Example 1 Solve the recurrence relation $a_n = 7a_{n-1} - 10a_{n-2}$ for $n \ge 2$ with $a_0 = 2$ and $a_1 = 1$ by characteristic equations.

Solution Let $a_n = r^n$. Then, the C.E. is $r^2 - 7r + 10 = 0$. There are two distinguish root r = 2 and r = 5. So, the two basic solution is 2^n and 5^n . Assume $a_n = \alpha_1 2^n + \alpha_2 5^n$. From $a_0 = 2$, we have $\alpha_1 + \alpha_2 = 2$. From $a_1 = 1$, we have $2\alpha_1 + 5\alpha_2 = 1$ Thus, we can get $\alpha_1 = 3$ and $\alpha_2 = -1$. So, $a_n = 3 \cdot 2^n - 5^n$.

Example 2 Solve the recurrence relation $a_n = 7a_{n-1} - 10a_{n-2} + 16n + 5$ for $n \ge 2$ with $a_0 = 0$ and $a_1 = 4$ by characteristic equations.

Solution Let $a_n = h_n + p_n$. From previous results, $h_n = \alpha_1 2^n + \alpha_2 5^n$. Now, assume $p_n = an = b$. Bring p_n into the recurrence relation, then we have

$$(an+b) = 7(a(n-1)+b) - 10(a(n-2)+b) + 16n + 5.$$

This is a polynomial equation of n. By comparison the coefficient, we can get a = 4 and $b = \frac{57}{4}$. Thus,

$$a_n = \alpha_1 2^n + \alpha_2 5^n + 4n + \frac{57}{4}.$$

From $a_0 = 0$, we have $\alpha_1 + \alpha_2 = -\frac{57}{4}$. From $a_1 = 1$, we have $2\alpha_1 + 5\alpha_2 = -\frac{69}{4}$. Thus, we can get $\alpha_1 = -18$ and $\alpha_2 = \frac{15}{4}$. So, $a_n = (-18)2^n + \frac{15}{4}5^n + 4n + \frac{57}{4}$.

Example 3 Solve the recurrence relation $a_n = 7a_{n-1} - 10a_{n-2}$ for $n \ge 2$ with $a_0 = 2$ and $a_1 = 1$ by generating functions.

Solution

$$G(x) = \sum_{n=0}^{\infty} a_n x^n = \left(\sum_{n=2}^{\infty} a_n x^n\right) + a_1 x + a_0$$

=
$$\left[\sum_{n=2}^{\infty} (7a_{n-1} - 10a_{n-2}) x^n\right] + x + 2$$

=
$$7x \left(\sum_{n=2}^{\infty} a_{n-1} x^{n-1}\right) - 10x^2 \left(\sum_{n=2}^{\infty} a_{n-2} x^{n-2}\right) + x + 2$$

=
$$7x (G(x) - a_0) - 10x^2 G(x) + x + 2$$

=
$$7x G(x) - 10x^2 G(x) - 13x + 2$$

So, we have $G(x)(10x^2 - 7x + 1) = -13x + 2$.

$$G(x) = \frac{-13x+2}{10x^2-7x+1} = \frac{-13x+2}{(1-2x)(1-5x)}$$
$$= \frac{a}{(1-2x)} + \frac{b}{(1-5x)}.$$

Then, we can solve a = 3 and b = -1.

$$G(x) = \frac{3}{(1-2x)} - \frac{1}{(1-5x)} = 3\sum_{n=0}^{\infty} (2x)^n - \sum_{n=0}^{\infty} (5x)^n$$
$$= \sum_{n=0}^{\infty} (3 \cdot 2^n - 5^n) 2x^n.$$

Thus, $a_n = 3 \cdot 2^n - 5^n$.

Example 4 Solve the recurrence relation $a_n = a_{n-1} + 2a_{n-2} + 2^n$ for $n \ge 2$ with $a_0 = 4$ and $a_1 = 12$ by generating function.

Solution

$$G(x) = \sum_{n=0}^{\infty} a_n x^n = \left(\sum_{n=2}^{\infty} a_n x^n\right) + a_1 x + a_0$$

=
$$\left[\sum_{n=2}^{\infty} \left(a_{n-1} + 2a_{n-2} + 2^n\right) x^n\right] + 12x + 4$$

=
$$x \left(\sum_{n=2}^{\infty} a_{n-1} x^{n-1}\right) + 2x^2 \left(\sum_{n=2}^{\infty} a_{n-2} x^{n-2}\right) + \left(\sum_{n=2}^{\infty} \left(2x\right)^n\right) + 12x + 4$$

=
$$x \left(G(x) - a_0\right) + 2x^2 G(x) + \frac{4x^2}{1 - 2x} + 12x + 4$$

=
$$x G(x) + 2x^2 G(x) + 8x + 4$$

So, we have $G(x)\left(-2x^2 - x + 1\right) = \frac{4x^2}{1-2x} - 13x + 2 = \frac{-12x^2 + 4}{1-2x}.$ $G(x) = \frac{-12x^2 + 4}{(1-2x)^2(1+x)} = \frac{a}{(1-2x)^2} + \frac{b}{(1-2x)^2}.$

$$G(x) = \frac{-12x + 4}{(1 - 2x)^2 (1 + x)} = \frac{a}{(1 - 2x)^2} + \frac{b}{(1 - 2x)} + \frac{c}{(1 + x)}$$
$$= \frac{(-2b + 4c)x^2 + (a - b - 4c)x + (a + b + c)}{(1 - 2x)^2 (1 + x)}.$$

Then, we can solve $a = \frac{6}{9}$, $b = \frac{38}{9}$, and $c = -\frac{8}{9}$.

$$\begin{aligned} G\left(x\right) &= \frac{6}{9} \frac{1}{\left(1-2x\right)^2} + \frac{38}{9} \frac{1}{\left(1-2x\right)} - \frac{8}{9} \frac{1}{\left(1+x\right)} \\ &= \left(\sum_{n=0}^{\infty} \frac{6}{9} \left(n+1\right) 2^n x^n\right) + \left(\sum_{n=0}^{\infty} \frac{38}{9} 2^n x^n\right) - \left(\sum_{n=0}^{\infty} \frac{8}{9} \left(-1\right)^n x^n\right) \\ &= \sum_{n=0}^{\infty} \left(\frac{6}{9} \left(n+1\right) 2^n + \frac{38}{9} 2^n + \frac{8}{9} \left(-1\right)^n\right) x^n. \end{aligned}$$

Thus, $a_n = \frac{6}{9} (n+1) 2^n + \frac{38}{9} 2^n + \frac{8}{9} (-1)^n$.