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Abstract—A new space-mapping method for object location 

estimation, which is adaptive to camera setup changes, for use in 
various automation applications is proposed. The location of an 
object appearing in an image is estimated by mapping image 
coordinates of object points to corresponding real-world coordi-
nates using a mapping table, which is constructed in two stages, 
with the first stage for establishing a basic table using bilinear 
interpolation in the camera manufacturing environment and the 
second for adapting the table to changes of camera heights and 
orientations in the application field. Analytic equations for table 
adaptation are derived by skillful utilization of both image for-
mation and camera geometry properties. Good experimental 
results are shown to prove the feasibility of the proposed method. 
 
Index Terms—object location estimation, space mapping, table 
adaptation, camera setup changes. 
 

I. INTRODUCTION 
Video cameras are used in various automation applications, 

including automatic estimations of object locations in indoor 
environments using object images acquired by cameras affixed 
to walls or ceilings. A conventional solution to the object lo-
cation estimation problem is to conduct camera calibration to 
obtain a set of camera parameters, followed by using the pa-
rameters to compute the object location [1-6]. Most camera 
calibration methods use landmarks to compute camera para-
meters [4, 5], and the process is generally complicated. A 
flexible method based on this approach is proposed recently by 
Zhang [6], which only requires the camera to observe a planar 
pattern shown in a few different orientations. An alternative 
approach to object location estimation is to use a 
space-mapping table [7-10] which transforms the image space 
into the real-world space, thus avoiding the work of computing 
camera parameters. The table is constructed with the aid of a 
calibration pattern before the camera is deployed in an appli-
cation environment. 
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The space-mapping based approach to object location esti-
mation, however, is sensitive to camera setup changes. That is, 
after a space-mapping table is constructed for a specific camera 
setup according to a certain camera-environment configuration, 
the camera should be used in identical configurations thereafter; 
otherwise, the table will not work. This weakness causes in-
convenience in using the camera in various application fields. 

To solve such a camera-setup sensitive problem for the 
space-mapping approach, one way is to construct a new table 
for every new camera-environment configuration. But this is 
often difficult to carry out after the camera is delivered to a user 
who does not know the mapping table construction process 
or/and has no calibration pattern for use in the field. In this 
study, we investigate the possibility of automatically modify-
ing the original space-mapping table for use in the new envi-
ronment. Note that this problem of adapting the space-mapping 
table to new camera setups has not been studied so far. The 
camera is assumed to be general in type with a fixed focal 
length and affixed to a ceiling. In case sharpness of taken im-
ages is concerned, a wide-angle camera with a small hyperfocal 
length of just a few inches may be used, which always takes 
sharp scene images at distances beyond a half of the hyperfocal 
length. 

In the following, we first describe the idea and the detail of 
the proposed method in Sections II and III, respectively. Some 
experimental results are given in Section IV, followed by con-
clusions in Section V. 

II. IDEA OF PROPOSED METHOD 
The proposed method includes two stages, one conducted in 

an in-factory environment and the other in an in-field one. The 
details are described in the following algorithm. See Fig. 1 for 
an illustration.  

Algorithm 1. Object location estimation by space-mapping 
table construction and modification. 

Stage 1. Construction of a basic space-mapping table in the 
factory (see Fig. 1(a)). 

Step. 1 Affix the camera to the ceiling at a certain height H0 
with the optical axis of the camera pointing to the floor 
perpendicularly. 

Step. 2 Place a calibration pattern O on the ground right under 
the camera, take an image of it, extract relevant feature 
points from the image, and find the coordinates of them. 

Step. 3 Measure the real-world coordinates of those feature 
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points in the calibration pattern which correspond to the 
extracted feature points in the image. 

Step. 4 (Coordinate mapping) Use a quadrilateral mapping 
technique to construct a basic space-mapping table T, 
which maps each image coordinate pair (ui, vj) to a 
real-world coordinate pair (xij, yij). 

Stage 2. Modifying the basic table for a new environment 
(see Fig 1(b)). 

Step. 5 (Ceiling-height adaptation) If the new in-field camera 
setup to be carried out includes just a change of the 
original ceiling height H0, perform the following oper-
ations to modify the basic table T; else, go to the next 
step. 
5.1 Affix the camera to the ceiling and measure the 

new ceiling height H1. 
5.2 With H1 as input, modify table T into a new one T1 

by a technique of ceiling height adaptation (de-
scribed later in the next section), and go to Step 7. 

Step. 6 (Camera-orientation adaptation) Perform the follow-
ing operations to modify the basic table T. 
6.1 Affix the camera to the ceiling, and measure the 

ceiling height L and the camera’s orientation θ. 
6.2 With L and θ as input, modify table T to be a new 

one T1 by a technique of camera orientation 
adaptation (described later in the next section). 

Step. 7  (Location estimation) Locate an object B in the 
real-world space using T1 in the following way. 
7.1 Acquired an image I of B with the camera. 
7.2 Detect B in I and find a feature point p on it with 

coordinates (u, v). 
7.3 Use (u, v) to look up T to get the real-world coor-

dinates (x, y) of the real-world point P corres-
ponding to p as the desired object location result. 

Note that in the above algorithm, we assume that the 
processed object feature point in Step 7 is on the ground. 

III. BASIC SPACE-MAPPING TABLE CONSTRUCTION AND 
MODIFICATIONS 

As mentioned in Step 4 of Algorithm 1, a quadrilateral 
mapping technique has been designed in this study to perform 
the construction of a space-mapping table T by two steps: (1) 
finding pairs of corresponding quadrilaterals, one in the cali-
bration pattern in the image and the other in the real world, and 
(2) transforming the image and real-world coordinates of cor-
responding points within the quadrilaterals using a bilinear 
interpolation technique, as illustrated by Figs. 2 and 3. The 
details are omitted due to the page limit. 

After the basic table is obtained with the camera affixed to a 
ceiling at a certain height H0 with respect to a floor F0, if the 
camera is used later at a different ceiling height H1 with respect 
to a second floor F1, then the table is no more applicable and 
table content modification is necessary, which we call ceil-
ing-height adaptation, as mentioned in Step 5 in Algorithm 1. 
To do this, first note that an image point p is formed in principle 
by any of the real-world points which all lie on a light ray R 

going into the camera’s lens and then onto the image plane. As 
illustrated in Fig. 4(a), suppose that this light ray R intersects 
floor F0 at P0 and floor F1 at P1. If the image coordinates of p 
are (u, v), then the real-world coordinates (x0, y0) in the basic 
table corresponding to (u, v) actually are those of P0 on F0 
instead of being the desired ones, (x1, y1), of P1 on F1. To cor-
rect this error, we derive first the following equalities according 
to the concept of side proportionality in a triangle: 

1 1
1 0 1 0

0 0

; .
H H

x x y y
H H

= =  (1) 

That is, the table lookup result (x0, y0) corresponding to the 
image coordinates (u, v) of a real-world point P1 on F1 should 
be magnified in proportion to H1/H0 to be (x1, y1) as the desired 
result. Note that we assume here: (1) the real-world coordinate 
system x-y-z is set up at the camera’s lens center, (2) the optical 
axis is taken to be the z-axis, and (3) the location of object point 
P described by (x1, y1) is measured with respect to this system. 
 

 
(a) 

 
(b) 

Fig. 1. Illustration of camera setup. (a) Construction of space-mapping table in 
Stage 1 of proposed method. (b) Camera setup changed to be with a new height 
of L and an additional tilt angle of θ. 

  
(a)                                      (b) 

Fig. 2.  Illustration of quadrilateral shape extraction from a grid pattern on floor. 
(a) An image of the grid pattern. (b) The lines approximating the grid lines. 
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(a) 

 
(b) 

Fig. 3. Quadrilateral mapping. (a) Mapping of corresponding quadrilaterals in 
the image and the calibration pattern. (b) Location estimation of a space point 
by inverse bilinear interpolation. 

Now, assume that the camera is affixed to the ceiling diffe-
rently with a tilt angle of θ and a height of L with respect to 
floor F1, as shown in Fig. 4(b). Here, the location of object 
point P1 on F1 to be estimated is specified by the real-world 
coordinates (x1, y1) with respect to the downward projection 
point O of the camera’s lens center onto F1, where the x-axis is 
assumed to be coincident with the projection of the camera’s 
optical axis on F1. Let the coordinates of P1 in the acquired 
image be (u, v). Again the basic table is inapplicable here; the 
table lookup results, namely, the real-world coordinates (x0, y0), 
are actually those of a real-world point on a floor F0 at a dis-
tance H0 to the camera’s lens center, instead of being the de-
sired real-world coordinates (x1, y1) of P1 on F1. Again, table 
modification is necessary here, which is called camera orien-
tation adaptation in Step 6 of Algorithm 1. 

To correct the values (x0, y0) into (x1, y1), we rotate F1 
through an angle of 90o − θ with P1 as the rotation pivot point, 
such that the resulting plane F1' becomes perpendicular to the 
camera’s optical axis and the lateral view of the rotation result 
seen from the positive y-axis direction becomes the one shown 
in Fig. 5. The original floor F0 is also shown in the figure. 
Assume that the distance of P1 on F1' to the camera’s optical 
axis is x'. Then, according to the concept of side proportionality 
again, we have 

0 0

1

x H

x' H
= . (2) 

Also, by geometry and trigonometry we have 

sin
x'

M
θ = ; (3) 

0

sin
L

N H
θ =

+
; (4) 

1

0

cos
x M

N H
θ

−
=

+
; (5) 

1 0( )
cos

H N H

M
θ

− +
= . (6) 

From (4) and (5), we get N + H0 = L/sinθ = (x1 − M)/cosθ, or 
equivalently, 

(x1 − M)sinθ = Lcosθ.  (7) 
Also, from (2) and (3), we get x0/sinθ  = MH0/H1, or equiva-
lently, 

0
1

0

sinH
H

x

M θ
= ; (8) 

From (4), (6), and (8), we get 

0

0 0sin sin cos

L x
M

H xθ θ θ
= ×

−
. (9) 

And from (7) and (9), we get one of two desired coordinates: 

x1 = 0 0

0 0

cos sin

sin cos

H x
L

H x

θ θ

θ θ

+
×

−
. (10) 

 
(a) 

 

(b) 

Fig. 4. Illustration of camera setup changes. (a) Use of side propor-
tionality to compute coordinates of point P1 on a floor F1 with a ceiling 
height H1. (b) A camera with tilt angle θ. 

On the other hand, because the x-axis on F1 is assumed to be 
coincident with the projection of the camera’s optical axis on F1 
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and because the rotation of F1 into F1' is pivoted in the 
y-direction, we have y' = y1. Also, according to Eqs. (1) we have 
y′/y0 = H1/H0 = x′/x0. Therefore, y1 = y′ = y0(x′/x0), from which 
and (3) and (9), we get the other desired coordinate: 

y1 = 0

0 0sin cos

y
L

H xθ θ
×

−
. (11) 

 
Fig. 5. Lateral view from positive y-axis direction of the rotation result of floor 
F1 in Fig. 4(b) through an angle of 90o − θ with P1 as the rotation pivot point. 

IV. EXPERIMENTAL RESULTS 
A series of experiments using a fish-eye camera shown in Fig. 

6(a) have been conducted to test the precision of the proposed 
method for object location estimation. The camera was attached 
to a rotator connected to a rod with an adjustable length, and so 
can be tilted arbitrarily and raised to any height. An image 
taken with the camera looking downward is shown in Fig. 2. 
We show additionally three images in Figs. 6(b) through 6(d) 
among those taken with the camera in two distinct categories of 
setups: (A) looking downward at the heights of 200cm, 225cm, 
and 250cm; (B) being tilted for 90o, 70o, and 50 o at the height of 
200cm. The images are all of the resolution of 1280×1024. 

The first case of Category-A setups at the height of 200cm 
was regarded as the original camera setup for building a basic 
space-mapping table. Specifically, after the image of Fig. 6(b) 
was taken with the downward-looking camera affixed at the 
height of 200cm, all the grid points in the image were extracted 
to get their image coordinates, forming a set Ic. Also, the 
real-world coordinates of each grid point were measured ma-
nually to form a set Wc. The two sets Ic and Wc were then used to 
construct a basic space-mapping table T. 

To test the precision of Table T, nine non-grid points among 
the grid ones, which also appear in Fig. 6(b), were selected, and 
their image coordinates were collected to form a set Ic'. Also, 
the real-world coordinates of these non-grid points are meas-
ured manually to form another set Wc'. The set Ic' then was used 
to obtain their corresponding real-world coordinates by table 
lookup using T, forming a set denoted by Wc''. Finally, the two 
sets Wc' and Wc'' were compared and two types of error ratio 
measures were defined to compute the similarity between them: 
(1) type-1 location error ratio ε1 with respect to the distance from the 

real-world point to the camera’s lens center: 

ε1 = 
2 2

2 2 2

( ) ( )i i i i

i i

real x estimated x real y estimated y

real x real y L

− + −

+ +
 

where real xi and real yi are data in Wc', and estimated xi and 
estimated yi are data in Wc''; 

(2) type-2 location error ratio ε2 with respect to the effective 
field of view of the camera: 

ε2 = 
2 2( ) ( )

 '
i i i ireal x estimated x real y estimated y

radius of effective camera s field of view

− + −
. 

The computed results for the two types of error ratios are 
summarized in Table 1, from which we can see that the ratios 
are all smaller than 5% which are practical for object location 
estimation applications like indoor vehicle guidance. 

Next, the cameras, still looking downward, were affixed at 
two different heights 225 and 250cm, and the corresponding 
error ratios were computed for some images taken by the 
camera (an example shown in Fig. 6(c)). The results were also 
summarized in Table 1, from which we can see the ratios are all 
smaller than 5% as well. Similarly, for Category-B setups 
where the cameras were affixed at the height 200cm and tilted 
for 90o, 70o, and 50o, an error ratio table, namely, Table 3, was 
constructed as well for the images taken by the camera (an 
example shown in Fig. 6(d)). From the table, we can see that the 
ratios are not all smaller than 5% this time; instead, some are 
larger (6.4% and 7.5% in the last row in the table). A reason is 
that the object point dealt with is located at (−320, −15) which 
is far away from the image center, falls within a dis-
torted-shaped quadrilateral, and so incurs a larger error in the 
quadrilateral mapping process. On the other hand, it can be 
seen from the two tables that the estimation accuracy decreases 
in general as the parameter value of the height, tilt angle, or 
object point distance increases. 

Although the emphasis of this study is on adaptation of the 
space-mapping method to camera setup changes, we made 
additionally a comparison of the location estimation accuracy 
yielded by our method with those of two other methods [10, 11] 
whose accuracy results were reported in the literature. The 
comparison result is shown in Table 4, in which the average 
distance errors, the approximate vehicle movement range, and 
the average error percentage are shown. Some of the data were 
computed in this study from the available data in [10, 11]. From 
the table, we can see that the proposed method yields better 
object location accuracy than the other two methods. 

V. CONCLUSIONS 
A space-mapping method for object location estimation by 

modifying the basic space-mapping table for camera setup 
change adaptation has been proposed. The method does not 
require camera calibration, and is general for any camera type. 
The method estimates object locations by mapping the image 
coordinates of object points to the real-world ones using a 
space-mapping table. An algorithm is designed to construct the 
table in two stages: construction of a basic table using bilinear 
interpolation, and adaptation of the table to changes of camera 
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heights and orientations, which often occur in different appli-
cation environments. Experimental results show that the me-
thod yields results with error ratios smaller than 5% in most 
cases, meaning the practicality of the method for various ap-
plications. 

         
(a)                                    (b) 

  
(c)                                        (d) 

Fig. 6. Fish-eye camera and images used for experiments. (a) Camera setup. 
(b)-(d) Images taken respectively with the camera looking downward at heights 
200cm and 250cm, and tilted for 50o at height 200cm. 

ACKNOWLEDGEMENTS 
A preliminary version of this paper appeared in Know-

ledge-Based & Intelligent Information & Engineering Systems 
(Proc. KES 2009), LNCS, Vol. 5712, pp. 395-402, Sept. 2009. 

REFERENCES 
[1] Yang and W. H. Tsai, “Viewing corridors as right parallelepipeds for 

vision-based vehicle localization,” IEEE Trans. on Industrial Electronics, 
Vol. 46, No. 3, pp. 653-661, June 1999. 

[2] E. E. Hemayed, “A survey of camera self-calibration,” Proc. IEEE Conf. on 
Advanced Video & Signal Based Surveillance, pp. 351- 357, Miami, 
Florida, USA, July 21-22, 2003. 

[3] O. A. Aider, P. Hoppenot, and E. Colle, “A model-based method for indoor 
mobile robot localization using monocular vision and straight-line cor-
respondences,” Robotics & Autonomous Systems, Vol. 52, Issues 2-3, pp. 
229-246, Aug. 2005. 

[4] M. Betke and L. Gurvits, “Mobile robot localization using landmarks,” 
IEEE Trans. on Robotics & Automation, Vol. 13, No. 2, pp. 251-263, April 
1997. 

[5] H. L. Chou and W. H. Tsai, “A new approach to robot location by house 
corners,” Pattern Recognition, Vol. 19, No. 6, pp. 439-451, 1986. 

[6] Z. Zhang, "A flexible new technique for camera calibration", IEEE Trans. 
on Pattern Analysis & Machine Intelligence, Vol. 22, No.11, pp. 
1330-1334, 2000. 

[7] H. C. Chen and W. H. Tsai, “Optimal security patrolling by multiple 
vision-based autonomous vehicles with omni-monitoring from the ceil-
ing,” Proc. 2008 Int’l Computer Symp., Taipei, Taiwan, Nov. 13-15, 2008. 

[8] S. W. Jeng and W. H. Tsai, "Using pano-mapping tables to unwarping of 
omni-images into panoramic and perspective-view Images," IET Image 
Processing, Vol. 1, No. 2, pp. 149-155, June 2007. 

[9] Y. T. Wang and W. H. Tsai, “Indoor security patrolling with intruding 
person detection and following capabilities by vision-based autonomous 
vehicle navigation,” Proc. 2006 Int’l Computer Symposium (ICS 2006) - 
Workshop on Image Processing, Computer Graphics, & Multimedia 
Technologies, Taipei, Taiwan, Dec. 4-6, 2006.  

[10] T. Takeshita, T. Tomizawa and A. Ohya, “A house cleaning robot system – 
path indication and position estimation using ceiling camera,” Proc. Int’l 
Joint Conf. on SICE-ICASE, pp. 2653-2656, Busan, Korea, Oct. 18-21, 
2006. 

[11] S. Y. Park, S. C. Jung, Y. S. Song and H. J. Kim, “Mobile robot localization 
in indoor environment using scale-invariant visual landmarks,” Proc. 2008 
IAPR Workshop on Cognitive Information Processing, pp. 159-163, San-
torini, Greece, June 2008. 

TABLE 1 
ERROR RATIOS WITH CAMERA LOOKING DOWN AT DIFFERENT CEILING HEIGHT 200CM O, 225CM, AND 250CM. 

real x,y  (cm) real dis-
tance (cm) 

200cm 225cm 250cm 
estimated (x, y) (cm) error ratios (type-1, type-2) estimated (x, y) (cm) error ratios (type-1, type-2) estimated (x, y) (cm) error ratios (type-1, type-2) 

(-7, -24) 25 (-8, -23) (0.7%, 0.4%) (-8, -24) (0.5%, 0.3%) (-9, -23) (0.9%, 0.7%) 
(-37, 36) 52 (-36, 36) (0.5%, 0.3%) (-37, 35) (0.5%, 0.3%) (-38, 37) (0.6%, 0.4%) 
(-20, 96) 98 (-20, 94) (0.9%, 0.6%) (-20, 95) (0.4%, 0.3%) (-21, 94) (0.8%, 0.7%) 

(-45, -107) 116 (-44, -106) (0.6%, 0.4%) (-46, -107) (0.4%, 0.3%) (-48, -109) (1.3%, 1.1%) 
(-111, -55) 124 (-112, -56) (0.6%, 0.4%) (-114, -56) (1.3%, 1.0%) (-117, -57) (2.3%, 2.0%) 
(-140, 62) 153 (-140, 60) (0.8%, 0.6%) (-143, 61) (1.3%, 1.0%) (-145, 62) (1.7%, 1.6%) 

(-229, 
-101) 

250 (-228, -104) (1.0%, 1.0%) (-233, -106) (2.0%, 2.0%) (-238, -110) (3.6%, 4.0%) 

(-253, 76) 264 (-257, 82) (2.2%, 2.3%) (-260, 82) (2.8%, 2.9%) (-264, 80) (3.2%, 3.7%) 
(-320, -15) 320 (-317, -15) (0.8%, 0.9%) (-331, -14) (2.9%, 3.4%) (-335, -14) (3.9%, 4.7%) 

average error ratio (type-1, type-2) (0.9%, 0.7%)  (1.4%, 1.3%)  (2.0%, 2.1%) 

TABLE 2 
ERROR RATIOS WITH CAMERA AT CEILING HEIGHT 200CM FOR DIFFERENT TILTED ANGLE 90O, 70O, AND 50O. 

real x,y  (cm) real dis-
tance (cm) 

Titled for 90o Titled for 70o Titled for 50o 
estimated (x,y) (cm) error ratios (type-1, type-2) estimated (x,y) (cm) error ratios (type-1, type-2) estimated (x,y) (cm) error ratios (type-1, type-2) 

(-7, -24) 25 (-8, -23) (0.7%, 0.4%) (-7, -22) (1.0%, 0.6%) (-7, -22) (1.0%, 0.6%) 
(-37, 36) 52 (-36, 36) (0.5%, 0.3%) (-37, 52) (1.5%, 0.9%) (-38, 34) (1.1%, 0.7%) 
(-20, 96) 98 (-20, 94) (0.9%, 0.6%) (-22, 94) (1.3%, 0.9%) (-21, 90) (2.7%, 1.9%) 

(-45, -107) 116 (-44, -106) (0.6%, 0.4%) (-45, 103) (1.7%, 1.2%) (-42, -103) (2.2%, 1.6%) 
(-111, -55) 124 (-112, -56) (0.6%, 0.4%) (-115, -58) (2.1%, 1.6%) (-110, -60) (2.2%, 1.6%) 
(-140, 62) 153 (-140, 60) (0.8%, 0.6%) (-144, 66) (2.2%, 1.8%) (-141, 58) (1.6%, 1.3%) 

(-229, -101) 250 (-228, -104) (1.0%, 1.0%) (-224, -95) (2.4%, 2.4%) (-238, -110) (4.0%, 4.0%) 
(-253, 76) 264 (-257, 82) (2.2%, 2.3%) (-259, 82) (2.6%, 2.6%) (-271, 81) (4.5%, 4.6%) 
(-320, -15) 320 (-317, -15) (0.8%, 0.9%) (-330, -16) (2.7%, 3.1%) (-340, -26) (6.0%, 7.1%) 

average error ratio  (type-1, type-2) (0.9%, 0.7%)  (1.9%, 1.7%)  (2.8%, 2.6%) 

TABLE 3 
COMPARASION OF VEHICLE LOCALIZATION ACCURACY 

 Takeshita et al Park et al. Our Method 
Average distance error 4.6cm 26cm 5.8cm 
Approximate range of vehicle movement 2.1m 7m 6.4m 
Average error percentage 5.6% 3.7% 0.9% 


