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Basic Proof Methods

Overview of Basic Proof Methods (§1.5-§1.7, ~2 hours)

Methods of mathematical argument (i.e., proof methods) can
be formalized in terms of rules of logical inference.

Mathematical proofs can themselves be represented formally
as discrete structures.

We will review both correct & fallacious inference rules, &
several proof methods.
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Proof Terminology

Theorem

A statement that has been proven to be true.

Axioms, postulates, hypotheses, premises

Assumptions (often unproven) de�ning the structures about
which we are reasoning.

Rules of inference

Patterns of logically valid deductions from hypotheses to
conclusions.
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More Proof Terminology

Lemma

A minor theorem used as a stepping-stone to proving a major
theorem.

Corollary

A minor theorem proved as an easy consequence of a major
theorem.

Conjecture

A statement whose truth value has not been proven. (A
conjecture may be widely believed to be true, regardless.)

Theory

The set of all theorems that can be proven from a given set of
axioms.
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Graphical Visualization
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Inference Rules - General Form

Inference Rule

Pattern establishing that if we know that a set of antecedent
statements of certain forms are all true, then a certain related
consequent statement is true.

antecedent 1
antecedent 2 . . .
) consequent

PS. ")" means �therefore�
Each logical inference rule corresponds to an implication that
is a tautology

((ante. 1) ^ (ante. 2) ^ . . .)! consequent
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How to Prove Inference Rules

Truth tables.

The consequent statement must be true if all antecedent
statements are ture.

Prove the corresponding implication proposition is a tautology.
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Some Inference Rules

p
) p _ q Rule of Addition
p ^ q
) p Rule of Simpli�cation
p
q

) p ^ q Rule of Conjunction
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Modus Ponens & Tollens

p
p ! q
) q

Rule of modus ponens
(a.k.a. law of detachment)
"the mode of a¢ rming"

:p
p ! q
) :p Rule of modus tollens

"the mode of denying"
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Syllogism Inference Rules

p ! q
q ! r
) p ! r Rule of hypothetical syllogism
p _ q
:p
) q Rule of disjunctive syllogism
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Formal Proofs

A formal proof of a conclusion, given premises p1, p2, . . . pn
consists of a sequence of steps, each of which applies some
inference rule to premises or to previously-proven statements
(as antecedents) to yield a new true statement q (the
consequent).

A proof demonstrates that if the premises are true, then the
conclusion is true

In other words, p1 ^ p2 ^ � � � ^ pn ! q is a tautology.
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Example

Suppose we have the following premises:
"It is not sunny and it is cold."
"We will swim only if it is sunny."
"If we do not swim, then we will canoe."
"If we canoe, then we will be home early."

Given these premises, prove the theorem
"We will be home early." using inference rules.
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Proof of the Example

Let us adopt the following abbreviations:

1 sunny = �It is sunny�;
2 cold = �It is cold�;
3 swim = �We will swim�;
4 canoe = �We will canoe�;
5 early = �We will be home early�.

Then, the premises can be written as:

1 :sunny^cold;
2 swim!sunny;
3 :swim!canoe;
4 canoe!early.
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Proof (cont.)

Step Proved by
1. :sunny ^ cold Premise #1.
2. :sunny Simpli�cation of 1.
3. swim! sunny Premise #2.
4. :swim Modustollens on 2,3.
5. :swim! canoe Premise #3.
6. canoe Modusponens on 4,5.
7. canoe ! early Premise #4.
8. early Modusponens on 6,7.
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Inference Rules for Quanti�ers

8x P(x) Universal instantiation
) P(o) (substitute any object o)

P(g) (for g a general element of u.d.)
) 8x P(x) Universal generalization

9x P(x) Existential instantiation
) P(c) (substitute a new constant c)

P(o) (substitute any extant object o)
) 9x P(x) Existential generalization



Discrete Math

Basic Proof Methods

§1.5 Rules of Inference

Common Fallacies

A fallacy is an inference rule or other proof method that is not
logically valid.

May yield a false conclusion!

Fallacy of a¢ rming the conclusion:

�p ! q is true, and q is true, so p must be true.� (No,
because F! T is true.)

Fallacy of denying the hypothesis:

�p ! q is true, and p is false, so q must be false.� (No, again
because F! T is true.)
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Proof Methods for Implications

For proving implications p ! q, we have:

Direct proof: Assume p is true, and prove q.
Indirect proof: Assume :q, and prove :p.
Vacuous proof: Prove :p by itself.
Trivial proof: Prove q by itself.
Proof by cases: Show p ! (a_ b), and (a! q) and (b ! q).
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Direct Proof Example

De�nition

An integer n is called odd i¤ n = 2k + 1 for some integer k; n is
even i¤ n = 2k for some k.

Fact (Axiom)

Every integer is either odd or even.

Theorem

(8n) If n is an odd integer, then n2 is an odd integer.

Proof.

If n is odd, then n = 2k + 1 for some integer k. Thus,
n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1.

Therefore n2 = 2j + 1(j = 2k2 + 2k), thus n2 is odd.
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Indirect Proof Example

Theorem

(For all integers n) If 3n+ 2 is odd, then n is odd.

Proof.

Suppose that the conclusion is false, i.e., that n is even. Then
n = 2k for some integer k. Then
3n+ 2 = 3(2k) + 2 = 6k + 2 = 2(3k + 1). Thus 3n+ 2 is even,
because it equals 2j for integer j = 3k + 1. So 3n+ 2 is not odd.
We have shown that : (n is odd)! : (3n+ 2 is odd), thus its
contra-positive (3n+ 2 is odd)! (n is odd) is also true.
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Vacuous Proof Example

Theorem

(For all n) If n is both odd and even, then n2 = n+ n.

Proof.

The statement �n is both odd and even� is necessarily false, since
no number can be both odd and even. So, the theorem is
vacuously true.
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Trivial Proof Example

Theorem

(For integers n) If n is the sum of two prime numbers, then either
n is odd or n is even.

Proof.

Any integer n is either odd or even. So the conclusion of the
implication is true regardless of the truth of the antecedent. Thus
the implication is true trivially.
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Proof by Contradiction

A method for proving p.

Assume :p, and prove both q and :q for some proposition q.
Thus :p ! (q ^ :q)
(q ^ :q) is a trivial contradiction, equal to F
Thus :p ! F, which is only true if :p = F
Thus p is true.



Discrete Math

Basic Proof Methods

§1.6 Introduction to Proofs

Circular Reasoning

The fallacy of (explicitly or implicitly) assuming the very
statement you are trying to prove in the course of its proof.

Example

Prove that an integer n is even, if n2 is even.

Attempted Proof.

�Assume n2 is even. Then n2 = 2k for some integer k. Dividing
both sides by n gives n = (2k)/n = 2(k/n). So there is an
integer j (namely k/n) such that n = 2j . Therefore n is even.�

Begs the question: How do
you show that j = k/n = n/2 is an integer,

without �rst assuming n is even?
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Removing the Circularity

Suppose n2 is even ) 2jn2 ) n2 mod 2 = 0. Of course nmod 2 is
either 0 or 1. If it�s 1, then n � 1(mod 2), so n2 � 1(mod 2),
using the theorem that if a � b(modm) and c � d(modm) then
ac � bd(modm), with a = c = n and b = d = 1. Now
n2 � 1(mod 2) implies that n2 mod 2 = 1. So by the hypothetical
syllogism rule, (nmod 2 = 1) implies (n2 mod 2 = 1). Since we
know n2 mod 2 = 0 6= 1, by modus tollens we know that
nmod 2 6= 1.So by disjunctive syllogism we have that nmod 2 = 0
) 2jn ) n is even.
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Analysis

Premises:

n2 is even (and n is integer)

Proof logic:

n is integer() n � 0(mod 2) _ n � 1(mod 2) (enumerate)
We want to show "n � 1(mod 2) is False" (by contradiction)

n � 1(mod 2)! n2 � 1(mod 2) is True (by calculation)
n2 � 0(mod 2) is True (premises)
modus of tollens

So, n � 0(mod 2) is True (disjunctive syllogism)
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Review: Proof Methods So Far

Direct, indirect, vacuous, and trivial proofs of statements of
the form p ! q.

Proof by contradiction of any statements.

Next: Constructive and nonconstructive existence proofs.
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Proving Existential

A proof of a statement of the form 9xP(x) is called an
existence proof.

If the proof demonstrates how to actually �nd or construct a
speci�c element a such that P(a) is true, then it is a
constructive proof.

Otherwise, it is nonconstructive.
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Constructive Existence Proof

Theorem

There exists a positive integer n that is the sum of two perfect
cubes in two di¤erent ways.

In other words, n is equal to j3 + k3 and l3 +m3 where
j , k, l ,m are positive integers, and fj , kg 6= fl ,mg.

Proof.

Consider n = 1729, j = 9, k = 10, l = 1,m = 12. Now just check
that the equalities hold.
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Another Constructive Existence Proof

Theorem

For any integer n > 0, there exists a sequence of n consecutive
composite integers.

Same statement in predicate logic:
8n > 0 9x 8i(1 � i � n)! (x + i is composite)

Proof follows on next slide...
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Proof.

Given n > 0, let x = (n+ 1)!+ 1.
Let i � 1 and i � n, and consider x + i .
Note x + i = (n+ 1)!+ (i + 1).
Note (i + 1)j(n+ 1)!, since 2 � i + 1 � n+ 1.
Also (i + 1)j(i + 1). So, (i + 1)j(x + i).
) x + i is composite.
) 8n9x s.t. 81 � i � n : x + i is composite.
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Nonconstructive Existence Proof

Theorem

There are in�nitely many prime numbers.

Ideas for proof:

Any �nite set of numbers must contain a maximal element, so
we can prove the theorem if we can just show that there is no
largest prime number.
In other words, show that for any prime number, there is a
larger number that is also prime.
More generally: For any number, 9 a larger prime.
Formally: Show 8n 9p > n : p is prime.
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The proof, using proof by cases...

Given n > 0, prove there is a prime p > n.

Consider x = n!+ 1. Since x > 1, we know (x is prime) _ (x
is composite).

Case 1 x is prime. Obviously x > n, so let p = x and we�re done.
Case 2 x has a prime factor p. But if p � n, then x mod p = 1. So

p > n, and we�re done. (Why?)
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The Halting Problem (Turing�36, Skip)

The halting problem was the �rst mathematical function
proven to have no algorithm that computes it! We say, it is
uncomputable.
The function is Halts(P, I ) :��Program P, given input I ,
eventually terminates.�

Theorem

Halts is uncomputable! (I.e., there does not exist any algorithm A
that computes Halts correctly for all possible inputs.)

Its proof is thus a non-existence proof.

Corollary

General impossibility of predictive analysis of arbitrary computer
programs.
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Proof.

Given any arbitrary program H(P, I ),

Consider algorithm Breaker , de�ned as:
procedure Breaker(P: a program)
halts := H(P,P)
if halts then while T begin end
Note that Breaker(Breaker) halts i¤ H(Breaker ,Breaker)
= F.
So H does not compute the function Breaker !
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More Proof Examples

Example

Quiz question 1a: Is this argument correct or incorrect?

�All TAs compose easy quizzes. Ramesh is a TA. Therefore,
Ramesh composes easy quizzes.�

First, separate the premises from conclusions:

Premise #1: All TAs compose easy quizzes.
Premise #2: Ramesh is a TA.
Conclusion: Ramesh composes easy quizzes.
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Next, re-render the example in logic notation.

Premise #1: All TAs compose easy quizzes.

Let U.D. = all people
Let T (x) :� �x is a TA�
Let E (x) :� �x composes easy quizzes�
Then Premise #1 says: 8x , T (x) �! E (x)

Premise #2: Ramesh is a TA.

Let R :� Ramesh
Then Premise #2 says: T (R)

And the Conclusion says: E (R)
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The Proof in Gory Detail

The argument is correct, because it can be reduced to a
sequence of applications of valid inference rules, as follows:

Proof.
Statement How obtained

1.8x , T (x)! E (x) (Premise#1)
2.T (Ramesh)! E (Ramesh) (Universal instantiation)
3.T (Ramesh) (Premise#2)

4.E (Ramesh)
(Modus Ponens from statements
#2 and #3)
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Another Example

Example (Quiz question 1b: Correct or incorrect?)

At least one of the 280 students in the class is intelligent. Y is a
student of this class. Therefore, Y is intelligent.

First: Separate premises/conclusion, & translate to logic:

Premises:

1 9x InClass(x) ^ Intelligent(x)
2 InClass(Y )

Conclusion: Intelligent(Y )
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No. The argument is invalid. We can disprove it with a
counter-example.

Disprove by a counter example.

Consider a case where there is only one intelligent student X
in the class, and X 6= Y .

Then the premise 9x InClass(x) ^ Intelligent(x) is true, by
existential generalization of InClass(X ) ^ Intelligent(X ).
But the conclusion Intelligent(Y ) is false, since X is the only
intelligent student in the class, and Y 6= X .

Therefore, the premises do not imply the conclusion.
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Another Example (Skip)

Example (Quiz question #2)

Prove that the sum of a rational number and an irrational number
is always irrational.

First, you have to understand exactly what the question is
asking you to prove:

�For all real numbers x , y , if x is rational and y is irrational,
then x + y is irrational.�
8x , y : Rational(x) ^ Irrational(y) �! Irrational(x + y)



Discrete Math

Basic Proof Methods

§1.7 Proof Methods and Strategy

An Example of Wrong Answers

1 is rational.
p
2 is irrational. 1+

p
2 is irrational. Therefore,

the sum of a rational number and an irrational number is
irrational. (Direct proof.)

Why does this answer merit no credit?

The student attempted to use an example to prove a universal
statement. This is always wrong!
Even as an example, it�s incomplete, because the student never
even proved that 1+

p
2 is irrational!
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Direction of Proof

Think back to the de�nitions of the terms used in the
statement of the theorem:

8 reals r : Rational(r)$
9Integer(i) ^ Integer(j) : r = i .

8 reals r : Irrational(r)$ :Rational(r).

You almost always need the de�nitions of the terms in order
to prove the theorem!

Next, let�s go through one valid proof:
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What You Might Write

Theorem

8x , y: Rational(x) ^ Irrational(y)! Irrational(x + y).

Proof.

Let x , y be any rational and irrational numbers, respectively.
...(universal generalization)

Now, just from this, what do we know about x and y? You
should think back to the de�nition of rational:

...Since x is rational, we know (from the very de�nition of
rational) that there must be some integers i and j such that
x = i

j . So, let ix , jx be such integers...

we give them unique names so we can refer to them later.
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What�s Next?

What do we know about y? Only that y is irrational::9
integer i , j : y = i

j .

But, it�s di¢ cult to see how to use a direct proof in this case.
We could try indirect proof also, but in this case, it is a little
simpler to just use proof by contradiction (very similar to
indirect).

So, what are we trying to show? Just that x + y is irrational.
That is, :9i , j : (x + y) = i

j .

What happens if we hypothesize the negation of this
statement?
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Prove Continue ...

Suppose that x + y were not irrational. Then x + y would be
rational, so 9 integers i , j : x + y = i

j . So, let is and js be any

such integers where x + y = is
js
.

Now, with all these things named, we can start seeing what
happens when we put them together.

So, we have that ( ixjx ) + y = (
is
js
).

Observer! We have enough information now that we can
conclude something useful about y , by solving this equation
for it.
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Finishing the Proof

Solving that equation for y , we have:

y = (
is
js
)� ( ix

jx
) =

(is jx � ix js )
(js jx )

Now, since the numerator and denominator of this expression
are both integers, y is (by de�nition) rational. This
contradicts the assumption that y was irrational. Therefore,
our hypothesis that x + y is rational must be false, and so the
theorem is proved.
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