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Short Paper

Parallel Thinning by a Recurrent Neural
Network*

RE-YA0 Wut AND WEN-HsiaNG Tsart
TDepartment of Computer Science and Information Engineering
tDepartment of Computer and Information Science
National Chiao Tung University
Hsinchu, Taiwan 300, Republic of China

A 3-layer recurrent neural network is proposed for parallel thinning. This
network iteratively removes the contour points of an ob ject shape by template
matching. After the neural network converges, a perfectly 8-connected skeleton
is derived. The set of templates which the neural network tries to match is
specially designed for a one-pass parallel thinning algorithm. The proposed
neural network is shown both theoretically and experimentally to do the same
work as the one-pass parallel thinning algorithm.
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Excessive erosion.

1. INTRODUCTION

Thinning is a process which eliminates a large volume of redundant pixels
from an image and retains the important pixels without unduly disturbing the
topology and connectivity characteristics of the original image. This is important
for many image analysis and pattern recognition applications since useful features
can be captured from the skeletons resulting from thinning. Many algorithms
have been proposed for thinning in the literature. Some of them are sequential
algorithms, and the others are parallel ones[1-7]. To preserve the connectivity of
a line and prevent excessive eroding of a thin line, some parallel algorithms divide
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an iteration into multiple passes[1-3]. On the other hand, one-pass algorithms
have also been proposed to save processing time [4-6]. In a single-processor system,
sequential algorithms are suitable. Parallel algorithms can also be simulated in
a single-processor system. To exert the strength of a parallel algorithm, a multi-
processor system or special hardware, which consists of a large number of simple
processing elements, may be designed to implement the algorithm. For example,
Chin et al.[5] used simple logic gates to match thinning, restoring, and trimming
templates.

Neural networks have been widely employed to solve decision and classification
problems in various application areas. Because the neurons in a neural network
function simultaneously, it is also a good idea to use neural networks to solve
image processing problems in which different parts of the spatial data can usually
be processed in parallel. For example, Cortes and Hertz[8] used directional second
derivatives to detect the edges in an image by using a neural network. Works on
thinning by neural networks have rarely appeared in the literature. An example is
Matsumoto et al.[9], in which images are thinned by cellular neural networks [10,11]
with 8 planes. Another example is Graf et al.[12,13], in which a VLSI architecture
is designed to multiply a binary input vector with a stored matrix of weights to
skeletonize binary images.

By considering the parallel processing capabilities of neural networks, a thin-
ning algorithm which is suitable for implementation by neural networks should at
least have the following two characteristics:

1) It should be a parallel thinning algorithm. For the sake of simplicity and
processing speed of the neural network, a one-pass parallel thinning algorithm
is preferred.

2) To force the neural network to converge, the algorithm should converge cor-
rectly (i.e., should stop iterations with a correct thinning result).

A one-pass parallel thinning algorithm called OPPTA [14], proposed by the
authors previously and briefly reviewed in Section 2, does possess the above two
characteristics. Based on this algorithm, a 3-layer recurrent neural network, which
can be used to perform thinning of binary images, is proposed in this paper. This
network iteratively removes the edge points of an object shape. In each iteration,
the removal of a point is determined by the criterion of whether or not the neighbors
of that point match any of a set of templates. Both template matching and point
removal tasks are performed by the neural network. It is proved by lemmas and
theorems that the network produces exactly the same thinning results as does the
algorithm. Some experimental results are also shown to assure this fact.

The remainder of this paper is organized as follows. In Section 2, the one-pass
parallel thinning algorithm OPPTA is described. Section 3 includes the description
of the structure of the proposed neural network. The connection weight assignment
and activation rules for correct thinning of an image are specified in Section 4.
The lemmas and theorems proving the correctness of the neural network are also
included. Section 5 gives the experimental results. And finally, concluding remarks
are given in Section 6.
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2. ONE-PASS PARALLEL THINNING ALGORITHM

A good thinning algorithm should have the following characteristics in general:
1) It should preserve the connectivity of an object shape.
2) It should prevent excessive erosion.
3) It should be noise insensitive.
4) It should produce skeletons topologically equivalent to original object shapes.
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Fig. 1. Thinning templates.

Using the templates shown in Fig. 1, the one-pass parallel thinning algorithm
OPPTA described below possesses the characteristics listed above. As shown in
Fig. 1, there are twelve 3 x 3 templates (templates (a), (b), and (e) through (n), one
3 x 4 template (template (c)), and one 4 x 3 template(template (d)). The symbols
‘c’, ‘0’, ‘1’;and‘z’ used in these templates denote the currently tested pixel, a white
pixel, a black pixel, and a don’t-care condition, respectively. These symbols follow
the conventional notations while the symbol ‘y’, also appearing in the templates,
is a special one. It does not appear singly in a thinning template, and at least
one of the pixels represented by the set of symbols ‘4’ should be a white pixel. By
matching the templates shown in Fig. 1 with a given object shape, the thinning
algorithm OPPTA iteratively eliminates the edge points of the object shape layer
by layer in parallel. The details are as follows.

Algorithm: OPPTA.

Input: a binary image f°.

Output: the image of the thinning result.
Step 1: 7 := 0.
Step 2: flag:=false.
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Step 3: Check each pixel of f*. If it is a black pixel and its neighbors match any
of the templates (a) though (n), then change it to a white pixel and set
flag:=true.

Step 4: If flag=false, which means the image is thinned, then go to Step 5 with f?
as the thinning result. Otherwise, i := 7 + 1 and go to Step 2 to perform
the next iteration.

Step 5: Output the thinning result.

For convenience, several terms concerning the templates are defined here for
further discussion. First, the set T of all the templates shown in Fig. 1 is called
the template set. Each template consists of several elements. For example, a 3 X 3
template consists of 9 elements. Any of these elements is denoted by one of the
symbols ‘¢, ‘0’, ‘1", ‘z’, and ‘y’. Since the corresponding positions of symbols ‘¢’
and ‘z’ are less important in the proposed neural network, we exclude these two
symbols and include the other three (i.e., symbols ‘0, ‘1’ and ‘y’) in a symbol set
S for the convenience for further discussion; i.e., we define S = {07, ‘1", ‘y’}.

Next, consider an individual template. Symbols ‘0’ and ‘1’ always exist in all
of the templates while symbol ‘y’ exists only in four of the templates (templates
(a) through (d)). The set of the symbols which exist in an individual template ¢ is
called the symbol set of t and is denoted as S;.

Finally, consider a template as an area in units of pixels with each pixel repre-
sented by a symbol. Then, a sub-template of a template is defined as a connected
sub-area or a combination of several connected sub-areas of the template area. This
definition is quite general; however, only a limited set of sub-templates will be dis-
cussed in the remainder of this paper. Specifically, only sub-templates with all of
their pixels represented by identical symbols in symbol set S are meaningful in the
following discussion. For example, there exist three meaningful sub-templates of
template (a). They are the sub-area covered by the pixels represented by symbol
‘1", the sub-area covered by the single pixel represented by symbol ‘07, and the
combination of the sub-areas covered by the pixels represented by symbol ‘y’. A
sub-template of template t, whose pixels are all represented by a single symbol s,
will be denoted as T}, and will be called a sub-template of t corresponding to s.

Pig 5 Pii; | Fi-154d

Pij P ; Pijn Pijn
Piiigi Pty | Pit1,j+1
Piiaj

Fig. 2. 10-neighbors of pixel P;;.

If all of the templates in template set T' were of size 3 x 3, the area which
should be included to determine whether a black pixel p should be removed or not
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in the thinning process would be the 8-neighborhood of p. However, the addition
of one 3 x 4 template and one 4 x 3 template (i.e., templates (c) and (d) in Fig.
1) increases the number of neighbors which should be considered from 8 to 14.
Observing templates (c) and (d), we see that, except for the 8-neighbors in a 3 x 3
window, each template includes further only one important neighbor (denoted as
‘1’) since the other two neighbors are don’t-cares (denoted as ‘z’). We can, thus,
define a 10-neighborhood of each tested pixel. As shown in Fig. 2, any of the set of
pixels appearing in the figure around the tested pixel P;; is defined as a 10-neighbor
of P;;. In addition to the 8-neighbor in a 3 x 3 window, the east-neighbor of the
east-neighbor of P;j(i.e., P; j12) and the south-neighbor of the south-neighbor of
P;j (i.e., P;yo ;) are also included. This reduces the number of concerned neighbors
from 14 to 10. Note that by 10-neighbors we refer not only to pixels in images, but
also to neurons in neuron planes, as we will see later.

z1

E2

rn

O=f wixzi+0)
Fig. 3. Processing element of proposed neural network.

3. PROPOSED NEURAL NETWORK

As shown in Fig. 3, all of the neurons in the proposed network are simple
processing elements, and each of them receives inputs from others. Through a set
of connection strengths or weights, these inputs are summed up. The sum of these
weighted inputs is called the net input. The output of a neuron is a nonlinear
function of its net input. Each neuron is a binary system with an output value of
either 0 or 1 with 0 and 1 representing inactive and active, respectively. That is,
the output value, f(z), of a neuron is

f(:c):{l ifz>

0 otherwise,

where z is the net input and « is a threshold value.
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Fig. 4. Architecture of proposed neural network.

As shown in Fig. 4, the proposed neural network has three layers, namely, the
image layer, the separation layer, and the template layer.
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(1) Image layer (abbreviated as I-layer)

The I-layer is a single neuron plane, which represents the input image. It will
also be called the image neuron plane in the following discussion. Each neuron in
this plane corresponds one-to-one with a pixel in the input image. The definition
of 10-neighborhood is also applicable to the neurons in this plane since the neurons
in this plane have the same topological relationship as that of the pixels in the
input image. Initially, the input image is fed into this plane by activating the
neurons which correspond to the black pixels and leaving the other neurons inactive.
After the network becomes stable, the image of the thinning result will appear in
this plane with active neurons representing black pixels. When the network is
performing the thinning work, this plane represents the temporary thinning result.
Following a recurrent network scheme, the neurons in this plane receive inputs from
the neurons in the T-layer (described below) and itself.

(2) Separation layer(abbreviated as S-layer)

There are several neuron planes in this layer, and each plane is used to match
a sub-template of a template corresponding to a specific symbol in symbol set S.
That is, the neurons in this layer will be active if the corresponding sub-template is
matched. To collect necessary information, the receptive fields of the neurons in this
layer are part of the 10-neighbors of the corresponding neurons in the I-layer, the
exact elememts being dependent on the shape of the corresponding sub-template.

(3) Template layer(abbreviated as T-layer)

In this layer, there are as many neuron planes as the templates. Each plane is
used to match its corresponding template. The neurons in this layer receive inputs
from the S-layer. If two neurons in different neuron planes are in identical positions
in their individual neuron planes, we say that they are at the same position. For
each neuron X in the plane responsible for matching template t, its receptive field
consists of all the neurons which are located at the same position as neuron X, in
those planes in the S-layer each of which is expectd to match a sub-template of ¢
corresponding to a symbol s in S;. The output of a neuron in this layer feeds back
to the I-layer to inactivate the corresponding neuron if it is active, which means
that the corresponding template is matched.

Fig. 4 shows the network architecture in plane view. Each rectangle in the
figure represents a neuron plane. Neurons in a neuron plane are represented by the
meshes inside the rectangle. Rectangles of the left part, the middle part, and the
right part are the I-layer, the S-layer, and the T-layer, respectively. The area inside
the bold polygon in the I-layer is the 10-neighborhood of a neuron in the I-layer.
Each pair of dashed lines coming from the I-layer to the S-layer indicates that a
neuron P in the S-layer receives inputs from part of the 10-neighbors of the neuron
in the I-layer, which is located at the same position as neuron P. The solid lines
with arrows link neurons at the same positions in different layers. The circle with
an arrow in the image plane represents that the neurons in this plane receive inputs
from themselves in addition to those from the T-layer. Fig. 5 shows the network
architecture in another view. The small solid rectangles in the figure represent
neurons. Each line with an arrow links a neuron to another. In the I-layer, the
10-neighbors of a neuron are shown. On the other hand, only a representative
neuron in each neuron plane of the S-layer and the T-layer is shown.
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Fig. 5. Receptive fields of neurons in each layer.

To perform the work of thinning an image in dimension N x N, N X N neurons
should be included to construct the neuron plane of the I-layer. Let these neurons
be denoted as P;;, 0 <i < N,0<j <N. The number of neurons in the S-layer
depends on the number of templates and the cardinality of the symbol set for each
template. Let the neurons in this layer be denoted as Sisij, where ¢ and s index
the corresponding sub-templates (just as in sub-template Tj), and ¢ and j index
the corresponding neuron positions. The T-layer has as many neuron planes as
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templates. Similarly, the neurons in this layer can be denoted as Tii;, where t
indexes the corresponding templates, and 7 and j index the corresponding neuron
positions.

A local neighborhood of a pixel P;; in an image is said to match a template (or
sub-template) if each pixel in the template (or sub-template) and the corresponding
pixel in the neighborhood of pixel P;; match each other; that is, if black pixels in
the image appear at positions represented by symbol ‘1’ in the template (or sub-
template), white pixels appear at positions represented by symbol ‘0’, and at least
one white pixel appears at positions represented by symbol ‘y’. The match of the
neighboring neurons of a neuron P;; in the image neuron plane with a template or
sub-template is defined similarly, except that the black pixels and the white pixels
in an image are replaced by active neurons and inactive neurons in the image neuron
plane, respectively.

If template ¢ matches neighbors of neuron P;j, it can be seen that each sub-
template, T;,, will also match the neighbors of neuron P, since any sub-template
is a sub-area or a combination of sub-areas of template . On the other hand, if all
the sub-template T}, have been checked to match the neighbors of neuron P;;, the
only neurons which are still not checked are those corresponding to the don’t-care
pixels (denoted by ‘z’) and Pj; itself. But it is unnecessary to consider these two
kinds of pixels in our template matching process. Therefore, we have the following

property.

Property 1: A template ¢ is matched by the neighbors of a neuron P;; in the
image neuron plane if and only if the sub-template T}, corresponding to each symbol
s in symbol set S; is matched by the neighbors of neuron F;y.

The neuron planes in the S-layer can be characterized further into three classes.
The planes for matching sub-templates corresponding to symbol ‘1’ form one class,
called type I planes. The planes for matching sub-templates corresponding to
symbols ‘0" and ‘y’ form the other two classes, called type 0 and type y planes,
respectively. As shown in Fig. 4, the labels appearing at the lower-left corner of
the neuron planes in the S-layer specify the plane types and the corresponding
templates of the planes. For example, the label ‘0’ of the top neuron plane in
the S-layer indicates that this plane is responsible for matching a sub-template of
template (a) and is a type 0 plane.

The receptive field of a neuron in the S-layer is called a separation field,
abbreviated as S-field. The shape of each of these fields is different from that of
the others. However, any S-field of a neuron is a sub-field of the 10-neighborhood
of the corresponding neuron in the image neuron plane. More specifically, the S-
field Vi4;; of a neuron Stsij in the S-layer is a set of neurons, which is part of the
10-neighborhood of neuron P;; in the I-layer, and each of these neurons is located
at a position in the I-layer corresponding to an element of the sub-template of ¢ in
symbol s, i.e.,

Visij ={P | P is one of the 10-neighbors of a neuron P;; in the I-layer,

and P is located in any of the corresponding areas of sub-template Tl
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Fig. 6. Receptive fields (S-field) of neurons in neuron plane ‘a0’ ‘al’, and ‘ay’.
The black rectangles in each figure represent the neurons covered by an
S-field. The rectangles filled with dashed lines represent neuron F;;.

For example, Fig. 6 shows the S-fields of all the neurons which are responsible
for matching a sub-template of template (a), where Fig. 6(a), Fig. 6(b) and
Fig. 6(c) show the S-fields of neuron planes ‘a0’, ‘al’ and ‘ay’, respectively. Since
each S-field is part of the 10-neighborhood of a neuron Pj; in the I-layer, the 10-
neighbors of neuron P;; in the I-layer and P;; itself are shown for illustration. The
black rectangles in each figure respresent the neurons covered by an S-field, and
the rectangle filled with dashed lines represents neuron F;;. -

4. WEIGHTS AND ACTIVATION FUNCTIONS

No training phase before thinning is required for the proposed neural network.
However, to perform thinning correctly, the strength of each connection should be
initialized properly. That is, the weights for the inputs into each neuron should be
set properly in advance.

Consider a neuron Sis;; in the S-layer, which is responsible for matching sub-
template T;,. Let all of its inputs have the same weights,

WIStaij = 1/Nt3, for all i,j, (1)
where N, is the number of symbols in sub-template Ts.
Since all the neurons in a plane are treated in an identical manner, the neuron

indices i and j can be omitted. Formula (1) can then be abbreviated as

WIS, = 1/ Ny, (2)
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Table 1. WIS;, values.

template a b ¢ d e f g
0 1 1 1 1 0.333 | 0.333 | 0.167
1 0.2 0.2 |0.167 | 0.167 | 0.5 [ 0.333 | 0.5
y 0.5 0.5 0.5 0.5

template h i ] k | m n
0 0.333 | 0.333 | 0.167 | 0.2 0.2 0.2 0.2
1 05 |0333| 05 |0.333]0.333 | 0.333 | 0.333
¥

From Formula (2), all the connection weights from the I-layer to the S-layer
can be obtained. Table 1 shows the weights for the inputs from which the neurons
in various separation planes receive.

By summing all the weighted inputs, the net input of a neuron in the S-layer
is

Nyij= Y P2 x WIS, +6, (3)
P;j€V;sij

where Pi(} is the output of neuron P;; in the I-layer, Visij is the S-field of neuron
Stsij in the S-layer, and 6 is a small positive bias value for the neurons in a type 1
plane or a small negative value for the neurons in a type 0 plane or a type y plane.

The net input of a neuron in a type 1 plane will be 1 if all the outputs of the
neurons in the S-field are 1. For a neuron in a type 0 plane, its net input is 0 if
the S-field of this neuron matches the corresponding sub-template. Also, we say
that a sub-template corresponding to symbol ‘y’ is matched if at least one of the
values of the corresponding neurons is 0. So, for a neuron in a type y plane, the
net sum of its two inputs which match the corresponding sub-template will never
exceed 0.5 since the weight of either input is 0.5.

As described above, the net inputs of all the neurons in the S-layer are summed
up in an identical way. However, the outputs of these neurons are computed in
slightly different ways. In order to activate the neurons in the S-layer when their
corresponding sub-template is matched, the output of a neuron, Stsij, in the S-layer
with net input Nig; is computed by the following function:

SO :Fs(Ntsij)7 (4)

tsij
where F; denotes three threshold functions, each for one plane type, as follows:

{1 if z < 0;

Fo(z) = 0 otherwise;

1 ifz>1;
Fifz) = { 0 otherwise;

1 ifz<0.5;
F, — !
y(@) { 0 otherwise.

The bias value 6 in Formula (3) is included to guarantee that these three
threshold functions can obtain correct results. Therefore, its absolute value should
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be small enough to prevent side effects. Since the number of neurons in each
receptive field doesn’t exceed 10, the value of # will not infect the correct results of
the threshold functions if its absolute value is smaller than 0.1. For instance, the
absolute value 0.01 is small enough and is proper for each threshold function.

For any neuron St;; in the S-layer, its receptive field is part of the 10-neighbors
of neuron P;; in the I-layer and corresponds to the sub-template T;s. Consider three
cases:

Case 1: neuron Si; is in a type O plane. From the definition of function
Fy, neuron Si,;; will be active if and only if all the neurons in its receptive field
are inactive or, equivalently, if and only if the sub-template T}, is matched by the
neighbors of neuron F;;.

Case 2: neuron Sis;j is in a type 1 plane. If any of the neurons in the receptive
field of neuron Sig;; are inactive (i.e., if the sub-template T}, is not matched by the
neighbors of neuron P;;), the net input of Si,; is less than 1, which means that
neuron Sis;; will be inactive after function Fy is applied. On the other hand, if all
the neurons in the receptive field are active (i.e., if the sub-template T}, is matched
by the neighbors of neuron P;;), the net input will be greater than 1, which will
activate neuron Sig;.

Case 3: neuron Sy is in a type y plane. Note that only two neurons are in the
receptive field of neuron Sys;;. From function Fy, neuron Sis;; will be inactivated
if and only if both of these two neurons are active or, equivalently, if and only if
sub-template T}s is mismatched. In other words, neuron Si,;; will be activated if
and only if sub-template T}, is matched.

From the discussions of the above three cases, we have the following property.

Property 2: A neuron Sy, in the S-layer will be active if and only if the sub-
template T}, is matched by the neighbors of neuron P;; in the I-layer.

Next, consider a neuron Ty;;, which is responsible for matching template ¢ in
the T-layer. Let the weight of each of its inputs be defined identically as

where |S;| is the number of elements in symbol set S, which includes all the symbols
in template t.
The net input, i.e., the sum of the weighted inputs of neuron Ti;; is

Nuj = Shi; x WST; +6, (6)
SES:
where S?sij is the neuron Sis;; in the S-layer, and 6 is a small positive bias value.

Furthermore, its output is
ng = Ft(Nuij), (7)
where 1 ifo> 1
Fye)= 0 otherwise.
The determination of the value of § in Formula (6) is similar to that in Formula
(3). Value 0.01 is also proper for it in Formula (6).
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By observing function Fj, it can be seen that the sufficient and necessary
condition to activate neuron Tiij is that the net input should be greater than 1.
The condition to obtain this net input is that all the neurons, Sy, in the receptive
field of neuron T3;; are active for all symbols, s, in symbols set S;. From Property 2,
this means that all sub-templates, T}, of template ¢ are matched by the neighbors
of neurons Pj; for all symbols, s, in symbol set S;. Therefore, a property can be
obtained from Property 1.

Property 3: A neuron, Tyij, in the T-layer will be active if and only if template
t is matched by the neighbors of neuron P;; in the I-layer.

Finally, consider a neuron, P;;, in the I-layer. Let the weights of the inputs
received from the T-layer and the weight received from itself be defined as WTI = 1
and WII = 0.5, respectively.

By summing as the weighted inputs the outputs from the neurons which are
located at the same position in all the neuron planes of the T-layer as well as the
output from P;; itself, the net input is defined as

Nij = P x WIT+ Y Tf; x WTI + 6, (8)
teT
where T is the template set and the bias value § = —0.5. Furthermore, its output
is defined to be
Pj = Fy(N;;), (9)
where
1 ifz=0;
F»L(.'L') o I 07

L0 otherwise.

If neuron P;; is active, then the net input N;;j must be zero. There is only one case
in which such a net input can be obtain, i.e., the case when neuron P;; is active
in the previous iteration step, and the net sum of the inputs from the neurons in
the T-layer is 0. From Property 3, this zero sum means that all the templates in
template set T' are not matched. On the other hand, if neuron P;; is active in the
previous iteration step, and its neighbors are not matched by any template, t, in
template set 7', then the value of N;; will be 0, which will activate neuron P
Therefore, we have the following property.

Property 4: During the thinning process performed by the proposed neural
network, a neuron, P;;, in the I-layer is active if and only if it is active in the
previous iteration step, and its neighobors are not matched by any template, ¢, in
template set T'.

Theorem 1: When the proposed neural network converges, it yields in the I-layer
the same result as does the parallel thinning algorithm OPPTA.

Proof: Let’s say that the I-layer correctly represents an image if all the neurons
corresponding to the black pixel of the image are active, and all the neurons cor-
responding to the white pixels are inactive. Initially, an image f is fed into the
I-layer with the neurons corresponding to the black pixels being active and the oth-
ers being inactive. At this time, the I-layer correctly represents image f°, which
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we assume is also the input image for algorithm OPPTA. Assume that the I-layer
correctly represents image f i in algorithm OPPTA at iteration i. Then, at iteration
i+ 1, by Property 4, the I-layer will correctly represent image fit1. By induction,
when the neural network converges, i.e., when no more pixel can be removed, the
I-layer will correctly represent the thinning result of algorithm OPPTA.
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(a) Original image. (b) Thinning results.

Fig. 7. Thinning results of two Chinese characters by using the proposed
neural network.
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Fig. 8. Thinning results of English character ‘A’ by using the proposed
neural network.

5. EXPERIMENTAL RESULTS

Some experiments have been conducted to illustrate the effects of the proposed
neural network. Fig. 7 and Fig. 8 show the results in which skeleton points are
marked by ‘p” and removed points by *-’.

Fig.7 shows the results of thinning two Chinese characters of dimension 64 x 64.
It can be seen that the proposed neural network obtains perfectly 8-connected and
noise-insensitive skeletons without excessive erosion, exactly the same as those
obtained by algorithm OPPTA. Similar results can be observed in an experiment
of thinning an English character ‘A’ of dimension 32 x 32. Fig. 8. shows the results
of this experiment.

6. CONCLUSIONS

A neural network which can perform thinning of binary images has been pro-
posed. From the properties and theorem, and the good thinning results, it has
been proved both theoretically and experimentally that thinning an image by a
large number of simple processing elements in parallel is possible. The proposed
neural network is based on a fast parallel thinning algorithm, OPPTA. However,
the scheme for constructing such a network is quite general for other thinning algo-
rithms; neural networks based on other one-pass parallel thinning algorithms can
also be constructed by using the same design principle. A problem of this network
is its huge size. Simplification of the network is worthwhile for further study.
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