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§2.1 Sets

Basic Notations for Sets

For sets, we�ll use variables S ,T ,U, � � � .
We can denote a set S in writing by listing all of its elements
in curly braces:

fa, b, cg is the set of whatever 3 objects are denoted by a, b,
c .

Set builder notation: For any proposition P(x) over any
universe of discourse, fx j P(x)g is the set of all x such that
P(x).

Q = fp/q j p, q 2 Z, andq 6= 0g.
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§2.1 Sets

Basic Properties of Sets

Sets are inherently unordered:

No matter what objects a, b, and c denote, fa, b, cg =
fa, c , bg = fb, a, cg = fb, c , ag = fc , a, bg = fc , b, ag.

All elements are distinct (unequal); multiple listings make no
di¤erence!

fa, a, bg = fa, b, bg = fa, bg = fa, a, a, a, b, b, bg.
This set contains at most 2 elements!
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§2.1 Sets

De�nition of Set Equality

Two sets are declared to be equal if and only if they contain
exactly the same elements.

In particular, it does not matter how the set is de�ned or
denoted.

Example

f1, 2, 3, 4g
= fx j x is an integer where x > 0 and x < 5g
= fx j x is a positive integer whose square is > 0 and < 25g.
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§2.1 Sets

In�nite Sets

Conceptually, sets may be in�nite (i.e., not �nite, without
end, unending). Symbols for some special in�nite sets:

N = f0, 1, 2, . . .g The Natural numbers.

Z = f. . . ,�2,�1, 0, 1, 2, . . .g The Zntegers.
R =The �Real�numbers, such as
374.1828471929498181917281943125 . . ..

In�nite sets come in di¤erent sizes!
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§2.1 Sets

Venn Diagrams
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§2.1 Sets

Basic Set Relations: Member of

De�nition

x 2 S (�x is in S�) is the proposition that object x is an 2lement
or member of set S .

E.g.,

3 2N.
a 2 fx j x is a letter of the alphabetg.

Can de�ne set equality in terms of 2 relation:

8S ,T : S = T $ (8x : x 2 S $ x 2 T ) .

�Two sets are equal i¤ they have all the same members.�

x /2 S :� :(x 2 S) �x is not in S�!!!
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§2.1 Sets

The Empty Set

De�nition

? (�null�, �the empty set�) is the unique set that contains no
elements whatsoever.

? = fg = fx j Falseg
No matter the domain of discourse, we have the axiom
:9x :� x 2 ?.
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§2.1 Sets

Subset and Superset Relations

De�nition

S � T (�S is a subset of T�) means that every element of S is
also an element of T .

S � T () 8x (x 2 S ! x 2 T ).
? � S , S � S .
S � T (�S is a superset of T�) means T � S .
Proof skills

S = T , S � T ^ S � T .
S " T means :(S � T ), i.e 9x (x 2 S ^ x /2 T ).
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§2.1 Sets

Proper (Strict) Subsets & Supersets

De�nition

S � T (�S is a proper subset of T�) means that S � T but
T * S . Similar for S � T .
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§2.1 Sets

Sets Are Objects, Too!

The objects that are elements of a set may themselves be sets.

E.g, let S = fx j x � f1, 2, 3gg then

S = fφ, f1g, f2g, f3g, f1, 2g, f1, 3g, f2, 3g, f1, 2, 3gg .

We denote S by 2f1,2,3g.

Note that 1 6= f1g 6= ff1gg
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§2.1 Sets

Cardinality and Finiteness

De�nition

jS j (read �the cardinality of S�) is a measure of how many
di¤erent elements S has.

E.g.,

j?j = 0
jf1, 2, 3gj = 3
jfa, bgj = 2
jff1, 2, 3g, f4, 5ggj = 2

If jS j 2N, then we say S is �nite. Otherwise, we say S is
in�nite.

What are some in�nite sets we�ve seen?

N, Z, R, ...
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§2.1 Sets

The Power Set Operation

De�nition

The power set P(S) of a set S is the set of all subsets of S .
P(S) = fx j x � Sg.

E.g., P(fa, bg) = fφ, fag, fbg, fa, bgg.
Sometimes P(S) is written 2S . Note that for �nite S ,
jP(S)j = 2jS j.
It turns out that jP(N)j > jNj. There are di¤erent sizes of
in�nite sets!
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§2.1 Sets

Review: Set Notations So Far

Variable objects x , y , z ; sets S ,T ,U.

Literal setfa, b, cg and set-builderfx j P(x)g.
relational operator, and the empty set ?.
Set relations =, �, �, �, �, etc.
Venn diagrams.

Cardinality jS j and in�nite sets N,Z,R.

Power sets P(S).
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§2.1 Sets

Naive Set Theory is Inconsistent

There are some naive set descriptions that lead pathologically
to structures that are not well-de�ned. (That do not have
consistent properties.)

These �sets�mathematically cannot exist.

Let S = fx j x /2 xg. Is S 2 S?
Therefore, consistent set theories must restrict the language
that can be used to describe sets.

For purposes of this class, don�t worry about it!
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§2.1 Sets

Ordered n-Tuples

These are like sets, except that duplicates matter, and the
order makes a di¤erence.

For n 2N, an ordered n-tuple or a sequence of length n is
written (a1, a2, � � � , an). The �rst element is a1, etc.
Note (1, 2) 6= (2, 1) 6= (2, 1, 1).
Empty sequence, singlets, pairs, triples, quadruples,
quintuples, . . . , n-tuples.



Discrete Math

The Theory of Sets (§2.1-§2.2, 2 hours)

§2.1 Sets

Cartesian Products of Sets

De�nition

For sets A,B, their Cartesian product
A� B = f(a, b) j a 2 A^ b 2 Bg .

E.g., fa, bg � f1, 2g = f(a, 1), (a, 2), (b, 1), (b, 2)g.
For �nite sets A,B, jA� B j = jAj jB j.
The Cartesian product is not commutative, i.e.

:8AB : A� B = B � A.

Extends to A1 � A2 � � � � � An.
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§2.1 Sets

Review of §2.1

Sets S , T , U, � � � . Special sets N, Z, R.

Set notations fa, b, ...g, fx j P(x)g, � � � .
Set relation operators x 2 S , S � T , S � T , S = T , S � T ,
S � T . (These form propositions.)

Finite vs. in�nite sets.

Set operations jS j, P(S), S � T .
Next up: §2.2: More set ops: [, \, �, � � � .
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§2.2 Set Operations
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§2.2 Set Operations

The Union Operator

De�nition

For sets A, B, their [nion A[ B is the set containing all elements
that are either in A, or (�_�) in B (or, of course, in both).

Formally,8A,B : A[ B = fx j x 2 A_ x 2 Bg.
Note that A[ B contains all the elements of A and it
contains all the elements of B:

8A,B : (A[ B � A) ^ (A[ B � B).
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§2.2 Set Operations

Example

fa, b, cg [ f2, 3g = fa, b, c , 2, 3g.

Example

f2, 3, 5g [ f3, 5, 7g = f2, 3, 5, 3, 5, 7g = f2, 3, 5, 7g
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§2.2 Set Operations

The Intersection Operator

De�nition

For sets A,B, their intersection A\ B is the set containing all
elements that are simultaneously in A and (�^�) in B.

Formally,8A,B : A\ B = fx j x 2 A^ x 2 Bg.
Note that A\ B is a subset of A and it is a subset of B:

8A,B : (A\ B � A) ^ (A\ B � B).
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§2.2 Set Operations

Intersection Examples

Examples

fa, b, cg \ f2, 3g = ?.

Examples

f2, 4, 6g \ f3, 4, 5g = f4g.
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§2.2 Set Operations

Disjointedness

De�nition

Two sets A,B are called disjoint (i.e., unjoined) i¤ their
intersection is empty. (i.e., A\ B = ?.)

Example

the set of even integers is disjoint with the set of odd integers
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§2.2 Set Operations

Inclusion-Exclusion Principle

How many elements are in A[ B?

jA[ B j = jAj+ jB j � jA\ B j .

Example

How many students are on our class email list? Consider set
E = I [M, where I = fs j s turned in an information sheetg and
M = fs j s sent the TAs their email addressg. Some students did
both! So,

jE j = jI [M j = jI j+ jM j � jI \M j .
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§2.2 Set Operations

Set Di¤erence

De�nition

For sets A,B, the di¤erence of A and B, written A� B, is the set
of all elements that are in A but not B.

A� B :� fx j x 2 A^ x /2 Bg = fx j :(x 2 A �! x 2 B)g .

Also called: The complement of B with respect to A.

E.g., f1, 2, 3, 4, 5, 6g � f2, 3, 5, 7, 9, 11g = f1, 4, 6g, and

Z�N = f. . . ,�1, 0, 1, 2, . . .g � f0, 1, . . .g
= fx j x is an integer but not a nat. #g
= fx j x is a negative integerg
= f. . . ,�3,�2,�1g .
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§2.2 Set Operations

Set Di¤erence - Venn Diagram

A� B is what�s left after B �takes a bite out of A�.
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§2.2 Set Operations

Set Complements

De�nition

The universe of discourse can itself be considered a set, call it U.
When the context clearly de�nes U, we say that for any set
A � U, the complement of A, written A, is the complement of A
w.r.t. U, i.e., it is U � A.

Example

If U = N,f3, 5g = f0, 1, 2, 4, 6, 7......g.
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§2.2 Set Operations

More on Set Complements

An equivalent de�nition, when U is clear:



Discrete Math

The Theory of Sets (§2.1-§2.2, 2 hours)

§2.2 Set Operations

Set Identities

Theorem
Identity A[? = A; A\U = A.
Domination A[U = U; A\? = ?.
Idempotent A[ A = A; A\ A = A.
Double complement A = A.
Commutative A\ B = B \ A; A[ B = B [ A.
Associative A[ (B [ C ) = (A[ B) [ C;

A\ (B \ C ) = (A\ B) \ C.
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§2.2 Set Operations

DeMorgan�s Law for Sets

Theorem

Exactly analogous to (and derivable from) DeMorgan�s Law for
propositions.

A[ B = A\ B,
A\ B = A[ B.
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§2.2 Set Operations

Proving Set Identities

To prove statements about sets, of the form E1 = E2 (where E�s
are set expressions), here are three useful techniques:

Prove E1 � E2 and E2 � E1 separately.
Use set builder notation & logical equivalences.

Use a membership table.
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§2.2 Set Operations

Method 1: Mutual Subsets

Example

Show A\ (B [ C ) = (A\ B) [ (A\ C ).

Solution

First, show A\ (B [ C ) � (A\ B) [ (A\ C ).
Assume x 2 A\ (B [ C ), & show x 2 (A\ B) [ (A\ C ).
We know that x 2 A, and either x 2 B or x 2 C.

Case 1: x 2 B. Then x 2 A\ B, so x 2 (A\ B) [ (A\ C ).
Case 2: x 2 C. Then x 2 A\ C, so x 2 (A\ B) [ (A\ C ).

Therefore, x 2 (A\ B) [ (A\ C ).
Therefore, A\ (B [ C ) � (A\ B) [ (A\ C ).

Nest, show (A\ B) [ (A\ C ) � A\ (B [ C ). . . .
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§2.2 Set Operations

Method 3: Membership Tables

Just like truth tables for propositional logic.

Columns for di¤erent set expressions.

Rows for all combinations of memberships in constituent sets.

Use �1� to indicate membership in the derived set, �0� for
non-membership.

Prove equivalence with identical columns.
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§2.2 Set Operations

Membership Table

Example

Prove (A[ B)� B = A� B.

Solution

A B A[ B (A[ B)� B A� B
0 0 0 0 0
0 1 1 0 0
1 0 1 1 1
1 1 1 0 0
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§2.2 Set Operations

Membership Table Exercise

Example

Prove (A[ B)� C = (A� C ) [ (B � C ).

A B C A[ B (A[ B)
�C A� C B � C (A� C )

[(B � C )
0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1
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§2.2 Set Operations

Review of §2.1-§2.1

Sets S , T , U, ... Special sets N, Z, R.

Set notations fa, b, ...g, fx j P(x)g. . .
Relations x 2 S , S � T , S � T , S = T , S � T , S � T .
Operations jS j, P(S), �, [, \, �, . . .
Set equality proof techniques:

Mutual subsets.
Derivation using logical equivalences.
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§2.2 Set Operations

Generalized Unions & Intersections

Since union & intersection are commutative and associative, we
can extend them from operating on ordered pairs of sets (A,B) to
operating on sequences of sets (A1, . . . ,An), or even unordered
sets of sets, X = fA j P(A)g.
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§2.2 Set Operations

Generalized Union

Binary union operator: A[ B
n-ary union:
A1 [ A2 [ � � � [ An :� ((� � � ((A1 [ A2) [ � � � ) [ An)
(grouping & order is irrelevant)

�Big U�notation:
Sn
i=1 Ai .

Or for in�nite sets of sets:
S
A2X A.
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§2.2 Set Operations

Generalized Intersection

Binary intersection operator: A\ B.
n-ary intersection:
A1 \ A2 \ � � � \ An :� ((. . . (A1 \ A2) \ . . .) \ An) (grouping
& order is irrelevant).

�Big Arch�notation:
Tn
i=1 Ai .

Or for in�nite sets of sets:
T
A2X A.
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§2.2 Set Operations

Representing Sets with Bit Strings

For an enumerable u.d. U with ordering fx1, x2, . . .g,
represent a �nite set S � U as the �nite bit string
B = b1b2 . . . bn where 8i : xi 2 S  ! (i < n ^ bi = 1).

E.g., U = N, S = f2, 3, 5, 7, 11g, B = 001101010001.

In this representation, the set operators �[�, �\�, ���are
implemented directly by bitwise OR, AND, NOT!
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