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Attributed Grammar-A Tool for Combining
Syntactic and Statistical Approaches

to Pattern Recognition
WEN-HSIANG TSAI, MEMBER, IEEE, AND KING-SUN FU, FELLOW, IEEE

Abstract-Attributed grammars are defned from the pattern recogni-
don point of view and shown to be useful for descriptions of syntactic
stuctures as well as semantic attributes in primitives, subpatterns, and
patterns. A pattern analysis system using attributed grammars Is proposed
for pattern cdissfication and description. ibis system extracts primitives
and their attributes after preprocessing, performs syntax analysis of the
resuldng pattern representations, computes and extracts subpattern attri-
butes for syntactically accepted patterns, and fmialy makes decisions
according to the Bayes decision rule. Such a system uses a combination of
syntactic and statistical pattern recognition techniques, as is demonstrated
by illustrative examples and experimental results.

I. INTRODUCTION

OMBINING syntactic and statistical pattern recog-
nition approaches has been advocated by several

investigators [1-[4], [7], [22] in the past decade. The
motivation arises from the fact that neither the syntactic
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approach nor the statistical approach alone is adequate
for some practical applications; the former is weak in
handling noisy patterns and numerical semantic informa-
tion [10], [241, and the latter is unable to describe complex
pattern structures and subpattern relations. Since the ad-
vantage of one approach appears to be the disadvantage
of the other, a hybrid model is desirable that incorporates
the advantages of both and is thus more useful to real
applications. In this paper we propose the use of attri-
buted grammars as a tool for combining the syntactic and
the statistical approaches to pattern recognition.

Attributed grammars were first formulated by Knuth
[51 to assign semantics or meanings to context-free lan-
guages from the computational linguistics point of view.
Each production rule of an attributed grammar consists of
a syntactic rule and a semantic rule, the former being used
to specify language syntax and the latter to add contextual
semantics. Illustrative examples of applications of such
semantic formalism to patterns described by picture de-
scription languages (PDL) [6] are found in [7]. The necess-
ity of using pattern semantics to facilitate the utilization
of contextual information was also emphasized in [231,
although attributed grammars were not used there. Tang
and Huang [8] applied attributed grammars to image
understanding. You and Fu [9], [25] used attributed gram-
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mars for shape recognition. All the above applications of
attributed grammars are deterministic in nature without
statistical consideration. In this study we try to inject
statistical decision theory into the use of attributed gram-
mars so that the resulting formalism might be more practi-
cal for applications.

Statistical consideration is possible due to the fact that
primitive and subpattern attributes contained in the
semantic rules of attributed grammars can be randomized
to take care of noise and distortions. This means that
probability distribution or density functions can be in-
ferred to specify different occurrence possibilities of vary-
ing attributes. Optimum decisionmaking becomes possible
through the use of these functions. In this paper we
propose a pattern analysis system using attributed con-
text-free grammars which, in addition to their pattern
structure analysis and description capability using syn-
tactic production rules, can also make statistical decisions
for pattern classification according to the pattern attri-
butes computed in the semantic attribute rules.

Without the guidance of structural analysis, numerical
feature or attribute extraction sometimes may not be
effective enough for pattern classification [3], [9]. In the
proposed system, it is shown that semantic rules of the
attributed grammars can be used to guide effective primi-
tive or subpattern attribute extraction. This is made possi-
ble through the use of syntactic production rules and
parsing procedures to group primitives hierarchically into
subpatterns and patterns. Both local and global attribute
extractions can be specified in the semantic rules in the
form of mappings, functions, or computation algorithms.
All useful attributes, either from primitives or from sub-
patterns can be put into a so-called total attribute vector
for final decisionmaking.

II. ATTRIBUTED GRAMMARS FOR PATrERN
DESCRIPTION AND CLASSIFICATION

In this section, we give a definition of attributed gram-
mars. An example to illustrate the usage of such gram-
mars is provided. A pattern analysis system using attri-
buted grammars is then described.

A. Definition and Example of Attributed Grammars

Definition 1: An attributed context-free string grammar
is a 4-tuple G=(VN, VT, P, S) where

VN set of nonterminals,
VT set of terminals,
SE VN start symbol,

for each XE (VN U VT), there exists a finite set of attri-
butes A(X), each attribute a of A(X) having a set, either
finite or infinitive, of possible values Da; and P is a set of
productions each of which is divided into two parts: a

syntactic rule and a semantic rule. The syntactic rule is of
the following form

Xo-*X1X2 ... X.

where XO E VN and each X, EVNU VT for I < i < m. The
semantic rule is a set of expressions of the following form

a2-f2(a21, a22,1 , a2n,)

where {a1,a2, ...* an)}=A(X0)uA(XI)u ... UA(Xm),
each aq (l < i S n, 1 <j < n ) is an attribute of some Xk for
0< k < m, and each f;(I < i < n) is an operator which may
be in one of the following three forms:

a) amapping fi: D,i,XDa,2X2XXDo i
-D

b) a closed-form function, i.e., a, may be expressed
functionally in terms of the values of
atil, ai2 'f (ini,X

c) an algorithm which takes ail, Iaj2j... , ain, and any
other available information or data1 as input and a,
as output.

The above definition follows Knuth's formalism closely
[51; two kinds of attributes are included in the semantic
rules: inherited attributes and synthesized attributes. The
former are those aspects of meaning which come from the
context of a phrase in a string, whereas the latter are those
aspects of meaning which are built up from within the
phrase. Note that a phrase represented grammatically by a
nonterminal corresponds to a subpattern consisting of
several primitives. In the above definition, if
{a1,a2,. ,an)=A(X0) and each aij is an attribute of
some Xk for 1 < k < m (not 0 < k < m), then all attributes
defined in the semantic rules are synthesized attributes. If
{a,, a2> * -,an)=)A(X1)UA(X2)U ... UA(Xm) (not in-
cluding A(Xo)) and each aij is an attribute of X0, then all
attributes defined are inherited attributes.

In syntactic pattern recognition, if a top-down parsing
is adopted to analyze pattern structures, then inherited
attributes are more convenient for use because they can
be computed in a top-down fashion, starting from the
start symbol S of the grammar [26]. On the contrary, if a
bottom-up parsing is preferred, then synthesized attributes
should be used, which are computed in a bottom-up
fashion. In the following, we will give an example of
chromosome classification to illustrate the use of attri-
buted grammars. Chromosomes will be described by a

grammar with synthesized attributes, although a chro-
mosome grammar with inherited attributes has also been
proposed [27]. For illustrative purposes, the example is
kept simple and involves only a single attribute. A more

complicated example can be found in Tsai and Fu [30].
Example 1: Chromosome Classification-An Illustrative

Example:
1) Conventional syntactic approach: With the follow-

ing primitives as terminals [11],

VT a, ;b , 1;c d,S~
'With respect to pattern recognition, this means the whole input

pattern.
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Fig. 1. Three classes of chromosomes. (a) Median chromosome ZM5
cbbbabbbbdbbbbabbbcbbbabbbbdbbbbabbb. (b) Submedian chro-
mosome zs -cbabbbdbbbbbabbbbcbbbbabbbbbdbbbab. (c) Acrocentric
cnlromosome ZA - caatDDODOaDDDDDcDDDDDabbDDDDaac.

b

a

cc b

a

(c)

Fig. 2. Three classes of chromosomes. (a) Median chromosome ZM-
dbabcbabdbabcbab. (b) Submedian chromosome zs -

dbabcbabdbabcbab. (c) Acrocentric chromosome ZA=dbabcbabdaca.

three kinds of chromosomes-median, submedian, and
acrocentric-are segmented accordingly, and are shown
in Fig. 1 together with their string representations.2
The nonattributed grammars to characterize the three

kinds of chromosome patterns could be as follows [12]:

Gmedia = (VNM, VTM, PM' S)
VNM = {S, A, B, D, H, J, E, F), VTM =as above
PM: S-*AA, D-*FDE, H--a

A->cB, D-*d, J-*a
B-*FBE, F-4b, E--b
B--HDJ

Gsubmedian = (VNS, VTS, Ps S), VTS = VTM
VNs = {S, A, B, D, H, J, E, F, W,G, R, L, M, N)
Ps: S-*AA, D--FDE, G-+FG, L--HNJ

A-cM, D-*FG, W->WE, R--HNJ
B-+FBE, D--WE, F-*b, G--d
B--FL, L-)FL, E-b, W--d
B-*RE, R->RE, H--a, N-+FDE
M--FBE, J->a

Gacrocentric (VNA VTA PA, S), VTA = VTM
VNA={A,B, D, H, J,E,F, L,R,W,G}
PA: S-4AA, D-4FG, G-.*FG, R-*HDJ

A-+cB, D-* WE, W- WE, G-*d
B->FL, L--FL, L-*HDJ, W--d
B-4RE, R-*RE, H-+a, E->b

J-*a, F-b.

A close observation of the three kinds of chromosomes
shows that they can be easily classified by measuring the
lengths of their arm pairs [25]. The length of an arm pair
is represented by the average of the lengths of the two
arms on either side of a chromosome. If the length of the
left arm pair is approximately equal to that of the right

2In the remainder of this paper, by a string representation we mean
the string of terminal symbols (not including attributes).

arm pair, then the pattern is a median chromosome. If
they differ significantly, then it is a submedian chro-
mosome, or if the length of one arm pair is near zero, then
it is an acrocentric chromosome. However, since conven-
tional grammars such as those shown above cannot incor-
porate attributes (numerical data) within their production
rules, the classification consequently can only rely on
symbolic syntax analysis which, when made to take care of
numerical information contained in the input patterns, is
usually not very effective and efficient.

2) Attributed grammar with synthesized attributes for
chromosomes: We now show that an attributed grammar
with synthesized attributes can be used for chromosome
description and classification. First, we remove the fixed-
length restriction from terminal b, and let its total curve
length be an attribute. For example in Fig. 1 (a) we

consider the curve between terminal d and terminal a as a
single terminal b. The resulting segmentations and string
representations for the chromosomes are shown in Fig. 2.
Note that the strings for a median and submedian chro-
mosomes have become identical, but this is not a problem
since our discrimination between them will rely on the
difference of their synthesized attributes. The grammar is
given as follows in which superscripts of nonterminals are

used just for the purpose of discriminating identical non-
terminals on the right-hand side of a syntactic rule.

A chromosome grammar with synthesized attributes:
Gs = (VT, VN, P, S)

VT = VTM as specified previously,

VN ={SIQ1lQ2, R1, R2, M1, M2, A, B,C, D)

with attribute sets as follows:

a) A(A)=A(C)=A(D)=A(M2)=+,
b) A(X)= {lx}, for X= B, MI, RI, R2, Ql, Q2,
c) A(S)= (Is,, 'S2}

a

a

(a)

a

a

(b)
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P: 1)
2)
3)

where nonterminal S represents the whole pattern, Q, or
Q2 represents an arm pair connected to a primitive d,
attribute Is, or 1S2 is an arm pair length in the chro-
mosome, and IQ, or IQ2 is the average length of the two
arms in the left or right arm pair:

4) Ql1 DR 1; IQ, -IR,
5) Q2--DR2;lQ2--lR2

where nonterminal RI or R2 represents an arm pair, D
represents the primitive d, and attribute 'R. or 'R2 is the
average length of the two arms in left or right arm pair.

6) R,1 _3MCM2; 'R1 ('ML + IM2)/2
7) R2-*M2CM2;1R2 °-0

where nonterminal Ml or M2 represents a chromosome
arm, C represents the primitive c, and attribute IM, or IM2
represents the length of arm Ml or M2.

8)
9)

10)
11)
12)
13)

Ml -B'AB2; 'Ml ,(IB, + IB2)/2
M2 -iA

A-ba
B--b; IB <-lb
C--c
D--d

where nonterminals A, B, C, D represent primitives
a, b, c, d, respectively and attribute 'B or lb is the curve

length of primitive b.
3) Discussions: Besides being a single grammar in-

stead of three, Gs, though in context-free form, is a

finite-state grammar. The introduction of attributes into a

grammar, generally speaking, reduces grammatical com-

plexity [9], [25]. This is indeed an advantage of using
attributed grammars for pattern recognition because a

reduction of grammatical complexity implies efficient syn-

tax analysis.
To classify a given chromosome w using Gs, a bottom-up

parsing is more convenient for structural analysis since

only synthesized attributes are defined in G . After the

string of the chromosome is parsed, two attributes, '1' IlS2,
are synthesized for the start symbol S which represents
the whole pattern. Such attributes will be expressed by a

vector X,, which we will call the total attribute vector

(TAV) of w. Here we have X. = (USl,'s2). Since chro-

mosomes vary in sizes, for each class of chromosomes

there exists a density function which specifies the distribu-

tion of all possible TAV's of this class. Using this function

and other statistics (see the following sections), various

statistical decision criteria for classification can be ap-
plied. Actually, the whole theory of statistical pattern
recognition is applicable here. An example of statistical

chromosome classification using grammar Gs will be given
later in this paper. Although attributes are introduced

mainly for the purpose of statistical classification, they

(a)

(b)

Fig. 3. Two acrocentric chromosomes in opposite directions. (a) With
string representations Z2 (left) and z3 (right). (b) With same string
representation z1 (ls2 of t, and ls, of W2 0).

also contribute to the description of patterns. For details,
see Tsai and Fu [27].

Finally, it should be noted that the chromosome gram-
mar Gs can generate three syntactically different string
representations by using different combinations of syn-
tactic rules during string derivations:

z = dbabcbabdbabcbab

Z2= dbabcbabdaca

Z3= dacadbabcbab

in which Z2 and Z3 both represent the structures of
acrocentric chromosomes but in opposite directions (see
Fig. 3(a)). z, primarily represents a median or a sub-
median chromosome, but it can also represent an
acrocentric chromosome because, as mentioned previ-
ously, we allow all b terminals to vary in length so that,
even on the short arm pair of an acrocentric chromosome,
b terminals with very small lengths may still exist after
boundary segmentation (see Fig. 3(b)).

B. A Pattern Analysis System Using Attributed Grammars

The block diagram of a syntactic pattern recognition
system using attributed grammars is shown in Fig. 4. It is
modified from a similar diagram for conventional syn-
tactic pattern recognition [7]. Given an input pattern for
classification, after preprocessing, all necessary primitives
and their attributes are extracted according to some pre-
specified procedures. Note that only primitive attributes
are extracted here; no subpattern attributes are to be
extracted at this stage because which primitives are to be
grouped to form a subpattern is still unknown. The next
step is to transform the primitive set into a structural
representation, such as a string, a tree, or a graph, by
assigning symbols to primitives, selecting concatenating
directions, and any other prespecified relations. The re-
sulting representation is then analyzed syntactically by
using the syntactic rules of the attributed grammars, while
the semantics computation is performed simultaneously to
obtain all required nonterminal (subpattern) attributes
according to the semantic rules. On the other hand, during
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Recognition
Learning

Attributed
Sample -> grammar
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Fig. 4. Pattern analysis system using attributed grammars.

the computation of semantics using the semantic rules,
some nonterminal (subpattern) attributes may not be ob-
tainable by a mapping or computation from lower level
terminal attributes, then it is necessary to go back to the
input pattern, to find out the subpattern corresponding to
the nonterminal, and to perform the necessary subpattern
attribute extractions as specified in the semantic rule. A
note to be emphasized here is that subpattern attributes
cannot be extracted before syntax analysis and semantics
computation because, without the guidance of syntax
analysis, the system would not know which terminals
(primitives) should be grouped into a nonterminal (sub-
pattern). This is indeed an advantage of using attributed
grammars because subpattern attribute extraction now
becomes more effective with the guidance of syntax analy-
sis. Such an advantage is not obtainable by using the
statistical approach alone. After this stage, we are left with
a parse of the pattern representation if the input pattern is
syntactically correct, together with its total attribute vec-
tor. A syntactically incorrect representation corresponding
to a structurally erroneous pattern will be rejected by the
parser. The hierarchical syntactic and semantic descrip-
tion of the input pattern is also available now except its
class assignment.
The final stage is the decisionmaking performed on the

total attribute vector to classify the input pattern. The
various decision criteria in statistical pattern recognition
are all applicable. Actually, by combining syntax analysis,
semantics computation, and decisionmaking, we have for-
mulated a quite general and powerful scheme for pattern
analysis which can be viewed as a combination of syn-
tactic and statistical approaches to pattern recognition.

III. STATISTICAL CONSIDERATIONS FOR USING
ATTRIBUTED GRAmMARs

To use attributed grammars for statistical classification,
at least the following three kinds of statistical information
should be considered.

1) The occurrence probability of every pattern class:
This a priori information usually is assigned intuitively or

collected through long-term observations of pattern occur-
rences.

2) The occurrence probability of a specific pattern
structure within its pattern class: For example, in the
example of chromosome recognition, three different string
representations can be generated for the class of
acrocentric chromosomes, then we would want to know
the occurrence probability of each string representation
which represents a distinct pattern structure. Such proba-
bilities can be obtained and derived by using stochastic
grammars [7], [14] to be discussed in Section III-A.

3) The occurrence probability distribution or density
functions of the total attribute vectors of each pattern:
Such information is needed for the classification in terms
of semantic attributes.
The above three kinds of statistical information, though

identified separately, must be combined together for a
complete statistical classification of an input pattern. In
the following sections, deriving an optimum classification
criterion is attempted according to the Bayes decision
rule, which utilizes all these three kinds of statistical
information. Computations of these information accord-
ing to such a criterion are discussed. Various suboptimal
cases are derived.

A. Stochastic Grammars for Specifying Pattern Structural
Occurrence Probabilities

Stochastic grammars were proposed to model the struc-
ture of noisy patterns and also to specify the occurrence
probability for each pattern accepted by the grammars [7].
To be more specific, and to fit into our discussion of
attributed grammars, we define stochastic attributed con-
text-free string grammars in the following.

Definition 2: A stochastic attributed context-free string
grammar is a 4-tuple G=(VN,VT, P, S) where all nota-
tions are the same as those for a nonstochastic one (Defi-
nition 1) except that each syntactic rule in each produc-
tion of P is of the following form:

pxoXl X2. . Xm
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where XoEVN, Xj E(VNu VT) for lIjim,andpisthe
probability associated with this syntactic rule. Further-
more, O p < 1, and the summation of all the probabilities
associated the syntactic rules with XO at the left-hand side
must be equal to one. The semantic rule of each produc-
tion is the same as in Definition 1.
When a stochastic attributed grammar is used to gener-

ate a pattern representation, a pattern occurrence proba-
bility can also be computed simultaneously which is the
product of all the probabilities associated with the syn-
tactic rules used in deriving the pattern representation.
This occurrence probability is used to specify the within-
class occurrence possibility of the pattern structure (struc-
ture of the pattern representation), and this can be made
possible by carefully adjusting probabilities associated
with the syntactic rules [14].

Since each attributed grammar can generate several
pattern classes (e.g., Gs in Example 1 covers three classes
of chromosomes), several sets of probability assignments
for the syntactic rules are required, each set for a corre-
sponding class. After the string representation z of a given
unknown pattern X is syntactically accepted, several prob-
abilities P(z C1), P(z C2),.-* , P(zICN) are computed (N
= total number of classes), each P(z Ci) being the within-
class probability of z in class Ci. We will call P(z ICi) the
structural occurrence probability of z within class Ci, in
contrast with the attribute occurrence probability or density
to be defined later for the TAV of a given pattern. Using
stochastic attributed grammars in this sense, we assume
implicitly that each pattern class syntactically contains all
the strings generated by the syntactic rules of the attributed
grammar. For example, in chromosome classification, the
class of acrocentric chromosomes includes all three strings
Z, Z2 Z3, generated by Gs (see the last paragraph of
Example 1). However, this seems not to be the case for the
class of median or submedian chromosomes; either class
contains only the string z,, but not Z2 and Z3. As far as a
classification is concerned, though, we can adjust the
probability assignments of the syntactic rules so that
unwanted strings in certain classes (such as Z2, Z3 in the
median or submedian class) will have low or zero occur-
rence probabilities computed and thus not be classified as
from those classes [12].

B. An Optimum Decision Rule for Pattern Classification
Using Attributed Grammars

After an input pattern X is analyzed syntactically and
accepted by an attributed grammar, a total attribute vec-
tor X is also obtained as the result of simultaneous
semantics computation. This vector X is supposed to
include all attributes, either from primitives or from sub-
patterns (or even from the whole pattern), which are
useful for pattern classification. If every pattern is free of
noise or distortion, then X will be invariant; every compo-
nent value xi in X=(xl,x2,... 9,xn) will be fixed to one
possible value, and the classification of w can be easily
accomplished by matching X with the noise-free TAV's of

the prototype or reference patterns in each pattern class.
In real world situations, however, noise and distortion
usually are not avoidable, and X is subject to numerical
variations. Probability distribution or density functions
thus can be introduced on X and a statistical classification
becomes possible. This not only solves partially the prob-
lem of handling noisy or distorted patterns, which is a
weakness of conventional syntactic methods, but also
increases classification accuracy because optimum deci-
sion criteria, such as the Bayes rule, are applicable here, as
can be seen in the following discussions.
Given an unambiguous attributed grammar G, let N be

the total number of pattern classes covered by G, and n be
the total number of distinct strings (corresponding to
pattern structures) which can be generated by G. Here n
may be infinite if there exists recursive syntactic rules in
the productions of G. According to the discussions in
Section III-A, it is considered that each pattern class C,
(i= 1,2,...*, N) syntactically contains all the n strings
ZI, Z2 ,... Zn generated by G. Now suppose that there is
no noise or distortion and we want to generate syntactic
and semantic descriptions of pure patterns. This can be
done by using, for each class Ci, a distinct set of numerical
values for the terminal and nonterminal attributes used in
the semantic rules and then computing the total attribute
vector Xij for each zj (subscripts i, j in Xij specify that this
Xij is computed for zj of class Ci). If we consider the
2-tuple wij = (zj, Xij) as the description of a noise-free
pattern in class Ci, then each Ci consists of exactly n
noise-free patterns Ci = {(Will Wi2l ,I Win); but since in
practice, attributes of input patterns are subject to
numerical variations due to noise and distortion, each w
semantically can be deformed into a finite or infinite set
of noisy versions. All these versions have an identical
symbolic string representation zj, but are different in their
attribute values, or after semantics computation, in their
TAV values. Thus for ij = (zj, Xij) in Ci, let the set of its
noisy versions be denoted as D(wij) = { ijkI°ijk =
(zj,Xijk), k=1,2,- -. ,mij} where mrij may be finite or
infinitive, then Ci can be regarded as Ci = D(wi1) U D(Wi2)
u ... UD(won). We assume that yij E D(wij), i.e., wij is
considered as a possible version in D(wij). Since each
EijkED(oij) may occur with a different probability, we

can introduce a conditional probability distribution or
density function p( wij,C) on D(oij) for class C, such
that

P (Wijk wijCIi) =P(Xijk ZjI Ci) (1)

is the occurrence probability or density for w,jk =
(z;,IXijk) ED(cojj), which will be called the attribute occur-
rence probability or density of wijk from wij, in contrast
with the structural occurrence probability of zj within class
Ci, P(zlCi).
Now, given an unknown pattern o, if its string repre-

sentation is accepted syntactically by the grammar as zj,
and if the computed TAV for w is X, then w= (zj, X) can
be regarded as a noisy version of wij, included in D(w,j).
So, the attribute occurrence probability or density of w
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from wij with respect to class Ci is

P(A Wip Ci) =p(X zj, Ci) (2)

and the composite occurrence probability or density that
C E Ci is

p(w ICi)=p(w Iij, Ci)P(Wij Ici)
=P(X zi, ci)P(zIci),

the kth derivation of zj, then the composite probability or
density that wE Ci is

Ij

p((j|Ci)= tj[(lii)(ij i) I
k= 1

(3)
Ij

2= [p(Xklzk,Ci)p(zjklC)]k=1
(5)

where P(wij C,) is used symbolically to specify P(z Cj).
Next, we compute the a posteriori probability or density,

p(Ci Iw), that w can be recognized as a deformed pattern
from pattern class Ci = u7 1D(wij). Since the attributed
grammar G is assumed to be unambiguous, each string
representation accepted syntactically by G has only one
derivation [13]. Then, if the string representation z of w is
accepted as zj, we get

p(Ci ) =P(w Ci)P(Ci)/p(w)
=P(wjwij, Ci)P(WijICi)P(Ci)/p(w)

(4)
where wij= (zj, Xij), P(C,) is the a priori probability of
class Ci, andp(w)=2N Ip (w j C,)P(C,).
When the attributed grammar G is ambiguous, the

above discussion is no longer valid and should be mod-
ified as follows. First, a string accepted by G syntactically
now may have several or an infinite number of distinct
derivations. For the system to be implementable, we as-
sume here that G is not infinitely ambiguous [28] so that
each string accepted by G has only a finite number of
distinct derivations. This assumption is general enough for
most applications, and is more general than the unam-

biguity assumption made in several studies on syntactic
pattern recognition [7], [14], [25]. Next, to generate the set
of pure patterns, we consider each distinct derivation of a

given string zj as the structural representation of a distinct
pure pattern because different derivations of Zj which use

different sets of syntactic rules will result in different TAV
values being computed. Therefore, if we denote the kth
derivation of Zj as 4, and its corresponding TAV value
with respect to class C, as X/,j for k= 1,2,.. , I where Ij
is the total number of distinct derivations of zj, then each

,k =(Zk,, X,) can be regarded as a pure pattern in class
C'. Again, denoting the set of all noisy or deformed
versions of wk as D(w j), we get C1=u7 I U l_.D(Wkj)
where n is the total number of distinct strings generated
by G.
Now, given an unknown pattern w with string represen-

tation z, if z is accepted by G as zj, then the k th of the 1I
derivations of z = zj, 4, together with the corresponding
TAV value, Xk, form a 2-tuple (Z4 Xk) which can be
regarded as a noisy version of w k i.e., (z,, Xk)ED(wD().k
Furthermore, because of the different combinations of
syntactic rules used in the derivations, each different
derivation of z=zj will also result in a different struc-
tural occurrence probability value, which we denote as

P(k C,). Let p(XkI4, C.) be the attribute occurrence

probability or density of (4, Xk) from wk defined forZi tj~~~ii

where the summation in (5) is justified on the basis that w
can be regarded as coming from any of the lj pure
patterns W!b, .2.. , wi, as discussed previously. Note
that the identical superscript k in the right side of (5)
specifies that both p(Xk I4, C.) and P(4 C.) should be
evaluated with respect to the same (kth) derivation of zj.

Finally, the Bayes decision rule to classify the unknown
pattern w is as follows:

assign w to CM ifp(CMIW)= max p(Ci w).

Or, after applying Bayes Theorem and (5),

assign w to CM if Z[p(ZX Iz,CM)P(ZICM)]P(CM)
k= 1
J

= max E [p(XkIz> C,)P(Zk1Ci)]P(Ci)
,i= 1 ,2, ** N k= I

(6)
where p(w), common to both sides, has been dropped.
The above Bayes classification rule is for one grammar
only. Extension to cases with more than one grammar is
trivial. That is,

assignwto Cmifp(Cm Iw)= max max p(Ci Iw),g M P( MI ) ~Gj X=1,2, -,NVGP(il
(7)

where NGj is the total number of pattern classes covered
by grammar Gj.
C. Computation of Occurrence Probabilities or Densities,
and String Structure Identification Problems

To compute the structural occurrence probability
P( 4 IC.) in the Bayes classification rule (6), recall that we
are using stochastic attributed grammars in which each
syntactic rule has been associated with a probability. Let
the sequence of syntactic rules used in the kth derivation
of z; be Yl Y2 * *. -YR, and the probability associated with
the rule Yh be Ph, h= 1,2,.* *, R, then

P(4Z I C,) =P1 P2... PR (8)
Equation (8) can be computed during parsing by multiply-
ing each Ph of a newly used syntactic rule Yh to the
product of those of previously used rules. So P(Zk C,) can
be obtained for each Ci right at the end of parsing, but the
case for computing the attribute occurrence probability or
density p(Xk 4Z, C.) on the contrary is not so simple. First,
this distribution depends on the syntactic structure of the
recognized string representation zj. Given two input pat-
terns from class C,, assume that they have the same total
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attributed vector Xk computed. If they are accepted syn-
tactically to have different string structures Zj, and zj,, the
probabilities or densities used for them should be
p(Xk Izj, C.) andp(XkIz k, Ci), respectively, which may be
different; but since in general the string structure (zj, or

zj2) can be determined only after the whole string repre-
sentation of the input pattern is parsed, attribute occur-
rence probabilities or densities can not be computed dur-
ing the parsing procedure. Computation of such values
must be delayed until parsing is completed and the struc-
ture of the input string representation is identified. We must
now face this string structure identification problem: how
can the system know, at the end of parsing, a syntactically
accepted string representation is zj1 or zj2 so that a correct
conditional probability or density function can be chosen
to compute the attribute occurrence probability or den-
sity?

This problem is not unique to our case of using attri-
buted grammars here. It actually exists whenever proba-
bility distributions or density functions for primitives
(terminals) or subpatterns (nonterminals) are used for
pattern classification or linguistic analysis [10], [15]-[18].
So far, it has always been assumed that the occurrence
probability of a certain primitive (terminal) is invariant
with respect to different patterns (linguistic sentences), or
more specifically, that two identical primitives (terminals)
used in two different patterns (linguistic sentences) are
regarded to have the same occurrence probability. Using
our notations here, this means that p(Xk 4, C,)=
p(XkI|cZ,C2 )=p(X/Ci). Such an assumption, though
simplifying statistical discussion, theoretically is not gen-
eral enough for applications using attributed grammars.
To solve this problem, it seems that we can separate an
attributed grammar into several ones so that each gram-
mar generates a set of strings zI, Z2,' ,I Zn which make
the following equality to be true:

(xk iZk )=P(XI ki2Cj= ... =p(XklZk,Ci).
A trivial case is when n = 1. This solution is impractical
because it destroys the essence of grammar usage-with
one grammar to efficiently cover as many structurally
similar patterns as possible. Observing the simple fact that
if two strings are different, they must be respectively
derived from at least two different syntactic rules, we
propose the following solution. Add to the attribute gram-
mar a set of rules, called identification rules, which are
similar to the semantic rules. Each of these rules assigns
or computes some specific discrete numerical value to a
certain artificially created identification variable (like an
attribute) when a corresponding syntactic rule is used in
deriving a string representation during parsing. The iden-
tification variable values are computed in the same manner
as the semantics computation. At the end of parsing, the
discrete values of the identification variables is of the
starting symbol S are used, in a table look-up manner, to
identify the syntactic structure of the input string repre-
sentation. Of course, the numbers of identification rules
and identification variables should be kept as small as

possible to reduce extra processing time. We give an
illustrative example, though not complicated, in the fol-
lowing which also explains the usage of the Bayes classifi-
cation rule (6) proposed in Section III-B.
Example 2: Statistical Classification of Chromosomes

(Continuation of ExamWle 1): To use the Bayes classifica-
tion rule (6) to classify an unknown input chromosome,
we first assume the following a priori class probabilities:

P(CI) = 0.4 for C1 = median class

P(C2) = 0.3 for C2 = submedian class

P(C3) = 0.3 for C3 = acrocentric class.

Next, the syntactic rules of the chromosome grammar Gs
are made stochastic as in the following. On the other
hand, to solve the string structure identification problem
which is simple here, we also add three identification rules
to the productions of Gs:

syntactic rules
Pia 1 2

P: I) S -*Q, Q,
Pi2

2)S-+QIQ2
P,

3)S-Q2Q1
1.0

4)Q -DRI
1.0

5) Q2-DR2

semantic rules

Is, +-QjI lS2+IQf

IS,-I Qi, IS22 IQ2
151IQ2s 12 Q2

1Si+I4-Q'2'S2 4-'QI

IQ, I'R,

IQ2 IR 2

identification rules

is*-l

iS*

6) R,-MCI2 I R,-(IM +lMf2)12
170

)2-+*M2CM22 'R2~0
1.0 28) Ml -B'AB2
1.0

9) M2 -4 A

IM1 -(iBl +iB2)/2

1.0
10)A -*a

1.0
11) B-b B+-lb

1.0
12) C -- c

1.0
13)D-d.

The subscript i in eachp,1 (i= 1,2,3) is provided to indi-
cate that pij are different for different pattern classes Ci.
Recall that the above syntactic rules can generate three
different string representations (see the last paragraph of
Example 1):

z = dbabcbabdbabcbab (chromosome of any class)

Z2= dbabcbabdaca (acrocentric chromosome)
Z3= dacadbabcbab (acrocentric chromosome).

Obviously, after parsing, we have the following corre-
sponding relations between input string structures (z) and
identification variable values (is):

is = *>z=i
is =2*-z=z2
is =3<-4z= z3.

Now assuming the following probability assignment for
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1tS2 t

6
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4
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2

acrocentric
chromo omes

., f (US2)I/Ac /

fl(/Sl'XS2
median

chromosomes-sS

oA, tf2 2Slf3(eS2)
, </-2Z~> submedian

~~~~~~~~chromosomes

O~~~~~~~~~~2 4"SS2 )2acrocentric chromosomes

1 2 3 4 5 6 S1

Fig. 5. Probability density functions for arm pair lengths of various
chromosomes (dotted lines are approximate class decision boundaries).

the syntactic rules:

Pi = 1*0P12 =O°O°P13 =0.0

P21 = 10, P22 = O-°, P23 = 0.0

P31 =0.2,P32= 0.4,P33 =0.4
and noting that P(z1 Ci) =Pil, P(Z2 C,) =Pi2' P(z3 I C) =Pi3
for i = 1,2,3, we get the following structural occurrence
probabilities:

P(z1I C1) = 1.0, P(zi I C2) = 1.0, P(z1 I C3) =0.2

P(z2ICO)=0.0, P(z2lC2)=0.0, P(z2IC3)=0.4

P(z3ICO)=0.0, P(Z3 IC2)= 0.0, P(Z3IC3)=0.4.

Based on the probabilities computed, it is easy to see that
Z2, Z3 which are acrocentric chromosomes are accepted, as

desired, by class C3 only with probability 0.4, but z1 is
accepted by all three classes with probabilities 1.0, 1.0,
and 0.2, respectively. This is due to the fact that chro-
mosomes from any class may happen to have the same

syntactic structure as z1. A discrimination between them
will then rely mostly on the semantic attributes. Recalling
that the chromosome grammars Gs (in Example 1) synthe-
sizes the TAV X= USII52) for an input pattern w with
15, 152 being the lengths of left-hand and right-hand arm
pairs, we assume the following attribute occurrence den-
sity functions:
p(X z, C1) =f(l51,1S2), for Cl

p(XIzi, C2)4f2(151)f3(152)+f2(fi2(l23(11), for C2

P(X Iz1 I C3) = 24(151)f5(S2) +f4(152)f(S) for C3

P(XIZ2, C3) =6(1S2), for C3
p(X Jz3,C3)=f6(S), for C3
where fi, f2 f6 are all Gaussian density functions:

1) fi is bivariate with means 2.5, 2.5, variances 0.52,

0.52, and correlation coefficient 0.6;

2) f2, f*6 are all univariate with means 3.5, 1.5, 4.5,
0.5, 4.5, respectively, and with variances 0.302,
0.202, 0.352, 0.152, 0.402, respectively.

Thep(XI zj, Ci) and the approximate decision boundaries
between different chromosomes are sketched in Fig. 5.
p(XIz2, C1), p(XIz2, C2), p(XIz3, CI), p(XIz3, C2) are
not specified because P(z2 IC1), P(z2 IC2), P(Z3 IC1),
P(Z3|C2) are all zeros.
Now suppose that we want to classify an unknown

input chromosome w with string representation z=
dbabcbabdbabcbab which is produced after preprocessing
and primitive extraction. Also assume that the synthesized
TAV X= (5.5,0.4). The synthesized identification variable
is is 1, which means that the syntactic structure of z is zl.
Also, after parsing, the structural occurrence probability
obtained is P(z Ci) =p,1.3 Before classification, we calcu-
late the following attribute occurrence density values:

p(XIzl, Cl) =f1(5.5,0.4)= 1.36x 10 -23

p(Xlz,XC2)= 1f2(5.5)f3(0.4) + 2f2(0.4)f3(5.5)
= 1.60x 10 -16

p(Xlz,,C3) = 'f4(5.5)f5(0.4)+ 'f4(0.4)f5(5.5)
=2.05x 10-2.

Now to apply the Bayes classification rule (6), we have

p(XIz1, C1)P(z1IC1)P(C1)
= 1.36x 10-23 x l.Ox0.4=5.44x 10-24

p(X zI, C2)P(z IC2)P(C2)
= 1.60x 10-16 xl.x0.3=4.80x 10-17

p(XIz , C3)P(z1IC3)P(C3)
=2.05x 10-2 x0.2x0.3= 1.23x 10-4

Therefore, the decision is that the input pattern w is an
acrocentric chromosome. As can be seen, the contribution
to this statistical decision mostly comes from the attribute
occurrence density values, though X has a pattern struc-
ture z, which normally is a median or submedian chro-
mosome structure.

D. Least-Square-Error (LSE) Classification

In this section, we derive various least-square-error de-
cision criteria for pattern classification using attributed
grammars, which are practical for applications when in-
ference of probability distribution or density functions is
difficult or impossible, although they are just special cases
of the optimum Bayes classification rule (6).

First, recall the Bayes classification rule (6):
1i
J~~~~assignw to CMif 2 [p(X|ZJ ,CM)P(<JICM)]P(CM)

k= 1

I

= max i[p(XkIz>Ci)P(zlCi)]p( i). (6)

Now assume the following conditions.
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1) All pattern classes have an equal a priori class
probability P(C,).

2) The grammar is unambiguous; only one parse or
derivation exists for each input pattern representa-
tion z. So bj = 1, and the superscript k can be
removed.

3) The structural occurrence probabilities P(zjIC) are
equal for all possible zj and all i= 1,2,- - *, N. This
implies that we can use nonstochastic syntactic
rules.

4) The string structure identification problem is
ignored. That is, we assume p(XIzj,Ci)=p(X CI)
for all j.

5) Each component Xh in X=(x1,x2,-I ,xI) is inde-
pendently and normally distributed with mean m'h
and variance (0h)2 for class C,, or

p(Xlci)= II 1 exp[_I.. (xh mh)h]
h-I °h (oh

Under these conditions, the Bayes rule (6) becomes

assignwtoCCifp(XIC,)= max P(XIC0).
After taking negative logarithms and removing constant
terms, we get

assign w to C. if

j [(Xh mh-) /(°h ) Inohm]
h-I

- m N [(Xh mM -21nah] (9)

which we call the normalized least-square-error (NLSE)
classification rule. Ignoring °h or assuming all oh = I in (9),
we get

assign w to Cm if
m m

2 (x,,-msU)2= min (xhm^)2, (10)
h-I i-1,2,***,Nh-I

which we call the unnormalized least-square-error (ULSE)
classification rule. If we remove the logarithm terms in (9)
and replace the variance (ah)2 by a weight (l/wh), we
then get

assign w to Cm if
m

I Wh h(Xhmh)
h-I

m

min wh, (xh-mM)02
,-1,2,--,ĥ-I

which we will call the weighted least-square-error (WLSE)
classification rule.
When the inference of variances (ahi )2 or weights wh1 is

difficult, the simplest ULSE criterion can be used. If the
values of (dh)2 are available, the NLSE criterion gives
better results. Otherwise, we can also assign the weights wh
subjectively, and use the WLSE criterion. The ULSE and
NLSE criteria have been used by Tsai and Fu [19] in
syntactic texture discrimination.

TABLE I
CLASSES OF I WRENCHES (EXTRACrED SIZaS AND LENoTHS

ARE IN PDm NumBERs)

Cla
Number

2
3
4
5
6
7
8

I Wrench
Brand

Craftsman

Gedore

Real Sizes
1/4 5/16
3/8 7/16
1/2 9/16
5/8 11/32
5/16 11/32
1/2 9/16

19/32 11/16
5/8 3/4

Fig. 6. Set of I wrenches.

Extracted
Sizes (d, and d2)

3.61 5.09
6.35 7.81
9.28 10.75
12.88 16.16
4.43 5.21
9.08 10.40
11.92 14.24
12.62 15.47

Extracted
Length (1)

81.65
90.44
104.11
130.48
63.99
94.52
104.37
120.22

Fig. 7. Set of L wrenches.

IV. AN APPLICATION EXAMPLE-RECOGNITION OF
MACHINE TooLs AND ExPERIMENTAL REsuLTs

Experiments have been conducted on the recognition of
machine tools which are similar in shape but different in
attributes, such as sizes, lengths, widths, etc. Attributed
grammars are most suitable for, though not limited to, use
in description and classification of such objects. Two
kinds of tools used in the experiments are shown in Figs. 6
and 7, which for simplicity are called I wrenches and L
wrenches, respectively, according to their shapes. Each
kind of wrench further consists of several distinct wrenches
with different sizes and lengths. Each distinct wrench with
a fixed size and length is regarded as coming from a
pattern class. There are eight classes of I wrenches and
also eight classes of L wrenches (see Tables I and II).
Since all classes of I wrenches are of the same shape
structure, one grammar is enough for structural descrip-
tion of them; discrimination among the different classes
will depend on semantic information-the size and length
attributes-and the extraction of semantic information is
specified by the semantic rules. This is also true for classes
of L wrenches. The syntactic rules inferred are nonsto-
chastic. The wrench classification is performed according
to the unnormalized least-square-error criterion (Section
III-D).
Images of wrenches are obtained from a TV camera.

The wrenches are placed on a dark background so that
high contrast images can be obtained. Each image is
digitized with the resolution of 200x 128 in pixels, and
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IC

e

Fig. 9. L wrench and its boundary primitives.

Fig. 8. I wrench and its boundary primitives.

gray levels from 0 to 63. To concentrate on the recogni-
tion work, only simple thresholding and boundary follow-
ing techniques are applied for shape contour extraction
[20]. The result is a chain of consecutive boundary pixel
coordinates, which is then segmented into primitives. The
method used for such boundary segmentation is similar to
that used in the example of chromosome classification
(Section Il-A), i.e., grouping consecutive boundary pixels
with similar curvatures into segments [11], [12]. For a

graphical illustration as to how a boundary is segmented
into primitives, see Figs. 8 and 9. Note that syntactic
symbols 'a' and 'e' correspond to a very concave and a

very convex segment, respectively. The pattern structural
representation z for each wrench is simply the output
string of symbols C, C2.... , Cn, of a primitive extraction
algorithm described in [27], or

Z=CC2 *... 9 Cms

where c, represents the structure of the corresponding
primitive. To facilitate grammatical inference and parsing,
symbols in the string are permuted such that cl is always
an 'a' primitive (corresponding to a very concave curve
segment). Thus the string representation for an I wrench is

z, = aedbcbdeaedbcbde

and that for an L wrench is
ZL = acececec.

Next, we briefly explain the procedure of extracting
wrench sizes and lengths. For an I wrench, the distance
(d1 or d2 in Fig. 8) between the two inner edges of either
wrench head is measured as one of its two sizes. To
discriminate further the brand (Craftsman or Gedore) of
an I wrench, the distance between the two most concave
pixels in the two 'a' primitives (1 in Fig. 8) is measured as
its length. For an L wrench, the lengths 11, 12 of its two
arms as shown in Fig. 9 are measured for the L wrench
class discrimination. The point X in the L wrench of Fig.
9 is the middle point of the line segment joining the most
concave point of the 'a' primitive and the most convex
point of the 'e' primitive on the bend portion. The parsers
used in the syntax analysis are deterministic finite-state
automata constructed from the attributed grammars in-
ferred for the wrenches [13], which are very efficient in
parsing. They are written as Fortran programs and run on
a PDP 11/45 computer.

Finally, to apply the ULSE classification criterion, we

need the means of the attributes dl, d2, I for each of the
eight classes of I wrenches and the means of 1', 12 for each
of the eight classes of L wrenches. Eight images at various
orientations are taken for each class of wrenches to infer
such means by averaging. The results are included in
Tables I and II. 248 test images are then used for recogni-
tion. 231 images are correctly recognized. Average time
for recognizing each image is 6.24 s on a PDP- 11/45
computer. A recognition rate 231/248 = 93.2 percent is
reached. No misclassification happens. Only syntactical
rejections are observed, which indicates that a more

powerful boundary smoothing technique might be needed.
This also suggests the necessity of using error-correcting
parsing [15]-[171 for syntax analysis.

V. REMARKS AND CONCLUSIONS

A hybrid approach to pattern recognition using attri-
buted grammars is proposed in this paper. In practical
applications, pattern classes can often be divided into
groups, each group consisting of several pattern classes
which are similar in structure but different in attributes.
In such cases, it is appropriate to construct an attributed
grammar for each group of pattern classes, leaving the
discrimination of within-group pattern classes to statistical
classification on attributes. In one extreme, all pattern

TABLE II
CLASSES OF L WRENCHES (EXrRACTED ARM LENGTHS

ARE IN PIXEL NUMBERS)

I Wrench
Categories

with longer arms
we, m

,,

with shorter arms
,,

,,

,,

Class
Number

9
10
11
12
13
14
15
16

Size Order
Number

1
2
3
4
I
2
3
4

Extracted
Arm Length 11

24.56
19.08
18.03
16.65
20.71
18.79
16.84
15.55

Extracted
Arm Length 12

88.90
76.36
69.12
62.99
61.46
56.14
50.87
47.23

--
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classes in a pattern recognition problem may form only a

single group due to structural similarity. Then class dis-
crimination can be made to depend entirely on attribute
differences without using grammars. This is the conven-

tional statistical approach to pattern recognition. At the
other extreme, there may exist no structural similarity
between any two pattern classes. Then each pattern class
can be described by a nonattributed grammar, and class
discrimination will thus rely only on conventional gram-

matical analysis. As pointed out in [29], examples found iii
the literature [7], [12], [14], [29], [30] usually lie in between
the two extremes, with a single grammar used to describe
the structures of several pattern classes.
On the other hand, within each pattern class, there may

exist several pattern structures represented by the strings
generated by the attributed grammar. Through the use of
identification rules, these pattern structures can be identi-
fied, at the end of syntax analysis, to facilitate the choice
and computation of attribute occurrence probability or

density values p(Xk' , C.). It seems that such pattern
structure identification may also be helpful in pattern
classification, but this is not true with respect to within-
group pattern class assignment due to the following rea-

son. In Section 111-A we have assumed that each string
generated by an attributed grammar represents the struc-
ture of a pattern which belongs to each of the pattern
classes within the group described by the attributed gram-
mar. Therefore, although the string of an unknown pat-
tern may be structurally identified using the identification
rules, the unknown pattern still cannot be assigned to any
pattern class within the group without further statistical
classification on attributes. In short, string structures are

useful in intergroup class discrimination, but they do not
help in intragroup class discrimination.
Following the previous discussions, it is worth mention-

ing that while implementing a pattern analysis system
using attributed grammars, in general, syntactic rules are

inferred first to describe a group of structurally similar
pattern classes, and semantic rules are then provided to
extract relevant attributes for intragroup statistical classi-
fication, followed by the inference of attribute occurrence

probability distribution or density functions from the ex-

tracted attributes. In other words, the inference of attri-
buted grammars precedes the inference of statistical distri-
butions. From the syntactic point of view, the injection of
primitive and subpattern attributes into the grammatical
analysis offers the following advantages over the conven-

tional syntactic methods.
1) Flexibility in choosing primitives and subpatterns:

We can easily choose those structurally apparent entities
as primitives and subpatterns, leaving all nonstructural
characteristics to be extracted numerically as attributes.

2) Improvement of recognition accuracy: Since attri-
butes can be treated by introducing statistical considera-
tions, it is not necessary to threshold, as is usually done by
conventional syntactic methods, continuous data into dis-
crete levels, which in general decreases resulting recogni-
tion accuracy.

3) Capability of recognizing noisy patterns: Random
noise now can be taken care of by continuous statistics
instead of just being transformed into discrete symbolic
errors such as insertions, deletions, or substitutions [17].

4) Reduction of grammatical complexity: The use of
attributes usually will reduce the complexity levels of the
pattern grammars. In Example 1, the conventional con-
text-free chromosome grammar is reduced to a finite-state
grammar. In [9], it is found that context-sensitive shape
grammars can be reduced to context-free forms or even
finite-state ones with the same pattern descriptive power
by introducing proper attributes. Note that a reduction of
grammatical complexity usually implies improvement on
recognition speed.
On the contrary, from the statistical classification point

of view, we can also find several advantages in incorpo-
rating syntax analysis into statistical decisionmaking.

1) Utilization of structural information for pattern de-
scription: All such information can be incorporated into
the pattern grammar by carefully inferring the syntactic
production rules.

2) Effective extraction of subpattern attributes: We here
pointed out that some of the difficulty encountered in
statistical approaches during feature extraction stems from
the lack of structural guidance. In the proposed hybrid
approach, the syntactic rules and the parsing procedures
offer such guidance.

3) Description and generation of patterns: This ad-
vantage of syntactic approaches is even improved when
numerical attributes are added to the generated pattern
descriptions.
From the above discussion, we see that the attributed

grammar indeed is a good tool for combining syntactic
and statistical pattern recognition. The proposed pattern
analysis system using attributed grammars is also shown
by experiments to be effective. Further investigations
should be directed to the inference of attributed gram-
mars, especially of the semantic rules and identification
rules which seem to be problem-dependent. Higher di-
mensional and error- correcting attributed grammars
should also be interesting subjects of study.
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