Discrete Mathematics

Chih-Wei Yi

Dept. of Computer Science National Chiao Tung University

March 23, 2009

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Discrete Math

Sequences and Summations

└_§2.4 Sequences and Summations

2.4 Sequences and Summations (~ 1.5 hours)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

└-§2.4 Sequences and Summations

Sequences

- A sequence or series {a_n} is identified with a generating function f : S → A for some subset S ⊆ N (often S = {0, 1, 2, ...} or S = {1, 2, 3, ...}) and for some set A.
- If f is a generating function for a series {a_n}, then for n ∈ S, the symbol a_n denotes f(n), also called *term* n of the sequence.
- The *index* of a_n is *n*. (Or, often *i* is used.)
- Many sources just write "the sequence a₁, a₂, ..." instead of {a_n}, to ensure that the set of indices is clear.

§2.4 Sequences and Summations

Example (Infinite Sequences)

• Consider the series $\{a_n\} = a_1, a_2, \cdots$ where $(\forall n \ge 1)$ $a_n = f(n) = \frac{1}{n}$. Then,

$$\{a_n\}=1, \frac{1}{2}, \frac{1}{3}, \cdots$$

• Consider the sequence $\{b_n\} = b_0, b_1, \cdots$ (note 0 is an index) where $b_n = (-1)^n$. Then,

$$\{b_n\} = 1, -1, 1, -1, \cdots$$

Note repetitions! $\{b_n\}$ denotes an infinite sequence of 1's and -1's, not the 2-element set $\{1, -1\}$.

§2.4 Sequences and Summations

Example (Geometric progression)

a, ar,
$$ar^2$$
, \cdots , ar^n , \cdots

$$\bullet a_n = ar^{n-1}$$

• *a* is the initial term.

r is the common ratio.

• Ex: 3, -6, 12,
$$\cdots$$
, 3 \cdot $(-2)^{n-1}$, \cdots

Example (Arithmetic progression)

$$a, a + d, a + 2d, \cdots, a + nd, \cdots$$

$$a_n = a + (n-1)d$$

- *a* is the initial term.
- *d* is the common difference.

• Ex: 4, 7, 10,
$$\cdots$$
, 4 + $(n-1) \cdot 3$, \cdots

└-§2.4 Sequences and Summations

Recognizing Sequences

Example (What's the next number?)

- 1, 2, 3, 4, ... 5 (the 5th smallest number > 0)
- 1, 3, 5, 7, 9, ... 11 (the 6th smallest odd number > 0)
- 2, 3, 5, 7, 11, ...13 (the 6th smallest prime number)
- Sometimes, you're given the first few terms of a sequence, and you are asked to find the sequence's generating function, or a procedure to enumerate the sequence.
- The trouble with recognition
 - The problem of finding "the" generating function given just an initial subsequence is *not well defined*. There are *infinitely* many computable functions that will generate any given initial subsequence. (Prove this!)

└§2.4 Sequences and Summations

Summation Notation

Given a series {a_n}, an integer lower bound(or limit) j ≥ 0, and an integer upper bound k ≥ j, then the summation of {a_n} from j to k is written and defined as follows

$$\sum_{i=j}^k a_i = a_j + a_{j+1} + \dots + a_k$$

E.g.,

$$\sum_{i=2}^{4} i^{2} + 1 = (2^{2} + 1) + (3^{2} + 1) + (4^{2} + 1)$$
$$= (4 + 1) + (9 + 1) + (16 + 1)$$
$$= 5 + 10 + 17$$
$$= 32.$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ うへの

Here, *i* is called the *index of summation*.

└_§2.4 Sequences and Summations

Generalized Summations

For an infinite series, we may write

$$\sum_{j=j}^{\infty} a_j = a_j + a_{j+1} + \cdots$$

• To sum a function over all members of a set $X = \{x_1, x_2, ...\}$:

$$\sum_{x\in X} f(x) = f(x_1) + f(x_2) + \cdots$$

• Or, if $X = \{x | P(x)\}$, we may just write:

$$\sum_{P(x)} f(x) = f(x_1) + f(x_2) + \cdots$$

└-§2.4 Sequences and Summations

More Summation Examples

Example

An infinite series with a finite sum

$$\sum_{i=0}^{\infty} 2^{-i} = 2^0 + 2^{-1} + \dots = 1 + \frac{1}{2} + \frac{1}{4} + \dots = 2$$

Example

Using a predicate to define a set of elements to sum over

$$\sum_{(x \text{ is prime}) \land (x < 10)} x^2 = 2^2 + 3^2 + 5^2 + 7^2 = 4 + 9 + 25 + 49 = 87.$$

└_§2.4 Sequences and Summations

Summation Manipulations

Some handy identities for summations:

Distributive law

$$\sum_{x} cf(x) = c \sum_{x} f(x).$$

Application of commutativity

$$\sum_{x} f(x) + g(x) = \left(\sum_{x} f(x)\right) + \left(\sum_{x} g(x)\right)$$

Index shifting

$$\sum_{i=j}^{k} f(i) = \sum_{i=j+n}^{k+n} f(i-n).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

More summation manipulations

Series splitting

$$\sum_{i=j}^{k} f(i) = \left(\sum_{i=j}^{m} f(i)\right) + \left(\sum_{i=m+1}^{k} f(i)\right) \text{ if } j \le m < k.$$

Order reversal

$$\sum_{i=j}^{k} f(i) = \sum_{i=0}^{k-j} f(k-i).$$

Grouping

$$\sum_{i=0}^{2k} f(i) = \sum_{i=0}^{k} f(2i) + f(2i+1).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

§2.4 Sequences and Summations

Example (Euler's Trick)

Evaluate the summation $\sum_{i=1}^{n} i$

Solution

There is a simple closed-form formula for the result, discovered by Euler at age 12!

Consider the sum

$$1 + 2 + \dots + \frac{n}{2} + (\frac{n}{2} + 1) + \dots + (n - 1) + n$$

= $(n + 1) + (n + 1) + \dots + (n + 1).$

■ $\frac{n}{2}$ pairs of elements, each pair summing to n + 1, for a total of $\frac{n}{2}(n+1)$.

└§2.4 Sequences and Summations

Geometric Progression

- A geometric progression is a series of the form $a, ar, ar^2, ar^3, ..., ar^k$, where $a, r \in \mathbb{R}$.
- The sum of such a series is given by:

$$S = \sum_{i=0}^k$$
arⁱ

We can reduce this to *closed form* via clever manipulation of summations...

└_§2.4 Sequences and Summations

Geometric Sum Derivation

From
$$S = \sum_{i=0}^{n} ar^{i}$$
,

$$rS = r\sum_{i=0}^{n} ar^{i} = \sum_{i=0}^{n} ar^{i+1} = \sum_{i=1}^{n+1} ar^{i} = \left(\sum_{i=1}^{n} ar^{i}\right) + ar^{n+1}$$
$$= \left(\sum_{i=0}^{n} ar^{i}\right) + \left(ar^{n+1} - a\right) = S + \left(ar^{n+1} - a\right).$$

So,

$$rS-S=a(r^{n+1}-1),$$

and we have

$$S=\frac{a(r^{n+1}-1)}{r-1}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Discrete Math

Sequences and Summations

└-§2.4 Sequences and Summations

Nested Summations

Example

Find
$$\sum_{i=1}^{4} \sum_{j=1}^{3} ij$$
.

Solution

$$\sum_{i=1}^{4} \sum_{j=1}^{3} ij = \sum_{i=1}^{4} \left(\sum_{j=1}^{3} ij \right) = \sum_{i=1}^{4} i \left(\sum_{j=1}^{3} j \right) = \sum_{i=1}^{4} i(1+2+3)$$
$$= \sum_{i=1}^{4} 6i = 6\sum_{i=1}^{4} i = 6(1+2+3+4)$$
$$= 6 \cdot 10 = 60.$$

<u>Sequences</u> and Summations

└_§2.4 Sequences and Summations

Some Shortcut Expressions

$$\sum_{k=0}^{n} ar^{k} = \frac{a(r^{n+1}-1)}{r-1}, r \neq 1$$
Geom

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$
Euler'

$$\sum_{k=1}^{n} k^{2} = \frac{n(n+1)(2n+1)}{6}$$
Quadu

$$\sum_{k=1}^{n} k^{3} = \frac{n^{2}(n+1)^{2}}{4}$$
Cubic

$$\sum_{k=0}^{\infty} x^{k} = \frac{1}{1-x}, \text{ for } |x| < 1$$
The T

$$\sum_{k=1}^{\infty} kx^{k-1} = \frac{1}{(1-x)^{2}}, \text{ for } |x| < 1$$
The T

etric series.

s trick.

ratic series.

series.

Taylor series of $\frac{1}{1-x}$.

$$x^{-1} = rac{1}{\left(1-x
ight)^2}$$
, for $\left|x
ight| < 1$ The Taylor series of $rac{1}{\left(1-x
ight)^2}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

└_§2.4 Sequences and Summations

Example

Evaluate
$$\sum_{k=50}^{100} k^2$$

Solution

We have
$$\sum_{k=1}^{100} k^2 = \left(\sum_{k=1}^{49} k^2\right) + \sum_{k=50}^{100} k^2$$
. So,
 $\sum_{k=50}^{100} k^2 = \left(\sum_{k=1}^{100} k^2\right) - \sum_{k=1}^{49} k^2$
 $= \frac{100 \cdot 101 \cdot 201}{6} - \frac{49 \cdot 50 \cdot 99}{6}$
 $= 338350 - 40425$
 $= 297925.$

▲□▶▲圖▶▲圖▶▲圖▶ 圖 めるの

└-§2.4 Sequences and Summations

Cardinality: Formal Definition

Definition

For any two (possibly infinite) sets A and B, we say that A and B have the same cardinality(written |A| = |B|) iff there exists a bijection(bijective function) from A to B.

• When A and B are finite, it is easy to see that such a function exists iff A and B have the same number of elements $n \in \mathbb{N}$

└-§2.4 Sequences and Summations

Countable versus Uncountable

- For any set S, if S is finite or $|S| = |\mathbb{N}|$, we say S is countable. Else, S is uncountable.
- Intuition behind "countable:" we can enumerate (generate in series) elements of S in such a way that any individual element of S will eventually be counted in the enumeration.

■ E.g., N, Z.

 Uncountable: No series of elements of S (even an infinite series) can include all of S's elements.

• E.g., \mathbb{R} , \mathbb{R}^2 , $P(\mathbb{N})$.

└-§2.4 Sequences and Summations

Countable Sets: Examples

Theorem

The set \mathbb{Z} is countable.

Proof.

Consider
$$f : \mathbb{Z} \to \mathbb{N}$$
 where $f(i) = 2i$ for $i \ge 0$ and $f(i) = -2i - 1$ for $i < 0$. Note f is bijective.

Theorem

The set of all ordered pairs of natural numbers (n, m) is countable.

Proof.

Consider listing the pairs in order by their sum s = n + m, then by n. Every pair appears once in this series; the generating function is bijective.

└-§2.4 Sequences and Summations

Uncountable Sets: Example

Theorem

The open interval $[0,1) :\equiv \{r \in \mathbb{R} | 0 \le r < 1\}$ is uncountable.

Proof by diagonalization: (Cantor, 1891).

- Assume there is a series {r_i} = r₁, r₂, · · · containing all elements r ∈ [0, 1).
- Consider listing the elements of {r_i} in decimal notation (although any base will do) in order of increasing index: ... (continued on next slide)

§2.4 Sequences and Summations

Uncountability of Reals, cont'd

(Cont.)

A postulated enumeration of the reals:

$$\begin{split} r_1 &= 0.d_{1,1}d_{1,2}d_{1,3}d_{1,4}d_{1,5}d_{1,6}d_{1,7}d_{1,8}...\\ r_2 &= 0.d_{2,1}d_{2,2}d_{2,3}d_{2,4}d_{2,5}d_{2,6}d_{2,7}d_{2,8}...\\ r_3 &= 0.d_{3,1}d_{3,2}d_{3,3}d_{3,4}d_{3,5}d_{3,6}d_{3,7}d_{3,8}...\\ r_4 &= 0.d_{4,1}d_{4,2}d_{4,3}d_{4,4}d_{4,5}d_{4,6}d_{4,7}d_{4,8}...\\ \vdots & \vdots \end{split}$$

- Now, consider a real number generated by taking all digits d_{i,i} that lie along the diagonal in this figure and replacing them with different digits.
- That real doesn't appear in the list!

└-§2.4 Sequences and Summations

Uncountability of Reals, fin.

(Fin.)

E.g., a postulated enumeration of the reals:

 $\begin{array}{l} r_1 = 0.301948571...\\ r_2 = 0.103918481...\\ r_3 = 0.039194193...\\ r_4 = 0.918237461...\\ \vdots \qquad \vdots \end{array}$

 OK, now let's add 1 to each of the diagonal digits(mod 10), that is changing 9's to 0.

A D F A B F A B F A B F

0.4103... can't be on the list anywhere!

§2.4 Sequences and Summations

What are Strings, Really?

- This book says "finite sequences of the form a₁, a₂, · · · , a_n are called *strings*", but *infinite* strings are also used sometimes.
- Strings are often restricted to sequences composed of symbols drawn from a finite alphabet, and may be indexed from 0 or 1.

 Either way, the length of a (finite) string is its number of terms (or of distinct indexes).

└_§2.4 Sequences and Summations

Strings, more formally

- Let \sum be a finite set of *symbols*, i.e. an *alphabet*.
- A string s over alphabet \sum is any sequence $\{s_i\}$ of symbols, $s_i \in \sum$, indexed by \mathbb{N} or $\mathbb{N} \{0\}$.
- If a, b, c, · · · are symbols, the string s = a, b, c, · · · can also be written abc · · · (i.e., without commas).
- If s is a finite string and t is a string, the concatenation of s with t, written st, is the string consisting of the symbols in s, in sequence, followed by the symbols in t, in sequence.

└_§2.4 Sequences and Summations

More String Notation

- The length |s| of a finite string s is its number of positions (i.e., its number of index values i).
- If s is a finite string and $n \in N$, s^n denotes the concatenation of n copies of s.
- ε denotes the empty string, the string of length 0.
- If \sum is an alphabet and $n \in N$, then

$$\sum_{s=1}^{n} \equiv \{s \mid s \text{ is a string over } \sum \text{ of length } n\}, \text{ and}$$
$$\sum_{s=1}^{n} \equiv \{s \mid s \text{ is a finite string over } \sum\}.$$