+1)2

4 Cubic series.
∞
∑
k=0
xk = 1

1�x , for jx j < 1 The Taylor series of 1
1�x .

∞
∑
k=1
kxk�1 = 1

(1�x )2 , for jx j < 1 The Taylor series of 1
(1�x )2 .
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Example

Evaluate
100
∑
k=50

k2.

Solution

We have
100
∑
k=1
k2 =

�
49
∑
k=1
k2
�
+

100
∑
k=50

k2. So,

100

∑
k=50

k2 =

 
100

∑
k=1

k2
!
�

49

∑
k=1

k2

=
100 � 101 � 201

6
� 49 � 50 � 99

6
= 338350� 40425
= 297925.
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Cardinality: Formal De�nition

De�nition

For any two (possibly in�nite) sets A and B, we say that A and B
have the same cardinality(written jAj = jB j) i¤ there exists a
bijection(bijective function) from A to B.

When A and B are �nite, it is easy to see that such a function
exists i¤ A and B have the same number of elements n 2 N
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Countable versus Uncountable

For any set S , if S is �nite or jS j = jNj, we say S is
countable. Else, S is uncountable.

Intuition behind �countable:�we can enumerate (generate in
series) elements of S in such a way that any individual
element of S will eventually be counted in the enumeration.

E.g., N, Z.

Uncountable: No series of elements of S (even an in�nite
series) can include all of S�s elements.

E.g., R, R2, P(N).



Discrete Math

Sequences and Summations

§2.4 Sequences and Summations

Countable Sets: Examples

Theorem

The set Z is countable.

Proof.

Consider f : Z ! N where f (i) = 2i for i � 0 and
f (i) = �2i � 1 for i < 0. Note f is bijective.

Theorem

The set of all ordered pairs of natural numbers (n,m) is countable.

Proof.

Consider listing the pairs in order by their sum s = n+m, then by
n. Every pair appears once in this series; the generating function is
bijective.
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Uncountable Sets: Example

Theorem

The open interval [0, 1) :� fr 2 Rj0 � r < 1g is uncountable.

Proof by diagonalization: (Cantor, 1891).

Assume there is a series frig = r1, r2, � � � containing all
elements r 2 [0, 1).
Consider listing the elements of frig in decimal notation
(although any base will do) in order of increasing index: ...
(continued on next slide)
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Uncountability of Reals, cont�d

(Cont.)

A postulated enumeration of the reals:

r1 = 0.d1,1d1,2d1,3d1,4d1,5d1,6d1,7d1,8...
r2 = 0.d2,1d2,2d2,3d2,4d2,5d2,6d2,7d2,8...
r3 = 0.d3,1d3,2d3,3d3,4d3,5d3,6d3,7d3,8...
r4 = 0.d4,1d4,2d4,3d4,4d4,5d4,6d4,7d4,8...
: :

Now, consider a real number generated by taking all digits di ,i
that lie along the diagonal in this �gure and replacing them
with di¤erent digits.

That real doesn�t appear in the list!
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Uncountability of Reals, �n.

(Fin.)

E.g., a postulated enumeration of the reals:

r1 = 0.301948571...
r2 = 0.103918481...
r3 = 0.039194193...
r4 = 0.918237461...

: :

OK, now let�s add 1 to each of the diagonal digits(mod 10),
that is changing 9�s to 0.

0.4103... can�t be on the list anywhere!
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What are Strings, Really?

This book says ��nite sequences of the form a1, a2, � � � , an are
called strings�, but in�nite strings are also used sometimes.

Strings are often restricted to sequences composed of symbols
drawn from a �nite alphabet, and may be indexed from 0 or 1.

Either way, the length of a (�nite) string is its number of
terms (or of distinct indexes).
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Strings, more formally

Let ∑ be a �nite set of symbols, i.e. an alphabet.

A string s over alphabet ∑ is any sequence fsig of symbols,
si 2 ∑, indexed by N or N� f0g.
If a, b, c , � � � are symbols, the string s = a, b, c , � � � can also
be written abc � � � (i.e., without commas).
If s is a �nite string and t is a string, the concatenation of s
with t, written st, is the string consisting of the symbols in s,
in sequence, followed by the symbols in t, in sequence.
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More String Notation

The length js j of a �nite string s is its number of positions
(i.e., its number of index values i).

If s is a �nite string and n 2 N, sn denotes the concatenation
of n copies of s.

ε denotes the empty string, the string of length 0.

If ∑ is an alphabet and n 2 N, then
n

∑ �
�
s j s is a string over ∑ of length n

	
, and

�
∑ �

�
s j s is a �nite string over ∑

	
.
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