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Model-based guidance by the longest common subsequence
algorithm for indoor autonomous vehicle navigation
using computer vision *

Ling-Ling Wang

Institute of Computer Science, National Tsing Hua University, Hsinchu, Taiwan, ROC

Pao-Yu Ku and Wen-Hsiang Tsai !

Department of Computer and Information Science, National Chiao Tung University, Hsinchu, Taiwan, ROC

The use of the longest common subsequence algorithm is proposed for model-based guidance of autonomous vehicles by
computer vision in indoor environments. A map of the corridor contour of a building, describing the navigation environment
and measured before navigation sessions, is used as the model for guidance. Two cameras mounted on the vehicle are used
as the vision sensors. The wall baselines in the images taken from the two cameras are extracted and constitute the input
pattern. The environment model and the input pattern are represented in terms of line segments in a two-dimensional
floor-plane world. By encoding the line segments into one-dimensional strings, the best matching between the environment
model and the input pattern is just the longest common subsequence of the strings. So no complicated comparison is needed
and robust matching results can be obtained. The actual position and orientation of the vehicle are determined accordingly
and used for guiding the navigation of the vehicle. Successful navigation sessions on an experimental vehicle are performed
and confirm the effectiveness of the proposed approach.
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1. Introduction

Research and development of autonomous ve-
hicles have attracted widespread interest re-
cently. This tendency is due to the great applica-
tion potential of the autonomous vehicles and the
fast development of computer vision techniques.
Possible applications include automatic freeway
driving [8], guidance of the blind and the disabled
[6], indoor safety guarding, tourist guiding for
sightseeing, etc. Several successful autonomous
vehicle systems have been implemented for vari-
ous purposes. Some of them were designed to
operate in outdoor environments [1-3], and the
others to operate in indoor envircnments [4-7].

For outdoor navigation, the CMU mobile robot

* Discussion is open until December 1993 (please submit
your discussion paper to the Editor on Construction Tech-
nologies, T.M. Knasel).

! To whom correspondence should be sent.

[1], Navlab, equipped with multiple sensors, in-
cluding color TV cameras, range sensors, inertial
navigation sensors, odometers, etc., was designed
to navigate along the roads in a park or a campus.
Using Sun workstations, the Navlab is driven at
10 cm/s like a slow shuffle. After mounted with
an experimental high-speed processor, the vehicle
is driven at speed of 50 cm /s.

Another system developed by Turk et al. [2],
called Alvin, is equipped with an RGB camera
and a laser range scanner. The Alvin can steer
around obstacles while navigating on the road.
Speeds up to 20 km /hour can be achieved on a
straight obstacle-free road. The used hardwares
include a Vicom image processor and an Intel
multiprocessor system.

Dickmanns and Graefe [3] built a successful
autonomous vehicle system, called VaMoRs, us-
ing two cameras as the vision sensors, one wide-
angle camera to cover a large sector of the envi-
ronment and one telecamera to scrutinize distant
environments. Fully autonomous runs have been
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performed under various road and weather con-
ditions. Speeds up to 96 km /h have been reached
on a level surface. The hardware architecture
contains 15 16-bit Intel 8086 processors.

For indoor navigation, reflecting tapes or white
lines on the floor or ceiling may be used to guide
a robot vehicle [4,5]. An alternative approach is
to use underground electromagnetic guidelines
which can be sensed by the magnetic coil on a
vehicle [4]. Both of these approaches are less
flexible.

Madarasz et al. [6] designed an autonomous
wheelchair to navigate inside an office building.
The on-board processor is an IBM portable PC.
An ultrasonic range finder is used to detect ob-
stacles and the dead-ends of corridors; a camera
is used for corridor following and room label
recognition. The precise location of the wheel-
chair is not attainable since only road following
and rough beacon location techniques are used.

The Blanche of AT&T Bell Laboratory [7] is
designed to operate inside an office or factory.
The software development is performed on Sun
workstations. Its navigation depends on two sen-
sors, an optical range finder and an odometer.
The odometer readings are integrated to locate
the vehicle during navigation. As the vehicle con-
tinues to move, the odometer errors in position
and orientation tend to accumulate. To solve this
problem, wall bar codes at known positions are
provided. The range finder has been designed to
be capable of reading such wall marks. And the
environment is assumed to be obstacle free.

Indoor autonomous vehicle navigation by com-
puter vision with the aim of low hardware cost is
the main interest of this study. Emphasis is placed
on the study of automatic guidance by the use of
a pre-known environment model. Other tasks such
as obstacle avoidance, automatic model building,
and camera calibration are discussed elsewhere
[8,14,17-19]. In a navigation session, the au-
tonomous vehicle should be able to locate itself
in an environment. Using a pre-learned model of
the environment is a reasonable approach. Vehi-
cle location can be achieved by matching the
information obtained from the sensors on the
vehicle with the environment model. An efficient
matching method and a simple model representa-
tion scheme usually are desired for real time
navigation.

Tsubouchi and Yuta [9] used color images and

a stored map information to reckon a mobile
robot in a corridor environment. The key step is
the matching between the color image and the
map information which is performed by exhaus-
tive investigation of similar color trapezoids in
both the image and the map. Yachida et al. [10]
determined the robot location by matching the
extracted vertical edges in the image with those
in a stored model of the environment. It is neces-
sary to estimate precisely the camera panning
angle before the matching process. Crowley [11]
used line segments to represent the sensor model
(i.e., information obtained from a sonar ranging
device) and the composite local model (i.e., infor-
mation integrated from the sensor model and a
pre-learned global model). The matching be-
tween the line segments of the composite local
model and those of the sensor model is achieved
by exhaustive pairing checking of segments’ ori-
entations, positions, and lengths. Chatila and
Laumond [12] located the vehicle in a building
using the coordinates of object vertices as the
matching features. And the matching is done by
exhaustive comparison of the distances between
any two points in the input pattern and the envi-
ronment model, respectively.

In this study, a map of the corridor contour of
a building, describing the navigation environ-
ment, is set up as the model (called corridor
model in the sequel). An experimental au-
tonomous vehicle was developed for use in this
research [18]. Mounted on the vehicle are two
cameras which are used as the vision sensors. The
wall baselines of the building corridor in the
images taken from the two cameras are extracted
and constitute the input pattern. The corridor
model and the input pattern are represented in
terms of line segments in a two-dimensional
floor-plane world. By encoding the line segments
into one-dimensional strings, the best matching
between the corridor model and the input pattern
is just the longest common subsequence (LCS) of
the two strings. The matching is achieved through
the use of an LCS algorithm, in which no compli-
cated pairing comparison is needed. The time
complexity of the algorithm is of the order of
O(mn) where m and n are the numbers of line
segments in the corridor model and the input
pattern, respectively. From the matching result,
the vehicle can locate itself in the environment
and autonomous navigation can be performed.
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Figure 1 shows the outlook of the experimen-
tal autonomous vehicle. It consists of a single
steerable driving wheel at the front and two pas-
sive rear wheels. The vehicle dimensions are 60
cm wide and 140 cm long. The on-board proces-
sor is a PC/AT microcomputer with a PC-VI-
SION-PLUS imaging interface. The two cameras
mounted on the vehicle can be directed leftward
and rightward, respectively, so as to take images
covering a large sector of the environment.

In Section 2, the theoretical framework of the
proposed model-based guidance by the LCS algo-
rithm is introduced. Then we derive vehicle loca-
tions from LCS matching results in Section 3.

Fig. 1. An experimental three-wheel vehicle. The description of employed image processing
[
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camera camera
take take
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image image
extract extract
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input input
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Fig. 2. The computational framework of a navigation cycle by longest common subsequence (LCS) matching.
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Fig. 3. Vehicle locations of the ith navigation cycle.

techniques is included in Section 4. Some experi-
mental results are shown in Section 5. The con-
clusions appear in the last section.

2. Principle of model-based guidance by LCS
algorithm

The proposed model-based guidance scheme is
performed in a cycle by cycle manner. The com-
putational flow of a navigation cycle is shown in
Fig. 2. Assume that it is the ith navigation cycle.
The corridor model is a two-dimensional repre-
sentation of the navigation environment. The two
cameras are mounted on the left and right of the
vehicle. The wall baselines in the images taken
from the two cameras are first extracted and
constitute the input pattern. By matching the
input pattern with the corridor model, the vehicle
location L;, as shown in Fig. 3, at the time instant
of image taking can be obtained. Because the
predicted vehicle location L) obtained from the
last navigation cycle generally does not deviate
much from the actual vehicle location L, it is not
necessary to match the input pattern with the
entire corridor model; only a portion of the corri-
dor model is required in the matching. And this
partial model, retrieved from the corridor model
according to the predicted vehicle location L, is
called the expected local model. Matching the
input pattern with the expected local model, we
can compute the deviation between the predicted
vehicle location and the actual one, and then
obtain the actual vehicle location L;. Note that
the computation of the vehicle location is started
at the time instant of image taking. Within the
time interval from the start of image taking to the
end of the matching process, the vehicle has

travelled for a certain distance. Using basic vehi-
cle kinematics, we try to compute this extra dis-
tance and predict accordingly the actual current
vehicle location, which is denoted as L, , in Fig.
3 (i.e., the vehicle location when the matching
process is finished). The predicted current vehicle
location is denoted as L} . The detailed descrip-
tion of the prediction process will be given later.
Based on the predicted current location, we steer
the front wheel of the vehicle to move one step
forward along the preselected navigation path. At
this time the cameras start to take the images
again and the next navigation cycle begins. Note
that the predicted vehicle location L, is used
to extract the expected local model in the (i + 1)th
navigation cycle.

In the following, we first describe several coor-
dinate systems and coordinate transformations
which are used in the navigation session. Then
the corridor model, the expected local model, the
input pattern, and the LCS algorithm used for
matching are introduced, followed by descriptions
of correctness checking and prediction of the
vehicle location.

2.1. Coordinate systems and transformations

Several coordinate systems and coordinate
transformations used in the following sections are
shown in Fig. 4. Each camera has a camera
coordinate system (CCS), denoted as u-v-w. The
vehicle has a vehicle coordinate system (VCS),
denoted as x—y-z, with the origin being located
at the contact point of the front wheel and the
ground. The x-axis and the y-axis are set on the
ground and are parallel to the short and long

image plane

front wheel i X
optical axis

X X
Fig. 4. The camera coordinate system u—uv—w, the vehicle co-
ordinate system x-y-z, and the global coordinate system x’'—
y'=-z'.
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sides of the vehicle body, respectively. To de-
scribe the environment, we need a third coordi-
nate system, called the global coordinate system
(GCS), which is denoted as x'—y’—z’. The x’'-axis
and the y’-axis are defined to lie on the ground.

The GCS is assumed to be fixed all the time
while the VCS is moving with the vehicle during
navigation. The location of the vehicle can be
assured once the relation between the VCS and
the GCS has been found. Since the vehicle moves
on the ground all the time, the z-axis and the
z'-axis can be ignored. That is, the relation be-
tween the two-dimensional coordinate systems
x—y and x'—y’ is sufficient to determine the
position and orientation of the vehicle. The trans-
formation between the CCS and the VCS for
each camera can be written in terms of homoge-
neous coordinates [8] as

(u,v,w,1)=(x,y,2,1)

1 0 0 0

0 1 0 0

Al o 0 1 0

| X4 —Ya —2zg 1
-r“ rp rz 0

x ry Ty ryp 0 (1)

rs3 ryp ryp 0
0 0 0 1

where

ry; = €os Ocos i + sin Osin ¢psin ¥,
ri, = —sin 6cos ¢,

ry3 = sin @sin ¢cos ¥ — cos Osin ¢,
75, = sin 6cos ¢ — cos Bsin ¢sin i,
5, = €0s fcos ¢,

r,3 = —cos 0Osin ¢cos  — sin Bsin ¢,
r3; = €OS ¢sin ¥,

ry, = sin ¢,

r33 = COS ¢pcos i,

and 6, ¢, and ¢ are the pan, tilt, and swing
angles of the camera, respectively, with respect to
the VCS; (x4, y4, z4) is the translation vector
from the origin of the VCS to the origin of the
CCs.

vehicle

Fig. 5. The relation between two-dimensional coordinate sys-
tems x —y and x' —y’ represented by a translation vector
(xl’,, y,’,) and a relative rotation angle w.

The transformation between the two two-di-
mensional coordinate systems x —y and x' —y’
can be written as follows:

cosSw sSinw 0

(x,y,1)=(x,y,1)| —sinw cosw O
0 0 1
1 0 0
x[0 1 0 (2)
x, y, 1

where (x, yp) is the translation vector from the
origin of x' —y’ to the origin of x —y and  is
the relative rotation angle of x—y with respect to
x'-y’, as shown in Fig. 5. The vector (x/, yp) and
the angle w determine the position and orienta-
tion of the vehicle in the GCS, respectively. In
the following, the combination of the vehicle po-
sition and orientation is referred to as the vehicle
location and is denoted by a triplet (x/, y/, o).

2.2. The corridor model

The goal of this study is to achieve au-
tonomous vehicle guidance in a corridor environ-
ment. The corridor environment and the global
navigation path are assumed to be known in
advance. Shown in Fig. 6 is the top view of the
walls of the corridor in the building in which the
experiments for this research is conducted. It is
time-consuming and not necessary to match the
entire corridor model with the sensor input pat-
tern. Matching with the expected local model is
sufficient. The expected local model can be ex-
tracted from the corridor model according to the
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Fig. 6. Top view of the walls of a corridor in a building.

predicted vehicle location computed from the last
navigation cycle.

The way we use to extract the expected local
model is to find first the intersection lines of the
ground and the bounding planes of the field of
view of each camera on the vehicle, and compute
then the portion of the corridor model appearing
within the field of view. The bounding planes,
denoted as P, through P,, are shown in Fig. 7
and the intersection lines, denoted as Q, through
Q,, are shown in Fig. 8.

The equations of P, through P, in the CCS
are

P;: u=tan(B,/2)v,
P,: u= —tan(B,/2)v,
Py:w=tan(B,/2)v,
P,;: w= —tan(B,/2)v,
where B, and B, are the view angles of each
camera in the horizontal and in the vertical direc-
tions, respectively.
Substituting eqn. (1) into the preceding equa-

tions and letting z =0, we get the equations of
Q, through Q, in the VCS. These equations are

plane P4
Fig. 7. The field of view of acamera and its bounding planes.

\ /.

1 \

visible
region

Q4

vehicle

Fig. 8. An illustration of the region on the ground visible to
the camera bounded by the border lines Q, through Q,.

then transformed into the GCS using eqn. (2) and
the predicted vehicle location. The corridor model
and the intersection lines Q, through Q, are all
on the ground plane and are now all described in
the GCS. Q, through Q, can then be used to
determine which line segments of the corridor
model are visible from the views of the cameras.
The clipping algorithm using region coding pro-
posed by Cohen and Sutherland [15] is employed
for this purpose. The line segments within the
fields of cameras’ views after clipping constitute
the expected local model. In addition, we take B,
and B, to be several degrees larger than the
actual values so as to accommodate possible er-
rors of the predicted vehicle location.

Note that the foregoing extraction process is
repeated for each of the two cameras. So the
expected local model consists of two parts: the
left expected local model and the right expected
local model.

2.3. The input pattern

The input pattern is a description of the local
environment obtained from the cameras on the
vehicle. In this study, we use the wall baselines at
the bottom of the baseboards of the corridor
walls, as shown in Fig. 9, to describe the corridor
environment. They are line patterns in the images
taken from the cameras and are easy to detect.
The detected baseline points in the images are
first backprojected onto the ground in the VCS
using the camera-to-vehicle transformation matri-
ces obtained from a pre-performed camera cali-
bration process [14]. By the vehicle location pre-
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Fig. 9. A picture showing the wall baselines of the corridor in
a building.

dicted at the last navigation cycle and eqn. (2),
the baseline points in the VCS can be trans-
formed further into the GCS. These points are
then traced and grouped into line segments and
the result is called the input pattern. The detailed
implementation process of grouping points into
line segments is discussed in Section 4. Like the
expected local model, the input pattern is com-
posed of two parts: the left input pattern and the
right input pattern. The input pattern is repre-
sented as a set of two-dimensional line segments
on the ground, therefore the matching of the
expected local model and the input pattern is
two-dimensional in nature and the computation
time is so reduced.

2.4. LCS matching

An LCS algorithm [13] is used in this study to
match the expected local model and the input
pattern to obtain their deviation. LCS detection
is a well known problem which is found in many
applications, such as detection of data redun-
dancy or information lost. It is a new idea to
apply the LCS concept to autonomous vehicle
guidance. In the following, we first briefly intro-
duce the LCS problem and then describe how to
apply an LCS algorithm to match the expected
local model with the input pattern for the guid-
ance purpose.

In the LCS problem, the inputs are of the form
of strings. A string is a sequence of symbols, such
as integers or English letters. A subsequence of a
string is obtained be deleting zero or more sym-

bols from the string. For example, 'bed’ is a
subsequence of ‘abacd’. A common subsequence
of two strings is a subsequence of both strings
and a longest common subsequence (LLCS) is one
with the greatest length. For example, ‘tony’ is an
LCS of ‘entropy’ and ‘topology’. The LCS prob-
lem can be solved by dynamic programming [13],
and an algorithm is listed below.

Algorithm. LCS detection
Input. Two strings A4 =a,a,..a,, and B =
b.b,..b,.
Output. The LCS S of 4 and B.
Step 1. Create an array L with a dimension of
m by n.
For i from 0 to m
set L(i, 0)=0; and
for j from 0 to n
set 1(0, j)=0.
For i from 1 to m and
for j from 1 to n
if a,=b,,
then set L(i, j)=L(G—1, j
-D+1
else if L(i, j—1)>L(i —
1.5
then set L(i, j)=L(, j—
D
else set L(i, j)=L(i —
L j)
Seti=m; j=n; and k=0;
while i # 0 and j # 0,
if LG, j)=L3G, j—1),
thenset j=j—1
else if L(i, j)=LG{—1, j),
thenset i=i—1
else set S(k)=a;; k=k +1;
i=i—1;and j=j— 1.
Reverse S.

Step 2.

Step 3.

Step 4.

Step 5.

It is natural to regard the expectéd local model
and the input pattern as strings and use the LCS
of the strings as their best match. To code the
baselines of the corridor model and the input
pattern into strings, we first divide them into
short line segments. For each short line segment
with its direction closer to verticality, it is coded
as ‘1’; otherwise, it is coded as ‘0’. Note that the
corridor model consists of only vertical and hori-
zontal line segments, so the two codes 0 and 1 are
sufficient. It is necessary to match the left ex-
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(a) A right expected local model codedtobe 111111111111111100011111.

(b) A right input pattern coded to be 1111111111110001111111.

Fig. 10. An example of coding two-dimensional line segments
to be one-dimensional strings.

pected local model with the left input pattern
and match the right expected local model
with the right input pattern, respectively. An
example is shown in Fig. 10, where Fig. 10(a)
is a right expected local model coded to
be 111111111111111100011111 and Fig. 10(b)
is a right input pattern coded to be
1111111111110001111111; the LCS of these two
strings is 11111111111100011111.

3. Vehicle location from LCS matching results

3.1. Vehicle location at the time instant of image
taking

The expected local model and the input pat-
tern are represented in terms of short line seg-
ments on a two-dimensional ground plane. For
each matching pair of short line segments in the
expected local model and the input pattern, re-
spectively, the deviation between them can be
represented as a two-dimensional translation and
a rotation with respect to a certain reference
point. From all the matching pairs, we can com-
pute an average deviation between the expected
local model and the input pattern. And a refined
average is computed further to increase accuracy
using only those pairs whose deviations are close
to the overall average.

From the computed average deviation between
the expected local model and the input pattern,
including a translation (., ¢,) and a rotation vy
with respect to a reference point R, we can

correct the predicted vehicle location (L) in Fig.
3) in the GCS according to the following process.
First rotate the predicted vehicle location through
the angle value of y with respect to the reference
point R, and then translate it through the values
of (¢,, t,). Note that if we rotate and translate
the input pattern in the same way, the corridor
model and the input pattern will overlap.

3.2. Vehicle location at the end of the matching
process

From the time instant of image taking to the
end of the matching process, the vehicle has
traveled a little farther. So the vehicle location
obtained from correcting the predicted location
using the matching result is not the real current
vehicle location (L, , in Fig. 3). Instead, it is the
vehicle location at the start of the matching pro-
cess (or approximately at the time instant of
image taking) (L, in Fig. 3). Using the speed and
the front wheel direction of the vehicle, we can
predict the current vehicle location by basic vehi-
cle kinematics. By the predicted vehicle location
(L;,, in Fig. 3) in the environment, a table
look-up control strategy derived in [18] is used to
steer the front wheel to guide the vehicle to move
along a desired navigation path.

The prediction of the current vehicle location
after the matching process by vehicle kinematics
is derived in the following. First, we define the
turn angle of the front wheel of the vehicle to be
zero when the front wheel is parallel to the long
side of the vehicle body. It follows from basic
kinematics that the vehicle will move along a
circular path if the front wheel is fixed at a
specific angle other than zero. In such a case the
rotation center is located at the intersection of
the line perpendicular to the front wheel and that
perpendicular to the rear wheels. Figure 11 shows
this situation. The distance between the front
wheel and the rear ones can be measured manu-
ally and is denoted as d. The radius of rotation
can be found to be

d
r= 3

sin &

where 6 is the turn angle of the front wheel.
Shown in Fig. 12 are the relative locations of
the vehicle before and after the matching pro-
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circular path

rotation center

Fig. 11. The front wheel of the vehicle traversing a circular
path.

cess. Vehicle location L, is the actual vehicle
location at image taking and let it be represented
by (x/, y/, ®;). Vehicle location L}, is the pre-
dicted location after the matching process and let
it be represented by (x/, ,, ¥/, ,, w;,,). Note that
both locations L; and L}, are with respect to
the GCS. Let At to be the time interval from the
time instant of image taking to the end of the
matching process. It can be found by querying the
system clock, and the current direction & of the
front wheel can be obtained from the control
interface. Let the vehicle speed be v. We can find
the turn angle y of the vehicle shown in Fig. 12
to be

vAt sin 8
YT
because
d
VAt =ry = — v.
sin &

Obviously, the length of the translation vector
T of the vehicle shown in Fig. 12 can be com-
puted to be

T?>=r?+r*—2rcos vy
or T=ry2(1—cos y)

and the direction of T with respect to the VCS at
location L; is pw =mw/2-6-y/2. Vector T with
respect to the VCS at location L; can thus be
found to be (T, T,) = (T cos u, T sin u). Hence

the components of T with respect to the GCS
can be found to be

i e

I =T.cos w;,— T,sin w,,
SR

T)=Tsin w; + T,cos w,.

The predicted current vehicle location L, ,
can thus be found to be

Xi=x;+T,

Yir1 =¥ t 1,

and

w; . =w; +v, if the front wheel turns rightward,
or

w; = w; — v, if the front wheel turns leftward.

4. Image processing techniques

The basic requirement behind the proposed
approach is to represent the expected local model
and the input pattern in terms of one-dimen-
sional strings. The expected local model is a set
of two-dimensional line segments, as shown in
Fig. 6, either vertical or horizontal. Each line
segment in the expected local model is first di-
vided into short line segments with an identical
length. Each vertical short line segment is as-
signed the symbol ‘1’, and each horizontal short
line segment is assigned ‘0. Then the left and
right expected local models can be respectively
represented by one-dimensional strings. The or-
der of each symbol in the string is determined
according to the distance between the central
point of the corresponding short line segment
and the origin of the VCS.

For the input pattern, it is also necessary to
divide the line segments into short ones and
assign the symbols ‘1’ and ‘0’ to them. We de-
scribe hereinafter the image processing tech-
niques for extracting the baseline points from the
images and grouping them into line segments to
compose the input pattern.

4.1. Extraction and backprojection of baseline
points

Two images of the baselines are taken in each
navigation cycle. The images are processed and
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the pixels on the baselines are extracted. This is
achieved through simple scanning of each image
column from left to right. Since the baselines of
the walls are black and contrast well with the
white floor, a threshold value may be preselected
to find candidate pixels in column scanning. The
scanning starts from the bottom of a column and
proceeds upward. Two consecutive pixels with
gray values less than the threshold value indicate
a candidate pixel on a baseline. In practice, how-
ever, strong lighting near the windows will cause
the failure of the scanning if only a fixed thresh-
old value is used for thresholding the entire input
image. So, we divide the image into several hori-
zontal strips and decide for each strip a threshold
value according to the average gray value of the
strip. The average gray value of a strip is com-
puted by sampling the strip for every ten pixels in
both horizontal and vertical directions. Only pix-
els corresponding to the ground and the wall are
considered in computing the average gray value
of a strip. So, a sampled pixel with a gray value
less than a certain value, denoting a black point,
is ignored.

To speed up the scanning process, a locality
property is utilized. That is, if a candidate pixel is
found to be at row j on column i, then the range
from row j—5 to row j+ 5 on column i+ 1 is
scanned first. If this scanning fails to find a
candidate pixel, rescanning from the lowest row is
performed on column i + 1. Usually, the hit ratio
is very high and the processing speed becomes
much faster.

Once the candidate baseline pixels are found,
they are backprojected according to eqn. (1) (using
pre-calibrated camera parameters) onto the
ground in the VCS. By the predicted vehicle
location and eqn. (2), they can be transformed
into points in the GCS.

4.2. Grouping baseline points into line segments

We associate each baseline point P in the
GCS with the direction of a line segment formed
from the vicinal points of P by least-square-error
fitting. Then the adjacent baseline points with
similar directions are grouped into a line segment
also by least-square-error fitting. These line seg-
ments in the input pattern are then divided into
shorter ones, each of which is coded to symbol ‘1’

Fig. 12. The vehicle location at image taking and that after the
matching process.

or ‘0’ depending on its direction, as described
previously.

5. Experimental results

In the experiments, the vehicle location with
respect to the GCS are computed for navigation.
Shown in Figs. 13 through 15 are examples to
show the effectiveness of the proposed matching
approach. Figure 13(a) shows two images taken
from the two cameras. Bright points in this figure
indicate the found candidate pixels on the base-
lines. The expected local model and the input
pattern are illustrated in the left and right parts
of Fig. 13(b), respectively. Figure 13(c) shows the
superimposition of the expected local model over
the input pattern before matching. From the LCS
matching result, the deviation between the corri-
dor model and the input pattern, including a
translation vector (¢, ) and a rotation vy, can be
computed. By rotating and translating the input
pattern through the values of (¢, ty) and vy, re-
spectively, we can see the matching effect of the
corridor model and the input pattern, as shown in
Fig. 13(d). Because of the errors from the image
processing and camera calibration processes,
there may exist a little deviation between the
expected local model and the rotated and trans-
lated input pattern. Figures 14 and 15 show two
additional examples. These figures demonstrate
the ability of the LCS algorithm in matching noisy
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patterns. Note that in these cases, some of the measurements, the predicted vehicle locations,
points on the baselines are not detected and and the computed vehicle locations from the
some points not on the baselines are detected. matching results of 5 cases (including Figs. 13
The actual vehicle locations obtained by manual through 15 as the first two and the last) are listed

Fig. 13. An LCS matching result (case 1): (a) Two images taken from the two cameras; (b) The expected local model (left) and the
input pattern (right); (c) Superimposition of the expected local model and the input pattern before matching; and (d) Superimposi-
tion of the expected local model and the input pattern after matching.
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in Table 1. Although there are some degrees of rected to rather high accuracy. The average dis-
errors in the predicted vehicle locations, by the tance error in the x-axis direction is about 4 cm
LCS matching the vehicle location can be cor- and that in the y-axis direction is about 10 cm.

Fig. 14. An LCS matching result (case 2): (a) Two images taken from the two cameras; (b) The expected local model (left) and the
input pattern (right); (c) Superimposition of the expected local model and the input pattern before matching; and (d) Superimposi-
tion of the expected local model and the input pattern after matching.
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And the average direction error is about 0.5 Many successful navigations have been per-
degree. Such errors are found to be tolerable for formed on an obstacle-free corridor and the vehi-
vehicle guidance in our navigation experiments. cle is driven at the speed of about 10 cm/s.

Fig. 15. An LCS matching result (case 3): (a) Two images taken from the two cameras; (b) The expected local model (left) and the
input pattern (right); (c) Superimposition of the expected local model and the input pattern before matching; and (d) Superimposi-
tion of the expected local model and the input pattern after matching.
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Table 1
Experimental results for vehicle location

actual predicted
vehicle location
(cm, cm, degree)

vehicle location
(cm, cm, degree)

computed
vehicle location
(cm, cm, degree)

1 (122, —1753, 8.13) (101, — 1744, 12) (126.48, —1744.68, 8.30)
2 (120, —855, —4.34) (140, —900, —11) (121.67, —848.10, —4.55)
3 (110, —808, —7.51) (120, — 840, —5) (105.21, —786.53, —6.15)
4 (139, —672, 10.23) (110, - 630, 4) (137.52, —664.42, 9.33)

5 (130, —596, 2.92) (120, — 612, —2) (135.82, —590.10, 3.20)

Approximately 6 seconds are needed for a navi-
gation cycle.

6. Conclusions

In this paper, we have proposed the use of
model matching by the LCS algorithm for au-
tonomous vehicle guidance and tested it on an
experimental vehicle. Accurate global location of
the vehicle with respect to the environment is
achieved through continuous model matching
during navigation. Backprojection using the as-
sumption of ground flatness and the choice of the
corridor ground contour as the model simplify
the matching. Only simple data structures are
used to represent the environment and provide
necessary information for the navigation task. The
use of the LCS concept in the matching process
has been verified as a reliable method for vehicle
location. It is suited for this application because
of its simple computation requirement and its
insensitivity to noise. Satisfactory autonomous
navigation results have been obtained. In spite of
the low speed of navigation, we feel that the
system’s performance is satisfactory using only
one microcomputer and some basic equipments.
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