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Abstract—The relaxation process is a useful technique for using contextual information to reduce local
ambiguity and achieve global consistency in various applications. It is basically a parallel execution
model, adjusting the confidence measures of involved entities based on interrelated hypotheses and
confidence measures. On the other hand, the neural network is a computational model with massively
parallel execution capability. The output of each neuron depends mainly on the information provided
by other neurons. Therefore, there exist certain common properties in the relaxation process and the
neural network technique. A mapping method that makes the Hopfield neural network perform the
relaxation process is proposed. By this method, the neural network technology can be easily adapted
to solve the many problems which have already been solved by the relaxation process. An advantage
of this is that the relaxation process can be performed in real time since the Hopfield network can be
implemented by conventional analog circuits. Experimental results are given to demonstrate the
feasibility of the proposed method by performing the image thresholding operation on the proposed

neural network.

Neural networks Relaxation

1. INTRODUCTION

The relaxation process is a useful technique for using
contextual information to reduce local ambiguity
and achieve global consistency. It has been applied
successfully to a lot of image analysis tasks, such as
scene labeling,!-? shape matching,®-% line and curve
enhancement,®:% handwritten character recog-
nition,”® and thinning.®

There are three types of the relaxation processes,
namely discrete relaxation, probabilistic relaxation,
and fuzzy relaxation.”) The one implemented by the
neural network technique in this study is probabilistic
relaxation.

First of all, we describe the general concept of
probabilistic relaxation.(!”) Suppose that a set of n
objects Ay, Ay, ..., A, are to be classified into m
classes C;, C,,. .., C,. Suppose further that the
class assignments are correlated; in other words, for
each pair of class assignments A; € C; and A, € Cy,
there is a quantitative measure of the compatibility
of the pair, which will be denoted by c(i, j; h, k).

Let py; be an initial estimate of the probability
that A, € C;, };=i=n, 1=j=m. Thus for each i
we have 0=p = =<1and I}, p{Y = 1. The goal of
the relaxation process is to find a set of n classifi-
cations of all the objects which are as compatible as
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possible using the initial estimate p,(-,) and the com-

patibility measure c(i, j; h, k).

In each iteration of the relaxation process, the
probability value of each assignment of an object
must be adjusted according to the current probability
value of the object and the other objects’ contri-
butions. The net contributions from the other
objects, denoted as ¢, to the probability value of
assigning object i to class j at the rth iteration is
calculated by

o__1 s (s »
qij =___1 Z (2 c(lﬁj;hsk)ph;()'
L h=1h#i \k=1
And the new estimate of the probability value of
assigning object i to class j at the (r + 1)th iteration
is defined as follows:
(n ()
pTiD = pi(1+gq;
: Ep)(1+49)

The above process is performed iteratively until the
process converges or until a certain termination con-
dition is satisfied.

On the other hand, neural networks are systems
constructed to make use of some of the organ-
izational principles that are felt to be used in the
human brain. Neural networks may be viewed from
many different perspectives. Some researchers
regard neural networks as physical systems. They
tend to think of neural networks as embodying an
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energy surface, whose states of minimal energy rep-
resent solutions to many combinatorial optimization
problems. Each of such systems solves a problem
through a process, in which the energy state of the
network slides downhill to an energy minimum. The
Hopfield network configuration1¥ is a typical
example. It has been successfully used to give good
solutions to certain difficult problems such as the
well-known NP-complete traveling salesman prob-
lem in which the shortest path through multiple cities
is searched.

Some other researchers view neural networks from
a biological and psychological perspective. These
researchers tend to consider neural networks as
means for implementing cognitive mechanisms oper-
ating over a wide range of domains, including vision
processing,141)  associative memories,® and
models of diverse neurobiological functions. %2

Also included in the neural network study is the
information-processing approach known as con-
nectionist computing,?"-?? in which a task is per-
formed by many processors sending information to
one another through point-to-point connections.
Finally, from a parallel processing viewpoint, a neu-
ral network can also be regarded as a computational
model  with  massively parallel execution
capability,®?¥) forming an attractive model for
efficient massively parallel machines with fine-
grained distributed memory.

Physically, a neural network includes many neu-
rons and links between pairs of neurons. Each of the
neurons of the network has a state variable known
as its activation level; and each of the links has
a value known as its connection weight. Neurons
communicate by transmitting their activation levels
to one another over the links. Neurons and links
can be configurated into an arbitrary topology. The
computational process envisioned with a neural net-
work is as follows. A neuron receives inputs from a
number of other neurons or from the external world.
The weighted sum of these inputs is the argument of
an activation function. This activation function is
assumed to be nonlinear. The resulting value of the
activation function is the output of the neuron. The
output is distributed along the weighted links to the
other neurons.

Genis®) proposed two ways of establishing a cor-
respondence between the fields of relaxation labeling
and neural learning process: one in which the short-
term neural network function is interpreted as relax-
ation and thus neural learning amounts to dis-
covering the constraints between the states of
connected neurons, and the other in which neural
learning itself is interpreted as an extended form of
relaxation that permits incorporating new evidences
at each iteration.

In this paper, we propose a new method for con-
structing a neural network which can perform the
relaxation process. Using this network, we can use

neural network techniques to solve the many prob-
lems which have already been solved by the relax-
ation process. The advantages of the neural network
can thus be injected into the numerous relaxation
applications.

This paper is organized as follows. The next section
includes the description of the method of solving
optimization problems using the Hopfield neural net-
work. The relationship between the relaxation pro-
cess and the Hopfield neural network model is
examined in Section 3, and a method to perform the
relaxation operation on the Hopfield neural network
is proposed. Experimental results demonstrating the
feasibility of the proposed method by performing
the thresholding operation on the proposed neural
network are given in Section 4. Concluding remarks
are included in Section 5.

2. A REVIEW ON THE HOPFIELD NEURAL NETWORK

There are a number of ways of organizing the
computing elements in a neural network. Typically
the elements are arranged in groups or layers. A
single layer of neurons that connects to one another
usually is called an autoassociative system. One of
the most famous single layer neural networks is the
Hopfield network developed by Hopfield and
Tank.(1-13)

The Hopfield network is a recurrent network con-
taining feedback paths from the outputs of the neu-
rons back into their inputs so that the response of
such a network is dynamic. This means that after
applying a new input, the output is calculated and
fed back to modify the input. The output is then
recalculated, and the process is repeated again and
again. Successive iterations produce smaller and
smaller output changes, until eventually the outputs
become constant and the network stable. Hopfield
suggested a similarity of the network to the move-
ment and the kinetic energy values of atoms under
different temperatures. Plotting the values of neuron
outputs as heights on a 2D state-space plane creates
a landscape of hills and valleys. The function of a
neural network will develop a number of locally
stable points or valleys in the state space. Other
points in the state space flow into the stable points
where the corresponding energy field is minimized.

The connection weights between the neurons in
the network may be considered to form a matrix 7.
It has been shown that a recurrent network is stable
if the matrix is symmetrical with zeros on its diagonal,
that is, if T;; = T}; for all i and j and T}; = 0 for all
i.26)

To illustrate the Hopfield networks in more detail,
consider the special case of a Hopfield network with
a symmetric matrix. The input to the ith neuron
comes from two sources: external inputs and inputs
from the other neurons. The total input «; to neuron
i is then

uy=2 T;V;+ I,

J#Fi
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Fig. 1. Hopfield network architecture.?

where the V; value represents the output of the jth
neuron; Tj is the weight of the connection between
neurons V; and V;; and /; represents an external input
bias value which is used to set the general level of
excitability of the network through constant biases.

At any time, the V; values are updated in accord-
ance with the following rule:

Vi—0if X T;V, + I, < 6;; 0r
JFEI (1)
Vi1t 2 T,V +1,> 6,
j#i
where 6; is the threshold of the ith neuron which will
be taken to be zero for this study. The neurons are
interrogated and updated in a stochastic asyn-
chronous manner. A quantity to describe the state
of the network, called energy, is defined as

1
E=--3 3 T,V.V,- 2 Vi, ()
27 i i
The change AE in E due to the state change AV, of

neuron I is given by

AE = —[E T,V +J,}AV,. (3)
j#i

According to Equation (1), AV;is positive only when
%;4T;V; + 1 is positive, and is negative only when
2;.iT;V; + I, is negative. Thus, from Equation (3),
any change in E under the algorithm is negative.
Furthermore, E is bounded, so iterations of the
algorithm will lead to stable states that do not change
further with time.

For applications which cannot be solved by binary
neuron networks described above, networks of neu-
rons with graded responses have also been pro-

posed.(327) The total input into a neuron is con-
verted into an output value by a sigmoid monotonic
activation function instead of the thresholding opera-
tion described by Equation (1). The evolving of a
neuron in this case is defined by

du; i
i=—u—"‘ZTijVj'*li, 4)
dr i i
where
V; =g;(u;) for all j, (5)

gj(u;) is the sigmoid activation function of neuron j,
and 7; is a time constant which can be set to 1
for simplicity. As the system evolves, due to the
feedback dynamics, the energy decreases until it
reaches a minimum.? A major advantage of the
Hopfield network with graded responses is that the
whole network can be implemented by conventional
analog circuits. %2 A circuit diagram that illustrates
this type of network appears in Fig. 1. It consists of
a set of network inputs, a memory storage matrix
(Ty), a set of nonlinear outputs, a set of switches,
and indicated signal-flows. Hopfield and Tank(3)
suggested a sigmoid activation function as follows:

Vij = g(u;) = ¥(1 + tanh(Au;;)) (6)

which is employed in this study (see Fig. 2). The A
value in the above equation is the gain of the
network, and a larger A value results in a large slope
of the g function.

To solve an optimization problem using the Hop-
field network, one must decide first the rep-
resentation scheme which allows the outputs of the
neurons to be interpreted as a solution of the
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Fig. 2. The sigmoid shaped function #(1 + tanh(100u;)).

problem, define next an energy function whose mini-
mum value corresonds to the best solution of the
problem, and derive finally the connection weights
and the input bias values from the form of the energy
function. After setting up the initial values for the
input bias values, one can then start to evolve the
system to get the solution.

3. RELAXATION BY THE HOPFIELD NETWORK

In the relaxation process, the intention is to get an
assignment of each object to a class in a manner
consistent with certain predefined constraints. In
such a process, it is often necessary to adjust the
current degree of confidence of each possible con-
clusion based on many interrelated hypotheses and
confidence measures. The process is parallel and co-
operative in nature because the hypotheses in such
a process comprise a parallel ensemble of inter-
dependent issues. On the other hand, the Hopfield
network can be treated as a kind of parallel and co-
operative computation mechanism. This means that
there exist some properties common to the relaxation
process and the Hopfield network.

The goal of the relaxation process is to increase
the consistency among the constraints so that a better
state can be reached in each iteration. Therefore, if
a goodness function can be found to represent the
consistency between the current state and the con-
straints, then problem solving by relaxation can be
regarded as a process which increases iteratively the
value of the goodness function. In this viewpoint,
the Hopfield network turns out to be appropriate to
perform the relaxation process because a Hopfield
network tends to reach a stable state by minimizing
the energy function when the network evolves.
Hence our objective now is to find a goodness func-
tion which will increase when the relaxation process
proceeds, and transform the goodness function into
the form of an energy function for the Hopfield
network. Furthermore, in such a network the neural

nodes conceptually can be used to represent the
various possible hypotheses and pieces of evidence
in the relaxation process and the neural links may
embody the relationships among them.

There are many ways to measure the goodness
function of the relaxation process. A quantity called
average local consistency®? is found in this study
to be useful for this purpose. More specifically, in
reference (30) the support for assigning object i to
class j by the current state of the relaxation process
is defined as

E Ec(ivj;hvk)phkv
h k

and this support measure was employed to define a
measure of the average local consistency of the whole
system as

S3p(Ecishbpu) O
i bk

As mentioned above, the neural nodes in a Hop-
field network can be used to represent the various
possible hypotheses and pieces of evidence in the
original relaxation problem. Accordingly, let a neu-
ron with index (i,j) in a Hopfield network with
graded responses represent the hypothesis of object
A, being from class C;. Also regard the probability
value p;; as the neuron output value V;;. Then, accord-
ing to the form of the goodness function of Equation
(7), it is proposed in this study to use the following
energy function of the Hopfield network:

E=-533V,(S 3 clijih, Vi)
i hok

23((zn) ). @

in which the first term is basically identical to
Equation (7) except the constant value —A/2, and
the second term is minimized to be zero when the
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sum of the outputs of the neurons representing dif-
ferent assignments of a certain object is equal to 1
(which means that each object is assigned only to a
unique class). Both A and B are positive numbers.
Expanding Equation (8), we get

E=-2333 S ei.jsh Vi Vie

23 ((3) 23w+

A
=-323 % % c(i s By )V Vi
L

2

From Equations (2) and (9) and by negating the
constant term, it is easy to derive the values of the
connection matrix and the input bias value as follows:

T(ij)(hk) =A X C(l,], h, k) —BX 6ih’ (10)

where 6;, =1 for i = h, 0 for i # h. Note that the
subscripts (ij) and (hk) of T in Equation (10) are
considered as two single indices.

To ensure that the mapped Hopfield network will
converge, sometimes the compatibility coefficients
must be modified. The reason is as follows. It has
been shown that under certain conditions, the relax-
ation process generally leads to consistent labeling
results if the compatibility coefficient matrix is sym-
metric;®? and as described in Section 2, the con-
vergence of the Hopfield network is ensured if the
connection matrix is symmetric and has zero diagonal
elements. According to Equation (10), the con-
nection matrix is symmetric if the compatibility coef-
ficient matrix is symmetric. Therefore, it is proposed
in this study to modify, whenever necessary, the
compatibility coefficients to be symmetric, and zero
when the coefficients appears as the diagonal
elements in the connection matrix, according to the
following rules:

((x, y).J; (u, v), k) <

c((x,y) 3 (u,) k) +c((u,0) k5 (x,y) /)
2 b

and

c((x,y),J; (x,¥),j) < 0.

For any relaxation problem, the set of Ty
and [;; values embody all the characteristics of the
problem. Once the T and I; values are fixed, the
final stable state of the neural network will depend
on the initial state only. We must set the initial
probability value for each hypothesis by using certain
a priori knowledge before the start of a relaxation
process. For example, when using the relaxation

process to detect the edges of the objects in an image,
because a larger gradient value at a certain pixel
implies a higher possibility that this pixel is an edge
pixel, the gradient value of each pixel can be used
to define the initial probability value of the event
that the corresponding pixel will be classified to be
an edge pixel. Accordingly, in the proposed Hopfield
network for relaxation, the initial values of the neural
input values u; are set according to the following
equation:
ui=gi'(pf),

where p () is the initial probability value of assigning
object A; to class C;.

After defining the compatibility coefficients and
the initial probability values, the probabilistic relax-
ation process is a deterministic iterative process, i.e.
each time the whole system will reach the same
conclusion through the same process. The operation
of a Hopfield network also is a deterministic process.
After assigning the connection weights, input bias
values, and the initial input value of each neuron,
the energy surface and the local minimum points are
completely defined, and the whole network will reach
a specific local minimum on the energy surface.

4. EXPERIMENTAL RESULTS

To demonstrate the correctness of the proposed
mapping method between the relaxation process and
the Hopfield network, a typical image processing
problem, namely, thresholding, is performed. We
first use the relaxation process to do the thresholding
operation on a gray scale image, and then use the
proposed Hopfield network to perform the same
operation on the same image.

The original image of a Chinese character “Yu” is
shown in Fig. 3(a). The intensity values of the images
range from 0 to 255, and the size of images is
100 x 100. The gray level histogram for this image
is shown in Fig. 3(b). Since this image is taken under
non-uniform illumination and added with random
noise, thresholding by simply using a single threshold
value for the entire image does not work (see Fig.
3(c) and (d)), so the relaxation method is a good
selection for solving this problem.

When applying the probabilistic relaxation method
to threshold,®"3? there are two pixel classes, cor-
responding to low (object) and high (background)
gray levels. For each pixel A, , there are two prob-
ability values, p( .0 and p ), Where p( =
1 = p(x.yy0- Moreover, for each pixel A, , and any of
its eight neighboring pixels, A, ,, there are four
compatibility coefficients, c¢((x,y),0; (u,v),0),
c((x,),0; (u,v),1), c((x,y),1; (u,v),0), and
c((x,y), 1; (u,v), 1).

To assign initial probability values to each pixel,
we need a scheme to determine the likelihood of the
pixel being in the object or background class. For
this, the initialization scheme based on gray levels
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developed by Rosenfeld and Smith®? is adopted.
Let G, , be the gray level of pixel A, ,, m be the
mean gray level, and O and B be the gray levels
corresponding to the object and the background,
respectively; then we define

0) 1 G y —m
p(x.y)l = E + —Z(XBy— m) for Gx,y >m
(0) 1 m — Gx,y

Pxy)0 = 5 + m for G, , =m.

On the other hand, a general method of defining
compatibility coefficients for Fig. 3(a) based on the
mutual information of the classes at neighboring
pixels was proposed by Peleg and Rosenfeld.® The
compatibility coefficients computed by this method
are shown in Table 1. Theoretically, the com-
patibility coefficients generated from the mutual
information are symmetric (i.e. c(i,j;h, k)=
c(h, k;1i,j)), but the compatibility coefficients shown
in Table 1 are not so because they are influenced by
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Fig. 3. Thresholding result of using a single threshold value for the whole image: (a) original image of
the Chinese character “Yu”; (b) gray level histogram of the image; (c) result of using 124 as threshold
value; (d) result of using 125 as threshold value.

Table 1. Compatibility coefficients computed from the use of mutual information where
the element in row (j, k) and column (x, y); (4, v) means the coefficient ¢((x, y), j; (4, v), k)

(x, ¥); (u, v)
(J, k) xy);GE-1Ly-1) (x,y); (x—1,y) &) (x— 1,y +1)
0; 0 0.0034 0.0036 0.0033
0; 1 —0.0280 —0.0313 —0.0278
1;0 —0.0346 —0.0348 —0.0343
1;1 0.0004 0.0021 0.0009
(x, ) (x,y — 1) (x, y); (x, ) (x, y); (x,y + 1)

0; 0 0.0037 0.0202 0.0038
0; 1 —0.0315 —-0.0612 —0.0315
1,0 —0.0347 —0.0612 —0.0346
1;1 0.0021 0.0199 0.0024

&)+ 1, y—1) (x, y); (x+ 1, y) (6. 75 (x 4. Ly 4:1)
0;0 0.0035 0.0038 0.0037
0; 1 —0.0278 —-0.0313 —0.0280
1,0 —0.0342 —0.0346 —0.0343
1;1 0.0008 0.0024 0.0009

the boundary pixels of the original image. To solve
this problem, the compatibility coefficients were
modified according to the rules described in Section
3. The new compatibility coefficients are shown in
Table 2.

The result of applying the relaxation process with
the original compatibility coefficients to Fig. 3(a) is
shown in Fig. 4(a); and the result of applying the
relaxation process with the new compatibility coef-
ficients to Fig. 3(a) is shown in Fig. 4(b). The two
results have no obvious difference, but the experi-
ments show that the relaxation process converges
faster when the new compatibility coefficients are
used. During the relaxation process, each pixel is

affirmed to a class when the corresponding prob-
ability value is greater than 0.99 instead of 1. This
reduces the number of iterations to terminate the
process by one-fourth.

In this study, the proposed Hopfield network for
the thresholding problem using the connection
matrix defined in Equation (10) and the input bias
terms of Equation (11) was simulated on a Sun-4/
280 workstation. The equations which describe the
evolving of the neurons of the network for this prob-
lem are Equations (4) and (6). The graded response
characteristics of the neurons in the Hopfield net-
work represent partial knowledge or belief. A value
for Vi, ) ; between 0 and 1 represents the strength



204

SHIAW-SHIAN YU and WEN-HSIANG TSAI

Table 2. New compatibility coefficients where the indices are the same as those in Table 1

(x, ¥); (u, v)
(j, k) x5y @x—1,y-1) (x,9); (x— 1, ) (x; 3); = 1oyt 1)
0; 0 0.0036 0.0037 0.0034
0; 1 —0.0311 —0.0329 —0.0310
1;0 -0.0313 -0.0330 —0.0310
1; 0.0007 0.0023 0.0009
(x,9); (x,y = 1) (x, y); (x, ) (x,9); (x, y + 1)
0; 0 0.0037 0.0000 0.0037
0; 1 -0.0331 -0.0612 -0.0331
1;0 —0.0331 -0.0612 -0.0331
1;1 0.0023 0.0000 0.0023
(y)s@x+1,y-1) (x,); (x+1,y) (x,y);(x+1,y+1)
0;0 0.0034 0.0037 0.0036
0; 1 —0.0310 —0.0330 -0.0313
1;0 -0.0310 -0.0329 —0.0311
1;1 0.0009 0.0023 0.0007

of the hypothesis that pixel (x, y) should be assigned
to class j.

In the simulation, the gain value A was set to 100,
both A and B values of the energy function to 1, and
the value of the time step d¢ in Equation (4) to 107*.
The system is regarded as having converged when
the energy does not change any more.

The result of applying the relaxation process to
Fig. 3(a) using the proposed Hopfield network is
shown in Fig. 4(c). There is almost no difference
between Fig. 4(b) and Fig. 4(c).

Although the probabilistic relaxation process and
the function of the proposed relaxation network are
conceptually the same, there are differences between
them. The relaxation process took about 2600 iter-
ations and 1 CPU hour before it terminated. On the
other hand, the simulated Hopfield network took
about 30,000 time steps and 34 CPU hours to
converge. There is no direct correspondence
between the iterations and the time steps, since the
time steps are only used for simulating an analog
circuit which can reach a stable state in real time.
Furthermore, during the process of the probabilistic
relaxation, the total sum of the probability values of
each class of any object should remain 1. On the
contrary, in the relaxation network, we just encour-
age the sum to be 1 by introducing a term into the
energy function (see Equation (8)). While theor-
etically the sum can range from 0 to 2, in our simu-
lation it keeps very close to 1. Consequently, the
second term of Equation (8), the energy function,
always keeps a value close to zero. The reason is that
the compatibility coefficients c((x, y), j; (x, y), k) are
negative when j # k. This means that neurons V|, ,) o
and V|, ) ; are competing with each other.

Figure 5(a) shows the negated values of the aver-
age local consistency of the relaxation process, as a
function of the iteration number. Figure 5(b) shows
the energy values of the proposed neural network,
as a function of the time step. Both the negated

average local consistency value and the energy value
dropped very quickly. This means that most pixels
are affirmed to appropriate classes at the early stages.
It also means that the proposed network has a con-
vergence behavior very similar to that of the relax-
ation process.

The gain in the activation function plays an impor-
tant role during the operation of the network. As
mentioned above, larger gain values result in larger
slopes of the activation function and faster con-
verging speeds. For example, when the gain value A
was set to 10*, the simulated Hopfield network took
about 700 time steps and 0.7 CPU hours to converge
(see Fig. 4(d)). However, a very high gain will result
in a fast cooling network, so that the outputs of most
neurons will be either 0 or 1, and the potential
analog characteristics of the network will not be fully
utilized. For the thresholding problem, this means
that the network will produce a thresholding result
(see Fig. 4(e) for an example) little better than that
of using a single threshold value. Figure 6 shows the
energy values of the proposed neural network at
different gain values, as a function of the time step.

5. CONCLUDING REMARKS AND FUTURE RESEARCH
DIRECTIONS

The relaxation process is a useful technique for
using contextual information to reduce local ambi-
guity and achieve global consistency in various appli-
cations. It is basically a parallel execution model,
adjusting the confidence measures of involved enti-
ties based on interrelated hypotheses and confidence
measures. On the other hand, the neural network
is a computational model with massively parallel
execution capability. The output of each neuron
depends mainly on the information provided by other
neurons. Therefore, there exist certain common
properties in the relaxation process and the neural
network technique.
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Fig. 5. Convergence behaviors of the relaxation process and the proposed network: (a) the negated
average local consistency value, as a function of the iteration number; (b) the energy values of the
proposed neural network, as a function of the time step.
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A mapping method that makes the Hopfield neural
network perform the relaxation process is presented
in this paper. In such a network the neural nodes are
used to represent the various possible hypotheses
and pieces of evidence in the relaxation process, and
the neural links embody the relationships among
them. By this method, the neural network tech-
nology can be easily adapted to solve the many
problems which have already been solved by the
relaxation process. The proposed mapping method
is quite effective in making the Hopfield neural net-
work perform the relaxation process as shown by the
experimental results. The advantages of the neural
network can thus be injected into the numerous
relaxation applications. One resulting advantage is
that after being mapped onto the Hopfield neural
network, the relaxation process can be performed
in real time, since the Hopfield network can be
implemented by analog circuits. Note that a few
hardware implementations of the relaxation pro-
cess®39 have been proposed; all of them take
advantage of parallel architectures (e.g. SIMD)
which are digital circuits and essentially not real
time.

The relaxation technique is a very important tech-
nique for many application domains; and hundreds
of research papers have been published in this area.
On the other hand, the neural network technology
has also attracted much attention recently. There-
fore, another resulting advantage of establishing the
relationship between the relaxation process and the
neural network technique is that research results of
one domain can be very instructive to the other. For
example, there exist some common properties in the
convergence problem of both the relaxation process
and the neural network operations.®26:36:37) Also, a
number of works have been done for systematically
generating compatibility coefficients of the relax-
ation process.(®%39) The generation of the con-
nection weights of a neural network by teaching or
learning is also an important issue in neural network
research.®-40) It seems possible to apply the results
to each other. Moreover, what the relationship is
between stochastic relaxation®*) and neural net-
works with stochastic properties (e.g. the Boltzmann
machine and the Cauchy machine), and how to build
a hierarchical neural network for the hierarchical
relaxation process® can also be investigated in the
future. Finally and maybe more basically, are the
relaxation technique and the Hopfield neural net-
work technique mathematically equivalent in certain
conditions? Do the two methods converge to the
same solution? If not, how do they differ? These are
other interesting topics for future research.

6. SUMMARY

The relaxation process is a useful technique for

using contextual information to reduce local ambi-
guity and achieve global consistency in various appli-
cations. It is basically a parallel execution model,
adjusting the confidence measures of involved enti-
ties based on interrelated hypotheses and confidence
measures. On the other hand, the neural network is
a computational model with massively parallel
execution capability. The output of each neuron
depends mainly on the information provided by other
neurons. Therefore, there exist certain common
properties in the relaxation process and the neural
network technique.

In each step of the relaxation process, the whole
system tries to reach a better state, i.e. to increase
the consistency among the constraints; therefore, if
there is a goodness function which can represent
the consistency between the current state and the
constraints, problem solving by relaxation can be
regarded as a process which increases iteratively the
value of the goodness function. In this viewpoint,
the Hopfield network turns out to be appropriate to
perform the relaxation process because a Hopfield
network tends to reach a stable state by minimizing
the energy function when the network evolves.

A mapping method that makes the Hopfield neural
network perform the relaxation process is proposed.
In such a network the neural nodes are used to
represent the various possible hypotheses and pieces
of evidence in the relaxation process, and the neural
links embody the relationships among them. By this
method, the neural network technology can be easily
adapted to solve the many problems which have
already been solved by the relaxation process. The
advantages of the neural network can thus be
injected into the numerous relaxation applications.
Another resulting advantage is that after being map-
ped onto the Hopfield neural network, the relaxation
process can be performed in real time, since the
Hopfield networks can be implemented by con-
ventional electrical circuits. Experimental results
demonstrating the feasibility of the proposed method
by performing the image thresholding operation on
the proposed neural network are given.
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