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Foundations of Logic

Mathematical Logic is a tool for working with complicated
compound statements. It includes:

A language for expressing them.
A concise notation for writing them.
A methodology for objectively reasoning about their truth or
falsity.
It is the foundation for expressing formal proofs in all branches
of mathematics.
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Overview

Propositional logic (§1.1-§1.2):

Basic de�nitions (§1.1)
Equivalence rules & derivations (§1.2)

Predicate logic (§1.3-§1.4)

Predicates
Quanti�ed predicate expressions
Equivalences & derivations
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De�nition of a Proposition

De�nition

A proposition (p, q, r , . . .) is a declarative sentence with a de�nite
meaning, having a truth value that�s either true (T ) or false (F )
(never both, neither, or somewhere in between).

However, you might not know the actual truth value, and it
might be situation-dependent.
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Examples of Propositions

Example

The following statements are propositions:

�It is raining.� (In a given situation.)

�Washington D.C. is the capital of China.�

�1+ 2 = 3�

But, the followings are NOT propositions:

�Who�s there?� (interrogative, question)

�La la la la la.� (meaningless interjection)

�Just do it!� (imperative, command)

�1+ 2� (expression with a non-true/false value)
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Propositional Logic

Propositional Logic is the logic of compound statements built
from simpler statements using so-called Boolean connectives.

Some applications in computer science:

Design of digital electronic circuits.
Expressing conditions in programs.
Queries to databases & search engines.
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Operators / Connectives

An operator or connective combines one or more operand
expressions into a larger expression (e.g., �+� in numeric
exprs).

Unary operators take 1 operand (e.g., �3); binary operators
take 2 operands (e.g., 3� 4).
Propositional or Boolean operators operate on propositions or
truth values instead of on numbers.
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Some Popular Boolean Operators

Formal Name Nickname Arity Symbol
Negation operator NOT Unary :
Conjunction operator AND Binary ^
Disjunction operator OR Binary _
Exclusive-OR operator XOR Binary �
Implication operator IMPLIES Binary �!
Biconditional operator IFF Binary  !
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The Negation Operator

The unary negation operator ":" (NOT) transforms a prop.
into its logical negation.

For example, if p = �I have brown hair.�, then :p = �I do not
have brown hair.�.

Truth table for NOT:

T :�True; F :�False
�:��means �is de�ned as� p ¬p

T F
F T

Operand
column

Result
column

p ¬p
T F
F T

Operand
column

Result
column
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The Conjunction Operator

The binary conjunction operator �^�(AND) combines two
propositions to form their logical conjunction.

Example

p =�I will have salad for lunch.�
q =�I will have steak for dinner.�
p ^ q =�I will have salad for lunch and I will have steak for
dinner.�
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Conjunction Truth Table

Note that a conjunction p1 ^ p2 ^ � � � ^ pn of n propositions
will have 2n rows in its truth table.

: and ^ operations together are su¢ cient to express any
Boolean truth table with only 1 True value.
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The Disjunction Operator

The binary disjunction operator �_�(OR) combines two
propositions to form their logical disjunction.

Example

p =�My car has a bad engine.�
q =�My car has a bad carburetor.�
p _ q =�Either my car has a bad engine, or my car has a bad
carburetor.�
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Disjunction Truth Table

Note that p _ q means that p is true, or q is true,or both are
true!

So, this operation is also called inclusive or, because it
includes the possibility that both p and q are true.
: and _ operations together are su¢ cient to express any
Boolean truth table with only 1 False value.
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Precedence of Logical Operators

Use parentheses to group sub-expressions, for example �I just
saw my old f riend, and either he�s g rown or I�ve
shrunk.�= f ^ (g _ s).

(f ^ g) _ s would mean something di¤erent.
f ^ g _ s would be ambiguous.

By convention, ":" takes precedence over both �^�and �_�.
:s ^ f means (:s) ^ f , not :(s ^ f ).
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A Simple Exercise

Let p =�It rained last night.�, q =�The sprinklers came on
last night.�, and r =�The lawn was wet this morning.�

Translate each of the following into English:

:p
�It didn�t rain lastnight.�

r ^ :p

�The lawn was wet this morning, and it didn�t rain last night.�

:r _ p _ q

�Either the lawn wasn�t wet this morning,or it rained
lastnight, or thes prinklers came on lastnight.�
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The Exclusive OR Operator

The binary exclusive-or operator ���(XOR) combines two
propositions to form their logical �exclusive or� (exjunction?).

p =�I will earn an A in this course,�
q =�I will drop this course,�
p � q =�I will either earn an A for this course, or I will drop it
(but not both!)�
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Exclusive-OR Truth Table

Note that p � q means that p is true, or q is true, but not
both!
This operation is called exclusive or, because it excludes the
possibility that both p and q are true.

�:� and ���together are not universal.
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Natural Language is Ambiguous

Note that English �or� can be ambiguous regarding the
�both�case!

�Pat is a singer or Pat is a writer.� - _
�Pat is a man or Pat is a woman.� - �

Need context to disambiguate the meaning!

For this class, assume �or�means inclusive.
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The Implication Operator

The implication statement "p implies q" is denoted by

In other words, if p is true, then q is true; but if p is not true,
then q could be either true or false.

Example

Let p =�You study hard.� and q =�You will get a good grade.�.
Then, p ! q =�If you study hard, then you will get a good
grade.� (else, it could go either way)
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Implication Truth Table

p ! q is false only when p is true but q is not true.
p ! q does not say that p causes q!
p ! q does not require that p or q are ever true! e.g.
�(1=0)!pigs can �y� is TRUE!
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Examples of Implications

�If this lecture ends, then the sun will rise tomorrow.�True or
False?

True

�If Tuesday is a day of the week, then I am a penguin.�True
or False?

False

�If 1+1=6, then Bush is president.�True or False?

True

�If the moon is made of green cheese, then I am richer than
Bill Gates.�True or False?

True
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Why Does This Seem Wrong?

Consider a sentence like,

�If I wear a red shirt tomorrow, then the U.S. will attack Iraq
the same day.�

In logic, we consider the sentence True so long as either I
don�t wear a red shirt, or the US attacks.

But in normal English conversation, if I were to make this
claim, you would think I was lying.

Why this discrepancy between logic & language?
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Resolving the Discrepancy

In English, a sentence �if p then q�usually really implicitly
means something like,

�In all possible situations, if p then q.�

That is, �For p to be true and q false is impossible.�
Or, �I guarantee that no matter what, if p, then q.�

This can be expressed in predicate logic as:

�For all situations s, if p is true in situation s, then q is also
true in situation s�
Formally, we could write: 8s,P(s)! Q(s).

This sentence is logically False in our example, because for
me to wear a red shirt and the U.S. not to attack Iraq is a
possible (even if not actual) situation.

Natural language and logic then agree with each other.
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English Phrases Meaning p -> q

�p implies q�

�if p ,then q�

�if p, q�

�when p, q�

�whenever p, q�

�q if p�

�q when p�

�q whenever p�

�p only if q�

�p is su¢ cient for q�

�q is necessary for p�

�q follows from p�

�q is implied by p�

We will see some equivalent logic expressions later.
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Converse, Inverse, Contrapositive

Some terminology, for an implication p ! q:

Its converse is q ! p.
Its inverse is :p ! :q.
Its contrapositive is :q ! :p.

One of these three has the same meaning (same truth table)
as p ! q. Can you �gure out which?
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How Do We Know For Sure?

Proving the equivalence of p ! q and its contrapositive using
truth tables:
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The Biconditional Operator

The biconditional p $ q states that p is true if and only if
(IFF) q is true.

Example

p = �Bush wins the 2004 election.�
q = �Bush will be president for all of 2005.�
p $ q= �If, and only if, Bush wins the 2004 election, Bush will be
president for all of 2005.�
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Biconditional Truth Table

p $ q means that p and q have the same truth value.
Note this truth table is the exact opposite of ��s!

p $ q means :(p � q).

p $ q does not imply p and q are true, or cause each other.
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Boolean Operations Summary

We have seen 1 unary operator (out of the 4 possible) and 5
binary operators (out of the 16 possible). Their truth tables
are below.
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Some Alternative Notations
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Bits and Bit Operations

A bit is a binary (base 2) digit: 0 or 1.

Bits may be used to represent truth values.

By convention: 0 represents �false�; 1 represents �true�.

Boolean algebra is like ordinary algebra except that variables
stand for bits, + means �or�, and multiplication means �and�.

See chapter 10 for more details.

Example (in C language):
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End of §1.1

You have learned about:

Propositions: What they are.

Propositional logic operators�

Symbolic notations.
English equivalents.
Logical meaning.
Truth tables.

Atomic vs. compound propositions.

Alternative notations.

Bits and bit-strings.

Next section: §1.2

Propositional equivalences.
How to prove them.
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Propositional Equivalence

Two syntactically (i.e., textually) di¤erent compound
propositions may be the semantically identical (i.e., have the
same meaning). We call them equivalent.

Learn:

Various equivalence rules or laws.
How to prove equivalences using symbolic derivations.
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Tautologies and Contradictions

A tautology is a compound proposition that is true no matter
what the truth values of its atomic propositions are!

Example

p _ :p [What is its truth table?]

A contradiction is a compound proposition that is false no
matter what!

Example

p ^ :p [Truth table?]

Other compound props. are contingencies.
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Logical Equivalence

Compound proposition p is logically equivalent to compound
proposition q, written p () q, IFF the compound
proposition p $ q is a tautology.

Compound propositions p and q are logically equivalent to
each other IFF p and q contain the same truth values as each
other in all rows of their truth tables.
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Proving Equivalence via Truth Tables

Example

Prove that p _ q () :(:p ^ :q).
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Equivalence Laws

These are similar to the arithmetic identities you may have
learned in algebra, but for propositional equivalences instead.

They provide a pattern or template that can be used to match
all or part of a much more complicated proposition and to �nd
an equivalence for it.
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Equivalence Laws - Examples

Identity
p ^T() p; p _ F() p.

Domination
p _T() T; p ^ F() F.

Idempotent
p _ p () p; p ^ p () p.

Double negation
::p () p.

Commutative
p _ q () q _ p; p ^ q () q ^ p.

Associative
(p _ q) _ r () p _ (q _ r).
(p ^ q) ^ r () p ^ (q ^ r).
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More Equivalence Laws

Distributive

p _ (q ^ r)() (p _ q) ^ (p _ r).
p ^ (q _ r)() (p ^ q) _ (p ^ r).

De Morgan�s

:(p ^ q)() :p _ :q.
:(p _ q)() :p ^ :q.

Trivial tautology/contradiction

p _ :p () T.
p ^ :p () F.
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De�ning Operators via Equivalences

Using equivalences, we can de�ne operators in terms of other
operators.

Exclusive OR

p � q () (p _ q) ^ (:p _ :q)
p � q () (p ^ :q) _ (:p ^ q)

Implies

p ! q () :p _ q

Biconditional:

p $ q () (p ! q) ^ (q ! p)
p $ q () :(p � q)
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An Example Problem

Check using a symbolic derivation whether

(p ^ :q)! (p � r)() :p _ q _ :r .

(p ^ :q)! (p � r)
[Expand de�nition of! ]
() :(p ^ :q) _ (p � r)
[De�nition of �]
() :(p ^ :q) _ ((p _ r) ^ :(p ^ r))
[DeMorgan�s Law]
() (:p _ q) _ ((p _ r) ^ :(p ^ r))
[_ commutes]
() (q _ :p) _ ((p _ r) ^ :(p ^ r))
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Example Continued...

[_ associative]
() q _ (:p _ ((p _ r) ^ :(p ^ r)))
[distrib _ over ^]
() q _ (((:p _ (p _ r)) ^ (:p _ :(p ^ r)))
[assoc.]
() q _ (((:p _ p) _ r) ^ (:p _ :(p ^ r)))
[trivial taut.]
() q _ ((T _ r) ^ (:p _ :(p ^ r)))
[domination]
() q _ (T ^ (:p _ :(p ^ r)))
[identity]
() q _ (:p _ :(p ^ r))
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End of Long Example

[DeMorgan�s]
() q _ (:p _ (:p _ :r)
[Assoc.]
() q _ ((:p _ :p) _ :r)
[Idempotent]
() q _ (:p _ :r)
[Assoc.]
() (q _ :p) _ :r
[Commut.]
() :p _ q _ :r
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Review: Propositional Logic(§1.1-§1.2)

Atomic propositions: p, q, r , . . .
Boolean operators: : ^ _� !$
Compound propositions: s :� (p ^ :q) _ r
Equivalences: p ^ :q () :(p ! q)

Proving equivalences using:

Truth tables.
Symbolic derivations. p () q () r . . .
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Predicate Logic

Predicate logic is an extension of propositional logic that
permits concisely reasoning about whole classes of entities.

Propositional logic (recall) treats simple propositions
(sentences) as atomic entities.

In contrast, predicate logic distinguishes the subject of a
sentence from its predicate.

Remember these English grammar terms?
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Subjects and Predicates

In the sentence �The dog is sleeping�:

The phrase �the dog�denotes the subject - the object or
entity that the sentence is about.
The phrase �is sleeping�denotes the predicate - a property
that is true of the subject.

In predicate logic, a predicate is modeled as a function P(�)
from objects to propositions.

P(x) =�x is sleeping� (where x is any object).
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More About Predicates

Convention: Lowercase variables x , y , z ... denote
objects/entities; uppercase variables P,Q,R . . . denote
propositional functions (predicates).

Keep in mind that the result of applying a predicate P to an
object x is the proposition P(x). But the predicate P itself
(e.g. P =�is sleeping�) is not a proposition (not a complete
sentence).

Example

If P(x) =�x is a prime number�, then P(3) is the proposition �3
is a prime number.�.
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Propositional Functions

Predicate logic generalizes the grammatical notion of a
predicate to also include propositional functions of any
number of arguments, each of which may take any
grammatical role that a noun can take.

Example

Let P(x , y , z) =�x gave y the grade z�.
If x =�Mike�, y =�Mary�, z =�A�, then P(x , y , z) =�Mike gave
Mary the grade A.�
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Universes of Discourse (U.D.s)

The collection of values that a variable x can take is called x�s
universe of discourse.

The power of distinguishing objects from predicates is that it
lets you state things about many objects at once.

Example

Let P(x) =�x + 1 > x�.
We can then say, �For any number x , P(x)is true� instead of
(0+ 1 > 0) ^ (1+ 1 > 1) ^ (2+ 1 > 2)...
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Quanti�er Expressions

Quanti�ers provide a notation that allows us to quantify
(count) how many objects in the univ. of disc. satisfy a given
predicate.

�8� is the FOR 8LL or universal quanti�er 8xP(x) means for
all x in the u.d., P holds.

�9� is the 9XISTS or existential quanti�er 9xP(x) means
there exists an x in the u.d. (that is, 1 or more) such that
P(x) is true.
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The Universal Quanti�er

Example

Let the u.d. of x be parking spaces at NCTU. Let P(x) be the
predicate �x is full.�Then the universal quanti�cation of P(x), 8x
P(x), is the proposition:

�All parking spaces at NCTU are full.�

�Every parking space at NCTU is full.�

�For each parking space at NCTU, that space is full.�
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Examples of the Universal Quanti�er

Example

Let Q(x) be the statement �x < 2�. What is the truth value of
the quanti�cation 8x Q(x), where the domain consists of all real
numbers?

Example

Suppose that P(x) is �x2 > 0�. Show that the statement 8xP(x)
is false where the universe of discourse consists of all integers.

Problem

What is the outcome if the domain is an empty set?
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The Existential Quanti�er

Example

Let the u.d. of x be parking spaces at NCTU. Let P(x) be the
predicate �x is full.�Then the existential quanti�cation of P(x),
9xP(x), is the proposition:

�Some parking space at NCTU is full.�

�There is a parking space at NCTU that is full.�

�At least one parking space at NCTU is full.�
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Examples of the Existential Quanti�er

Example

Let P(x) denote the statement �x > 2�. What is the truth value
of the quanti�cation 9xP(x), where the domain consists of all real
numbers?

Example

Suppose that Q(x) is �x = x + 1�. What is the truth value of the
quanti�cation 9xQ(x), where the domain consists of all real
numbers?

Problem

What is the outcome if the domain is an empty set?
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Free and Bound Variables

An expression like P(x) is said to have a free variable x
(meaning, x is unde�ned).

A quanti�er (either 8 or 9) operates on an expression having
one or more free variables, and binds one or more of those
variables, to produce an expression having one or more bound
variables.



Discrete Mathematics

Foundations of Logic

§1.3 Predicate Logic

Example of Binding

P(x , y) has 2 free variables, x and y .

8xP(x , y) has 1 free variable, and one bound variable. [Which
is which?]

�P(x), where x = 3� is another way to bind x .

An expression with zero free variables is a bona-�de (actual)
proposition.

An expression with one or more free variables is still only a
predicate: 8xP(x , y).
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Nesting of Quanti�ers

Example

Let the u.d. of x & y be people.
Let L(x , y) =�x likes y�(a predicate w. 2 f.v.�s)

Then 9yL(x , y) =�There is someone whom x likes.� (A
predicate w. 1 free variable, x)

Then 8x(9yL(x , y)) =�Everyone has someone whom they
like.�(A Proposition with 0 free variables.)
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Quanti�er Exercise

If R(x , y) =�x relies upon y ,� express the following in
unambiguous English:

8x(9y R(x , y))
Everyone has some one to rely on.

9y(8x R(x , y))

There�s a poor overburdened soul whom everyone relies upon
(including himself)!

9x(8y R(x , y))

There�s some needy person who relies upon everybody
(including himself).

8y(9x R(x , y))

Everyone has someone who relies upon them.

8x(8y R(x , y))

Everyone relies upon everybody, (including themselves)!
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Quanti�er Exercise

If R(x , y) =�x relies upon y ,� express the following in
unambiguous English:

8x(9y R(x , y))
Everyone has some one to rely on.

9y(8x R(x , y))
There�s a poor overburdened soul whom everyone relies upon
(including himself)!

9x(8y R(x , y))
There�s some needy person who relies upon everybody
(including himself).

8y(9x R(x , y))
Everyone has someone who relies upon them.

8x(8y R(x , y))

Everyone relies upon everybody, (including themselves)!
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Quanti�er Exercise

If R(x , y) =�x relies upon y ,� express the following in
unambiguous English:

8x(9y R(x , y))
Everyone has some one to rely on.

9y(8x R(x , y))
There�s a poor overburdened soul whom everyone relies upon
(including himself)!

9x(8y R(x , y))
There�s some needy person who relies upon everybody
(including himself).

8y(9x R(x , y))
Everyone has someone who relies upon them.

8x(8y R(x , y))
Everyone relies upon everybody, (including themselves)!
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Natural language is ambiguous!

�Everybody likes somebody.�

For everybody, there is somebody they like,

8x9y Likes(x , y ) [Probably more likely.]

or, there is somebody (a popular person) whom everyone likes?

9y8x Likes(x , y )

�Somebody likes everybody.�

Same problem: Depends on context, emphasis.
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Still More Conventions

Sometimes the universe of discourse is restricted within the
quanti�cation,

8x > 0,P(x) is shorthand for
�For all x that are greater than zero, P(x).�
8x(x > 0! P(x))

Example

9x > 0,P(x) is shorthand for
�There is an x greater than zero such that P(x).�
9x(x > 0^ P(x))
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More to Know About Binding

8x9xP(x) � x is not a free variable in 9xP(x), therefore the
8x binding isn�t used.
(8xP(x)) ^Q(x) �The variable x is outside of the scope of
the 8x quanti�er, and is therefore free. Not a proposition!
(8xP(x)) ^ (9xQ(x)) �This is legal, because there are 2
di¤erent x�s!
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Quanti�er Equivalence Laws

De�nitions of quanti�ers: If u.d.= a, b, c , . . .
8xP(x), P(a) ^ P(b) ^ P(c) ^ ...
9xP(x), P(a) _ P(b) _ P(c) _ ...

Negations of Quanti�ed Expressions

:8xP(x), 9x:P(x)
:9xP(x), 8x:P(x)

From those, we can prove the laws:

8x P(x), :(9x :P(x))
9x P(x), :(8x :P(x))

Which propositional equivalence laws can be used to prove
this?
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More Equivalence Laws

8x8y P(x , y), 8y8x P(x , y)
9x9y P(x , y), 9y9x P(x , y)
8x(P(x) ^Q(x)), (8xP(x)) ^ (8xQ(x))
9x(P(x) _Q(x)), (9xP(x)) _ (9xQ(x))

Example

See if you can prove these yourself.
What propositional equivalences did you use?
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Examples of Negations

What are the negations of the statement �There is an honest
politician�and �All Americans eat cheeseburgers�?

What are the negations of the statements 8x(x2 > x) and
9x(x2 = 2)?
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Review: Predicate Logic (§1.3)

Objects x , y , z , . . .
Predicates P,Q,R, . . . are functions mapping objects x to
propositions P(x).

Multi-argument predicates P(x , y).

Quanti�ers:

[8x(P(x)] :��For all x�s, P(x).�
[9x(P(x)] :��There is an x such that P(x).�

Universes of discourse, bound & free vars.
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More Notational Conventions

Quanti�ers bind as loosely as needed: parenthesize
8x(P(x) ^Q(x))
Consecutive quanti�ers of the same type can be combined:
8x8y8zP(x , y , z), 8x , y , z P(x , y , z) or even 8xyz
P(x , y , z).
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De�ning New Quanti�ers

As per their name, quanti�ers can be used to express that a
predicate is true of any given quantity (number) of objects.

De�ne 9!xP(x) to mean �P(x) is true of exactly one x in the
universe of discourse.�

9!xP(x), 9x(P(x) ^ 9y(P(y) ^ y 6= x) ) �There is an x
such that P(x), where there is no y such that P(y) and y is
other than x .�
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Some Number Theory Examples

Example

Let u.d. = the natural numbers 0, 1, 2, . . .

�A number x is even, E (x), if and only if it is equal to 2
times some other number.�
8x(E (x)$ (9y s.t. x = 2y))
�A number is prime,P(x), i¤ it�s greater than 1 and it isn�t
the product of two non-unity numbers.�
8x(P(x)$ (x > 1^ :9yz (x = yz ^ y 6= 1^ z 6= 1)))
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Goldbach�s Conjecture (Unproven)

Using E (x) and P(x) from previous slide,
8E (x > 2) : 9P(p),P(q) : p + q = x .
or, with more explicit notation:
8x [x > 2^ E (x)]! 9p9qP(p) ^ P(q) ^ p + q = x .
�Every even number greater than 2 is the sum of two primes.�
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Calculus Example

One way of precisely de�ning the calculus concept of a limit,
using quanti�ers:�

lim
x!a

f (x) = L
�

,
�

8ε > 0 : 9δ > 0 : 8x :
(jx � aj < δ)! (jf (x)� Lj) < ε

�
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End of §1.3-§1.4, Predicate Logic

From these sections you should have learned:

Predicate logic notation & conventions
Conversions: predicate logic $ clear English
Meaning of quanti�ers, equivalences
Simple reasoning with quanti�ers

Upcoming topics:

Introduction to proof-writing.
Then: Set theory �

a language for talking about collections of objects.
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