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A single-layer recurrent neural network is proposed to perform thinning of binary images. This network
iteratively removes the contour points of an object shape by template matching. The set of templates
1s speclally designed for a one-pass parallel thinning algorithm. The proposed neural network produce
the same results as the algorithm. Neurons in the neural network performs a sigma-pi function to collect
inputs. To obtain this function, the templates used in the algorithm are transformed to equivalent
Boolean expressions. After the neural network converges, a perfectly 8-connected skeleton is derived.
Good experimental results show the feasibility of the proposed approach.

1. Introduction

Thinning 1s a process to eliminate redundant pix-
els from an object shape in an image to obtain the
skeleton of the object shape with one-pixel width.
Since 1t 1s much easier to extract features from a
thinned skeleton shape than from a thick one, skele-
tons obtained by thinning are useful for many image
analysis and pattern recognition applications. Algo-
rithms for thinning 1mages can be categorized to two
types, namely, sequential and parallel.!=” Parallel al-
gorithms differ from sequential ones in the essence
that point removal i1s determined for all the pixels si-
multaneously. Schemes for sequential thinning can-
not be applied to all pixels simultaneously for the
reason that it may remove an entire line when the
line i1s thinned to two-pixel width. To prevent this
problem, some parallel thinning algorithms divide an
iteration into multiple passes.!’? On the other hand,
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one-pass parallel algorithms have also been proposed
to save processing time.>® Sequential algorithms are
effective when they run on a sequential computer
with a single processor. But when a parallel algo-
rithm is simulated on a sequential computer, it is
time consuming. So to exert the strength of a par-
allel algorithm, a multiprocessor system or a special
hardware which consists of a large number of simple
processing elements i1s required. For example, Chin
et al.®> designed special simple logic gates to match
thinning, restoring and trimming templates to en-
hance thinning speed.

A neural network is a hardware consisting of a
large volume of processing elements which cooperates
to perform a task in parallel. On the other hand,
pixels in an 1image are usually treated in an identical
manner when the image 1s processed. So it is a good
1dea to use neural networks to solve image processing
problems in parallel. For example, Cortes and Hertz®
used directional second derivatives to detect the
edges In an image by a neural network. Image
thinning tasks have also been performed by neural
networks in some studies. An example is Matsumoto
et al® in which images are thinned by cellular neu-

10,11

ral networks with 8 planes. Another example 1s
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Graf et al.'?13 in which a VLSI architecture is de-

signed to multiply a binary input vector with a stored
matrix of weights to skeletonize binary images.

A parallel thinning algorithm called OPPTA was
proposed previously by the authors.!* Based on this
algorithm, a single-layer recurrent neural network 1is
proposed in this paper to perform thinning of binary
images. This network iteratively removes the edge
points of an object shape. In each iteration, the re-
moval of a point is determined by the criterion of
whether or not the neighbors of that point match any
of a set of templates. Both template matching and
point removal tasks are periormed by the neural net-
work. The neurons in the neural network performs
a sigma-p1 function to collect inputs. To obtain this
function, the templates used in algorithm OPPTA
are transformed to equivalent Boolean expressions.
Some experimental results obtained from simulating
the proposed neural network are shown to assure the
correctness of the neural network.

The remainder of this paper is organized as
follows. In Sec. 2, the one-pass parallel thinning
algorithm OPPTA 1is reviewed briefly. The trans-
formation of the templates used in OPPTA into a
Boolean expression is described in Sec. 3. Section 4
includes the descriptions of the structure of the pro-
posed neural network and the activation function of
each neuron in the network. Section 5 gives the ex-
perimental results. And finally, concluding remarks
are given in Section 6.
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2. Review of a Parallel Thinning Algorithm

Templates derived by analysing all the patterns ap-
pearing on the border of an object shape are shown
in Fig. 1. By matching these templates with a given
object shape, the thinning algorithm OPPTA!* iter-
atively eiminates the edge points of the object shape
layer by layer in parallel. As shown in Fig. 1, there
are twelve 3 x 3 templates (templates (a), (b) and (e)
through (n)), one 3 x 4 template (template (c)) and
one 4 X 3 template (template (d)). The symbols ‘c’,
‘0’, ‘1’ and ‘x’ used in these templates denote the cur-
rently tested pixel, a white pixel, a black pixel and
a don’t-care condition, respectively. These symbols
follow the conventional notations while the symbol
‘y’, also appearing in the templates, i1s a special one.
[t does not appear singly in a thinning template and
at least one of the pixels represented by the set of

symbols ‘y’ should be a white pixel. The details of
the OPPTA algorithm are as follows,

Algorithm. OPPTA.

Input. a binary image f°.

Output. the image of the thinning result.

Step 1. 7 := 0.

Step 2. flag := false.

Step 3. Check each pixel of f*. If it is a black
pixel and its neighbors match any of the
templates (a) through (n), then change
it to a white pixel and set flag := true.
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Fig. 1. Thinning templates of algorithm OPPTA.



Step 4. If flag = false, which means the im-
age 1s thinned, then go to Step 5 with
f' as the thinning result. Otherwise,
t := 1+ 1 and go to Step 2 to perform
the next iteration.

Step 5. Output the thinning result.

As discussed in the previous paper,!* OPPTA ob-
tains good thinning results and is guaranteed to ter-
minate after a proper number of iterations. Briefly,
we summarize the characteristics of OPPTA in the
following.

(1) It preserves the connectivity of an object
shape.

(2) It prevents excessive erosion.

(3) It is noise insensitive.

(4) It produces skeletons topologically equivalent
to original object shapes.

3. Equivalent Boolean Expression

The principle of designing the proposed recurrent
neural network is as follows. First, each neuron in
the proposed neural network is allowed the ability
to perform a sigma-pi1 function on the inputs of the
neuron. Next, without considering the negation of
a hiteral, a Boolean expression in disjunctive normal
form 1s exactly in the form of a sigma-p1 function.
Furthermore, a template matching scheme can be
transformed to an equivalent Boolean expression so
that at least one of the templates 1s matched if
and only if the Boolean expression i1s evaluated to
be true. After the equivalent Boolean expression is
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derived, the sigma-pi expression can be derived. In
the remainder of this section, the transformation of
the templates into an equivalent Boolean expression
will be discussed.

First, consider a template ¢ with a pair of symbols
‘y’ and recall that at least one of this pair should be
a white pixel. We can generate two new templates
t1 and t2 from ¢ by substituting one symbol of ‘y’
in template ¢ with symbol ‘0’ and the other with
symbol x’ to obtain template ¢1; and substituting
the two symbols of ‘y’ in template ¢ with symbols
‘x’ and ‘0’ in a reverse order to obtain template ¢2.
For example, template (a) can be expanded to tem-
plates (al) and (a2) as shown in Fig. 2. Templates
(b) through (d) can be expanded similarly with the
results shown in Fig. 2. In the following discussions,
we will use the new template set consisting of tem-
plates (al) through (d2) in Fig. 2 as well as templates
(e) through (n) in Fig. 1. Symbol ‘y’ is therefore
excluded from the templates. The above process is
necessary before deriving equivalent Boolean expres-
sions from the templates.

As described previously, the purpose of deriving
an equivalent Boolean expression is to get the corre-
sponding sigma-pi function. The literals appearing
In the derived equivalent Boolean expression can be
considered to be corresponding to the involved pixels
when the templates are matched. In order to derive
the literals of the Boolean expression, we have to de-
fine the pixels which should be considered when a
template 1s matched. If all of the templates were
in size of 3 x 3, the area which should be matched
against when a pixel p is tested in the thinning pro-
cess 1s the 8-neighborhood of p. However, the addi-
tion of the 3 x 4 templates and the 4 x 3 templates
(1.e. templates (c1) through (d2) in Fig. 2) increases

1 1 1 1 1 1
1 ¢ 1 l1 ¢ 1
O 0 x x 0 O

(bl) (b2)
O 0 x x 0 O
1 ¢ 1 1 ¢ 1
1 1 1 1 1 1
x 1 x x 1 x

(d1) (d2)

Fig. 2. Templates without symbol ‘y’.
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the number of neighbors which should be considered
from 8 to 14. Observing templates (cl1) through
(d2), we see that except the 8-neighbors in a 3 X 3
window, each template of (c1) through (d2) includes
further only one important neighbor (denoted as ‘1°)
since the other two neighbors (denoted as ‘x’) are
don’t-cares. We can thus define a 10-neighborhood
for each tested pixel. As shown in Fig. 3(a), any of
the set of pixels appearing in the figure around the
tested pixel P;; is defined as a 10-neighbor of F;;. In
addition to the 8-neighbors in a 3 x 3 window, the
east-neighbor of the east-neighbor of P;; (i.e. P; j+2)
and the south-neighbor of the south-neighbor of F;;
(i.e. Piyg;) are also included. This reduces the
number of concerned neighbors from 14 to 10. For
a better representation of the Boolean expression,
new labels for these neighbors are given in Fig. 3(b).
These labels will also be used in the literals appearing
in the derived Boolean expression.

Let each black pixel and white pixel in the 1m-
age correspond to the logical values of TRUE and
FALSE, respectively, when a Boolean expression 1s
evaluated. A template then can be transformed to a
product clause in the following way;

(1) For all positions specified by symbol ‘1’ in the
template, add their corresponding literals to
the product clause.

(2) For all positions specified by symbol ‘0’ in the
template, add their corresponding negative
literals to the product clause.

For example, if each logical negation 1s repre-
sented by an apostrophe, then template (al) is trans-

formed 1nto

al : X]XgXéXlesX'?Xg.

Similarly, templates (a2) through (n) can be
transformed into

a2: X1 XoXiXiXeX7Xs
bl: X1 X2X3X4XgX7X3
b2 : X X X3 X3 X X¢Xg
cl: X{X2X3X4X5XeX35X0
¢2:  X3X3XaXsXeXX5Xo
dl: X!X,XXsXeXrXsX10
d2: X;XiX4X5XeX7X8X10

e: X3X53X5Xe6Xs

f:  XoX3XsXegX7X3

g: X XoXiX X XeX7Xg
h: XoXiXiXgXs

1: X1 X5X4Xs5Xe6X3

X! X4 X4 X4 X5 X6 X4 X,
k: X1X{X5X,X5XeX7X35
1 Xy X4X4X4XLXL X7 Xs
m: X;XoX3XjXeX§X57X5
n:  X!X5X3XeXsX5XXL.

';-I-

Since any pixel which does not match the corre-
sponding pixel in a template contributes a value of
FALSE to the transformed Boolean product clause,
the determination of whether a template is matched
or not is equivalent to the evaluation of the logical
value of the transformed product clause. By ORing
all product clauses, a Boolean expression E'is derived
for the entire thinning process:

Fig. 3. 10-neighbors of pixel F;;.
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Since the determination of whether a certain
template 1s matched or not is equivalent to the
evaluation of its corresponding product clause, the
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evaluation of the logical value of Boolean expression
E 1s equivalent to the determination of whether there
1s a template among those of Figs. 1 and 2 which
matches the input pattern.

4. Proposed Neural Network

The architecture of the proposed neural network is
in the form of a single neuron plane. The neurons in
this plane and those pixels in the input image have
one-to-one correspondences. As shown in Fig. 4,
each neuron receives inputs from its 10-neighbors
and 1itself. Initially, the input image is fed into this
plane by activating those neurons which correspond
to the black pixels and leaving the other neurons
inactive. After the network becomes stable, the
image of the thinning result will appear in this plane
with active neurons representing black pixels. When
performing the thinning work, this plane represents
the temporary thinning result.

Expression F obtained in the previous section is
a Boolean expression. On the other hand, the
sigma-p1 function performed by the neurons is an
arithmetic operation. So transforming the Boolean
expression E to a corresponding arithmetic expres-
sion 1s required for the operation of a neuron. The

Fig. 4. Connections between neurons.
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transformation can be performed simply by treat-
ing the literals in expression E as real variables,
the Boolean AND operation as the arithmetic prod-
uct and the Boolean OR operation as the arith-
metic addition and changing a negative literal X to
(1 — X;). An arithmetic expression S can then be
derived to be

S=X1X2(1—- X3)(1 — X4)X6X7X3
+ X1 X2(1 — X4)(1 — X5) X6 X7 X3
+ X1 X X3X4(1 — X6)(1 — X7) X3
+ X1 X2 X3X4(1 — X5)(1 — X6) X3
+ (1 — X1) X2 X3 X4 X5X6(1 — X3)Xo
+ X9 X3 X3 X5 X6(1 — X7)(1 — X3)Xo
+ (1 - X1)(1 — X2) X4 X5 X6 X7 X5X10
+ (1 — X2)(1 — X3) X4 X5 X6 X7 X5X10
+ (1 - X2)(1 — X3)(1 — X4)X6X3
+ X2 X3X4(1 — Xe)(1 — X7)(1 — X3)
+ (1 — X1)X2(1 — X3)X4(1 — X5)
X (1—-Xg)(1—X7)(1 - X3)
+ Xo(1 — X4)(1 — X5)(1 — X6) X3
+ (1 - X1)(1 — X2) X4 X5X6(1 — X3)
+ (1 - X1)(1 = X2)(1 — X3)X4(1 - X5)
X Xe(1 — X7)(1 — X3)
+ (1 - X1)(1 — X2)(1 — X3)
X (1 — X4)X5Xe6X7(1 — X3)
+ X1(1 — X2)(1 — X3)(1 — X4)
X (1—-X5)(1 — Xe)X7X3
+ X1 X2X3(1 — X4)(1 — X5)
X (1 - X¢)(1—X7)(1—- X3)
+ (1 - X1)(1 — X2)X3X4X5(1 — Xe)
X (1—-X7)(1- X3).

A good relationship existing between a real vari-
able in expression S and a Boolean literal in expres-
sion F 1s that a real number of 0 or 1 corresponds
to a Boolean value of FALSE or TRUE, respectively.
That 1s, arithmetic expression S will be evaluated to
produce a value greater than or equal to 1 if and only
if Boolean expression F 1s evaluated to be TRUE. By

defining the active and inactive values of a neuron to

be 1 and 0, respectively, the net input. of each neuron
can be defined to be

N=W; *xXog+Wy%xS,

where X 1s the output of the neuron itself in the
previous iteration and W; and W, are connection

weights with the values of 1 and —1, respectively.
The net input N of a neuron will be greater than or
equal to 1 if and only if X 1s equal to 1 and S is equal
to 0 (which means that there is no template being
matched). Considering the neuron corresponding to
a border point, the net input N will be less than or
equal to 0 since S is greater than or equal to 1.
Finally, define the neuron output as

X{] — F(N) y
where the activation function F(z) is defined as

1 fz>1

0 otherwise.

F(z) = {

This activation function will activate a neuron if and
only if the neuron is active in the previous iteration
and S 1s equal to 0. So the border points of an
object image will be removed layer by layer by the
proposed neural network. Since algorithm OPPTA
is guaranteed to halt, the proposed neural network
i1s also guaranteed to converge after a number of
iterations.

5. Experimental Results

Some experiments have been conducted to illustrate
the effects of the proposed neural network. Figures 5
and 6 show the results in which skeleton points are
marked by ‘p’ and removed points by ‘.’

Figure 5 shows the results of thinning four
Chinese characters in dimension 64 x 64. It can
be seen that the proposed neural network obtains
perfectly 8-connected and noise-insensitive skeletons
without excessive erosion, exactly the same as those
obtained by algorithm OPPTA. Similar results can
be observed in the thinning results of English char-

acters ‘B’ and ‘H’ in dimension 64 x 64 shown in
Fig. 6.

6. Conclusions

A one-layer neural network for thinning binary
images has been proposed. It produces the same
results as the parallel algorithm OPPTA proposed
previously for thinning. The proposed neural net-
work is simple. This comes from two facts. The
first 1s the simplification of the symbols in the tem-
plates (i.e. removal of ‘y’) which makes possible the
derivation of an equivalent Boolean expression. The
second 1s to allow each neuron to collect all its inputs
by the use of a sigma-pi function. It is noted finally



Single-Layer Neural Network for Parallel Thinning 401

BBBBBPP .ppp...
PPPPPPPPPP ‘ .
ppp PPPPPPPPP .. PP, ..
ppp PPPPPPP .- i i
PPPP PPpp p.. il
BRpDD pPpP B o
p - = - =
ppppp i =
EBEE PPPPPPPPPPEDPDD Pp: : -PPPP-
BEBRRREcoppppobERBREER B EEEPPEPPPED B PBBR e
PPPPPPPP PPPPPPP s P - < P :
PPPPPPPPPPPPPPPPPPPPPPPPP ..-pp.-pppppppppppppp-.--
PDODPPPPPPPPPEPPPPRRDED i - b e D.
PPPPP PPPPP Y ip..
PPPP PPPPP p.. S p..
i Fe $:
pppp D . ..P--
pPppPP ppPp -D-. P
pPPPP PPPPP B . -.p-.-
pPPP PPPP -p-. p.-
pppp ppppp - p - = - - Bd -
bbbb bbbbp PPP ] 3 Pp. ..
pPPPP PPPP pPpp “P-- -P. .- s
pPPPP PPPp pPpp .p- - e P "
PPPPPPPPPPPP pPPPpP PPPPPP sl & § § 5 onE -p..- R
BDPPDDPPDDEDDDD PEbD BDDDDDD - - DPPRDPPPD . . - - B 2P
BBbD T PPDDPDD bbbb BPDbD B Pl P £
PPPP ppPP PPPP PPPPP oD D o . sPus
PPPP PPPPP ppPp PPPPP ' i - .P- « <D «
PPPPP pPPPPP PPPP  PPPPP ..p-- .P-.- Pos s:D%s
pPPPPP PPPP PPPP PPPPP o B cePs 55D s
PPPPP PPPP BDDPPPDD o aDave .p-- -P.-..P--
PPPPP PPPP PPPPPP ..P-.. s - «PED" «
PPPP ppPpp PPPPPP b Pe -<P---
PPPP PPPP PPPPPP -p- - .p-- Baity -
PPpp PPPPP PPPPPPPP . :Ds p.. . .PP.P..
pPPPPP PPPP PPPPPPPPPP e -p-.- «e.P---P.-
PPPPP PPPP PPPPPPPPPPPP B - B D,
PPpPp PPPP PPPPPPPP  PPPPP p <SPG 4 i« «..PPev- <.Du- p
PPPP pPPPP PPPPPP PPPPP ppp .p- - -p-. PP s 5D & sl
pppP PPPP PPPPP PPPPP pPPPP i vielde & 8w . B u o -y
pPpp PPpp PPPPP pPPp s Pae -P- - D s .Pe
PPPPP PPPP PPPPPP PPPP «.P.- ) s 5D 5 » D
ESBB  BEE PPPP PRDDEPD  PEDDP Pes  wena P - <PP. - - ..D.-
ppp pppp p ppp - = == - e = --p' san ., . "'p""
PPPP  PPPPP PPPPPP PPPPPP  PPPP P is oDan -eeP--  .P-..
PPPPPP  PPPPPPPP PPPPP PPPPP c:DPe-+ +..PD-.. s eDs wsbi
PPPPPPPPPPPPPP PPPPPPPPPPP o PPs g s DD N g - pA
PEPPDDPDDDD PRDEPDDED s s POEDs » ¢ 4 - - PPPP.- -
bbpD 338538 op L ..
PPP e
ppp ...
ppp -p.
Ppp o
bbbp -B:.
PPPP p..
ppppP ppp ... Do
PPPPP BB sames .p.
PBDED BN - < -1 p D ers ‘- i
bbb PbbPPbPPBHEPPPEPPHPPED b . PPPPPPPPDPPPPPPPED- - -
pPPPP PPPPPPPPPPPPPPPPPPP BPeoe = eesssssms Diccinssss
PPPPP PPPP PPPPP < Paie Dais wasas
ppPpp PPPP D.. p..
PPPP pPPPPP p.. sePas
PPPP PRDDD p.. Sip..
PPPPP PPPP L p. i
PPPP  PPPP pPPPP P N p-.
PPPPPPPPPP pPpP . iD. P
PPPPPPPPPPPPPPPPPPPP o - 1 gy i op. .. P
BEDDPDDDPDDPPPDPEDPP SRR - - < . . - PPPPPPPPPPP- « « « = « « -B-
bPDPD Pb bbb PPPPPPPDPPEPDPEDPPHPPPHPPPDDPR iittIitTIRIITTTL LLLL..d PPPPPPP - PPPPPPPPPPPP .« - -
PPPP PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP o Dave ...ppppp .................... 5
pPPPP PPPPPPPPPPP PPPPPPPP Dae 0 BB i e e s e
ppp PPPPP pp 15 < o
pPpp PPp p. ..
pp po Ds B
pp P p. p.
pPPP PPPP o P &
PPPP  PPPpP PpP Pl ... P
PPPPPPPPPP pPP ~ePee.-D-. D
EEPPPPPPPP EEBE ..pébpp... .E..
pppp pppp ppppppppppppppppp p pppppppppp - = -p- - " " s @ @ & & = 8 & ® s 8 8 99888 " " 8 F = W a - "=
PPPPPPPPPPP PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP eesee- Pores - <P . . - PPPPPPPPPPPPPPPPEPPPPPPPPRP -
PPPPPPPPPPPPP PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP . - - PPPPP-. .P. . el SR A R A
PPPPPPPPPPPPP PPPPPPPP PPPP oD 52 wi Baw s smases be.
pPPPPPP  PPPP peee e A S P
PP ppp BPBB - D .B..
ppp D p. b..
ppPpP PPPPP -p. s Pss
pPPPp ppp PPPP B ... P
ppp pppp PPPPPP PPPP - Peew = emmees oD% o
233 bbEp PDEEDDDD (DPED o .P. -BP - - - P
Bbbbp bb bbbbbbbp Pbbb Por. :P: PP - o e
pPpP Ppp PPPPPPP PPpp D p- : « s [P -p--
PPPPP ppp PPPPP  PPPPP .p-.. 1 =2 .p..
PPPP ppp PPPP pPpp o Po;s % : Siss D
PPPPPP  PPPP pPpP P B .D-.
bbbbbbp  bppb bbb Pori. Brs B:
PPPPPPPPPPP pPp S PPe-.-.D.. D
PPPPPPPPPP ppp B Lo e P
PPPPPPPP ppp ppp PR - J .. P
PPRDDD ppLoER. BPPER .- PPp. . - Pes
bPPPBBPPEPD PR e .
3 <
(a) Original image. (b) Thinning result.

Fig. 5. Thinning results of four Chinese characters by proposed neural network.
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Fig. 5. (Continued).
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Fig. 6. Thinning result of English characters ‘B’ and ‘H’ by proposed neural network.
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that the proposed method of transforming the paral-
lel thinning algorithm OPPTA into the single-layer
neural network actually is a general scheme and can
be applied to other parallel thinning algorithms.
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