
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. SMC-9, NO. 12, DECEMBER 1979

A Pattern Deformational Model and Bayes
Error-Correcting Recognition System
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Abstract A pattern deformational model is proposed in this
paper. Pattern deformations are categorized into two types: local
deformation and structural deformation. A structure-preserving
local deformation can be decomposed into a syntactic deformation
followed by a semantic deformation, the former being induced on
primitive structures and the latter on primitive properties. Bayes
error-correcting parsing algorithms are proposed accordingly which
not only can perform normal syntax analysis but also can make
statistical decisions. An optimum Bayes error-correcting recognition
system is then formulated for pattern classification. The system can
be considered as a hybrid pattern classifier which uses both syntactic
and statistical pattern recognition techniques.

I. INTRODUCTION
To RECOGNIZE noisy or deformed patterns using the

syntactic approach, error-correcting parsing techniques
using various decision criteria have been proposed [1]-[5],
[20]. Errors induced on the primitives of noisy or deformed
patterns usually are classified into three types: substitutions,
deletions, and insertions. If only substitution errors are
considered, the error-correcting parser is said to be
structure-preserved. After an input pattern is parsed with
respect to a certain pattern grammar, a quantitative meas-
ure, either deterministic or probabilistic, is computed by the
parser to indicate the degree of possibility that the input
pattern is generated by the grammar. The decision criterion
is then used to assign the input pattern to the pattern class
which corresponds to the minimum or maximum of the
quantitative measure. Two most widely used decision
criteria are minimum-distance and maximum-likelihood
criteria, though others have also been proposed [2], [5].

Influenced by the linguistic type of representations which
only adopt symbolic notations as terminals, most of the
existing error-correcting parsing methods [1]-[4], [20] use
discrete symbols to represent structural pattern primitives.
However, it happens quite often that a primitive also
contains continuous numerical information useful for pat-
tern discrimination [5]-[7], [9]. For such cases these parsing
methods are not powerful enough since they do not utilize
continuous information. To take care ofboth structural and
numerical information simultaneously, a deformational
model for pattern primitives is introduced in this paper.
Based on this model, error-correcting parsing and
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classification techniques using the Bayes decision rule are
then proposed. Various known error-correcting parsing
schemes and classification rules are compared with the
proposed techniques. Illustrative examples are also given to
show the practical feasibility of the proposed model and
techniques.

II. BASIC CONCEPTS
In this section we give a formal description of patterns,

primitives, etc., used in syntactic pattern recognition from a
broader point of view. Based on these concepts we propose a
deformational model in the next section which will serve as
a basis for developing a Bayes error-correcting recognition
system.
An observed pattern usually can be considered as

deformed from a pure pattern which is error free. For
example, a smooth shape in a picture may become noisy
after it is digitized. Here the original shape is the pure
pattern and its noisy version is the observed pattern. When
similar pure patterns are clustered as a pure pattern class,
there corresponds a set of observed patterns. In practical
applications, grammars are often inferred, either from pure
or from observed patterns, to recognize observed patterns.
In some simple cases, deformations, such as noises or
distortions, existing in observed patterns can be eliminated
by intensive preprocessing such as thresholding and
smoothing. But in general they can not be eliminated
entirely. This is why error-correcting parsing is necessary.

Before a class of patterns can be described by a pattern
grammar, each pattern is decomposed into simpler struc-
tural units called primitives. Primitives should be chosen
properly so that the resulting descriptions of the patterns
using grammars can be simple [7]. We call the description of
a pattern using some fixed primitives according to a certain
preselected pattern structure as a structural representation,
which is, for string languages, a string (representation)
consisting of symbols each of which corresponds to a
primitive, and is, for tree languages, a tree (representation)
with each of its nodes corresponding to a primitive. Of
course, pure primitives, pure patterns, and pure structural
representations also have their corresponding observed
primitives, observed patterns, and observed structural rep-
resentations, respectively.
A detailed study of various kinds of primitives used for

pattern descriptions [7]-[9] reveals that each primitive may
contain two kinds of information, namely, the syntactic
information and the semantic information. The syntactic
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information gives a description of the primitive structure,
and the semantic information provides logical or numerical
descriptions of the primitive properties. For example, You
and Fu [9] use two kinds of primitives-curve segment
primitive and angle primitive-to describe shapes. The first
is a curve segment with four numerical attributes to describe
its direction, length, curvature, and symmetry. The second is
an angle with one attribute to describe the angle amplitude.
The resulting shape grammar is an attributed grammar. So,
we consider a primitive a, either pure or observed, as a
2-tuple

a=(sx) (1)

where s is a syntactic symbol denoting the primitive structure
of a, and x = (xl, x2, ~ xm) is an m-dimensional semantic
vector with each xi, i 1, 2, .., m, denoting a numerical
measurement or a logical predicate, and m > 0. When
m = 0, or no semantic information is available, set x = 0
(empty vector). A similar idea was also proposed by Shaw
[21] and described in Fu [7].
The primitives used in conventional syntactic pattern

recognition tend to be restricted to symbolic representations
which essentially provide only syntactic information. Even
when a continuous type of numerical information, such as
random noise, is included in the primitives, it is often
thresholded into discrete levels which then are represented
by a finite number of primitive symbols. Such an approach
not only decreases the discrimination accuracy due to the
numerical thresholding but also increases the number of
grammar rules due to the increase of the number of primi-
tives (i.e., terminals). With a primitive described as in (1),
such a weakness could be eliminated. Also, since a primitive
contains two kinds of information, we obtain a great deal of
flexibility in selecting primitives [6]. Any structural unit can
be selected as a primitive, and ifmore properties are needed
to specify the primitive, numerical or logical attributes can
be invoked. Furthermore, with semantic information
separated from syntactic information in a primitive, a very
systematic deformational model can be developed for opti-
mum error-correcting parsing schemes which will be
described in the following sections.

III. A PATTERN DEFORMATIONAL MODEL

From previous discussions it is clear that a pattern or its
structural representation w can be characterized by a 2-tuple
O = (S, A) where A = {ai i = 1,2,* , n} is a set ofprimitives
used in o and S denotes the pattern structure of a) together
with implicitly assumed relations among the primitives. For
discussion convenience, we assume that the subscripts for a,
are numbered according to some fixed order which is
determined by the pattern structure S; when S is fixed, this
ordering is also fixed.

A. Classification and Decomposition of
Pattern Deformations
Given the structural representation a = (S, A) ofa certain

pure pattern with pattern structure S and primitive set

A ={ail ai =(Si, Xi), Xi = (Xil, Xi2, '* X]i),
Ni>0,i=1,2, ,n}, (2)

the structural representation of one of its corresponding
observed patterns, w'=(S', A'), with pattern structure S'
and primitive set

A' = {aiJa = (s", X,x) = (X1, Xi2, XXt0,
N'>0i 1, 2, n'}, (3)

can be considered as being transformed from o through a
series of deformations. Our deformational model categor-
izes all possible deformations into two major types: struc-
tural deformation and local deformation.

1) Local deformation-If S = S' and so n = n', but for
some i, i= 1 2, , n, ai a, then we say ' is
deformed locally from w. In other words, a local
deformation induced on a pure pattern preserves the
entire pattern structure but deforms some primitives
locally. So a local deformation is also called a
structure-preserved deformation. With respect to string
representations, this simply means a length-preserved
deformation.

2) Structural deformation-IfS St, then we say that w'
is deformed structurally from w. Various types of
structural deformations, such as insertions, deletions,
transpositions, and permutations [2], [11], [12], have
been defined according to various kinds of structural
difference between S and S'.

In this paper we deal only with local deformations, leaving
structural deformations for further investigations. Let
ai= (si, xi) be a deformed primitive where

Xi = (Xil, Xi2, XiN,)
and ci = (ti, zi) be one of its observed versions, where

Zi = (Zil, Zi2, "** ZiN;).

(4)

(5)

At least two types of local deformation can be identified as
follows.

1) Syntactic local deformation (syn.l.d.)-This is the case
when ti $ si. In other words, when the primitive
structure is changed to another one, a syntactic local
deformation is induced, which usually is called a substi-
tution error.

2) Semantic local deformation (sem.l.d.)-When the
local deformation on a' does not change the primitive
structure but only corrupts the semantic information,
i.e., when ti = si but zgi x , then it is called a semantic
local deformation. If every primitive used by a pattern
has an identical primitive structure, then every local
deformation is semantic.

In general, we can consider a local deformation as a
two-step transformation from ai= (se, xi) to ci= (ti, z )
described by (6).

ai = (sb xi) bi =(ti, Yi)syn.l .d.

pure primit. semi-pure primit.
ci= (ti, zi). (6)

sem. l.d.

observed primit.
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where bi = (ti, yi), called a semi-pure primitive, is created to
denote one of the syntactically local-deformed versions of
(si, xi) with yi being a representative semantic vector for ti,
which is created only for explanatory convenience and does
not have much practical use later in our derivation of
parsing procedures.' When ti = si, then yi= xi and only
a semantic local deformation occurs in the two-step
transformation.

B. Pattern Deformation Probability or
Density Function

Let A = {ai ai = (si, xi), i = 1, 2 *, n} denote all the pure
primitives used in a pure pattern. Though each ai can be
deformed syntactically into a set of semi-pure primitives
Dai= {bij I bij = (tij, yij), j = 1, 2, - , ki}, each deformation
ai -+bij may occur with a different probability. So there
exists a conditional probability function p defined on D
such that p(bijI a) = p(t ij s ) is the probability for si to be
deformed into tiJj = 1, 2, * *, ki. Similarly, since each bijcan
be deformed semantically into a set of observed primitives
Dbij = {Cijk Cijk = (tij, Zijk), ZijkE Rij, where Rij is a finite or
infinitive range for zijk, we can define a conditional proba-
bility or density function q on Db.j such that q(z1jklbij,
ai) = q(zijk tij, si) is the probability or density function for
bij = (tij, yij) to be deformed into cijk = (tij, Zijk). Therefore,
from the statistical point of view, a local deformation of
ai = (si, xi) into cijk = (tij, Zijk) now can be interpreted as the
following:

p(tLjsi)
ai= (si, xi) - , bi= (tij, yij)

syn.l,d.

&(ijk Itij,Si)

cijk = (tij, Zijk) (7)
sem.l.d.

where p(j si) is the conditional probability function given ai
(or si) defined on Dai, and q( -tij, si) is the conditional
probability or density function given ai and bij (or si, tij)
defined on Dbij. We also assume that ai E Dai, and bij E Dbij.
To be more specific, we give two examples with semantic

local deformation, assuming that no syntactic local defor-
mation is involved-that is,

q(zijlsi)
ai = (si, xi) - cij = (si, zii) (8)

sem.l.d.

1) Continuous random noise-This is the case when the
semantic vector xi in a pure primitive ai= (si, xi) is
corrupted by random noise. The deformed or noisy
version of xi, denoted as z,; above, is actually a
vector-valued' random variable zi; with continuous
density function q(zij I si). If the noise associated with
zij is normally distributed with zero mean, then xi in
fact is just the mean vector of zij, or xi = E{zij}.

2) Discrete distortion variations-In some cases, xi may
be deformed into only a finite number of observed
versions Zi;. Then q(zi/lsi) above is just a discrete
probability function defined on all possible Zi;.

1 Sometimes for normally distributed zi, yi can be conveniently chosen
to be the mean value of zi.

aI
Fig. 1. A pure pattern w-a unit equilateral triangle.

d3 d23A2
d1

Fig. 2. An observed pattern co'-a deformed triangle.

Back to our discussion of two-step local deformations,
given a pure primitive ai = (si, xi), the probability or density
function that it is deformed locally into an observed primi-
tive ci= (ti, zi) now can be computed as

r(ci ai) = p(ti si)q(zi I ti, si). (9)
We will call r(ci ai) the primitive deformation probability or
densityfunction of ci from ai. For a pure pattern co = (S, A)
with A = {ai ai = (si, xi), i = 1, 2, - * *, n}, the probability or
density function that w is deformed locally into a structure-
preserved observed pattern w' = (S, C) with C = {ci ci = (ti,
zi) ai ci,i= 1,2, ,n}isthen

I.d .

n

p(o' ICo)= fH r(ci I ai)
i=l

(10)
or

P(w' ()) = fn p(t, si)q(zi ti, si),
i=l

(11)

if each ai is deformed independently into ci, i = 1, 2, , n.
Such independence assumption for local deformations of
primitives was also considered by Grenander [13], Kova-
levsky [14], and Fung and Fu [3]. p(w' t)) is called the
pattern deformation probability or densityfunction ofc' from
w. An example is given in the following to illustrate the
previous discussions and clarify the notations used.
Example 1) Deformation of an equilateral triangle: Sup-

pose that the pure pattern we are dealing with is a unit
equilateral triangle as shown in Fig. 1. The primitives we
choose naturally are the edges-line segments. Now, due to
local deformations, each line segment may be deformed
syntactically into two kinds of curve segments-one kind
with a fixed positive curvature and the other with a fixed
negative curvature. Furthermore, each line or curve segment
may be deformed semantically on its length2 and direction
(with respect to the x-axis) by normally distributed random
noise with zero mean. So the pure pattern, an equilateral
triangle, is subject to size and orientation variations. A
possible observed pattern might be like the one shown in
Fig. 2.

2 Here the length of a curve segment is defined to be the length of the
line segment joining the two end points of the curve.
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with 1= 1, 00i= (i- 1) 1200 for i= 1, 2, 3,

b23 a 32

b33
b13

Fig. 3. Semi-pure primitives for Fig. 1.

More specifically, using L, Cp, and Cnas syntactic symbols
to specify the three primitive structures-line segments,
curve segments with positive curvatures, and curve segments
with negative curvatures, respectively, we have the following
three pure primitives for the edges in the form of 2-tuples:

a1 = (L, x1), x1 = (1, 0°),

a2 = (L, x2), x2 = (1, 1200),

a3 = (L, X3), X3 = (1, 2400),

where xi= (xi,, xi2) with xi, = 1 (unit edge length) and
Xi2= (i - 1) * 1200 (edge direction) is the semantic vector of
ai, i = 1, 2, 3, and the following six semi-pure primitives
(shown in Fig. 3):

b12 = (Cp, Y12), Y12 = (1, 00),

b13 = (Cn, Y13), Y13 = (1, 0),

b22 = (Cp, Y22), Y22 = (1, 1200),
b23 = (Cn, Y23), Y23 = (1, 1200),

b32 = (Cp, Y32), Y32 = (1, 2400),

b33 = (Cn, Y33), Y33 = (1, 2400),

where yij is the representative semantic vector of bij, i = 1, 2,
3, j = 2, 3. Since ai is considered as a deformed version of
itself, we have

Dai= {bij = ai, bi2, bi3},
with the following assigned probabilities

p(bil ai) = p(L L) = 0.7,

p(bi2 ai) = p(Cp L) = 0.2,

p(bi3jai) = p(C. IL) = 0.1, for i = 1, 2, 3.

Furthermore, we have

Dbij = {Cijk Cijk = (Tj, Zijk), Zijk = (lijk, OijJ1}
with

Ti = L, j= 1,

= Cp, j = 2,

= Cn, j = 3,
and the following assigned density functions:

q(lijklbij, ai) = 1 exp [-2 (lijk lo)2l2],27rC

q(Oijk bij, ai) =
1

exp [-2(Oijk- Ooi)/-2j]
N2n(2j

Ujj = 0.1 (2j = 40 forj= 1,

and

=ljO0.2, U2j=66 forj=2,3.

lijk and Oijk are assumed to be independently distributed, i.e.,

q(zijk| bij, ai) = q(lijk bij, ai) q(0ijk bij, ai).
Now, we want to compute the pattern deformation

density function of w' from w. X and w' can be specified as
2-tuples, w = (S, A) with pattern structure S and primitive
set A = {aj, a2, a3}, and co' = (5, B) with the same pattern
structure S and primitive set B = {d,, d2, d3} where

d, = (Cp, wI), w1 = (1.1, 100),
d2= (L, w2), w2 = (0.9, 105°),

d3 = (Cn, W3), W3 = (1-2, 2350).
The result is

3
p(Qj)I c,) = f1 r(di ai)

it1
= p(Cp L)q(w, Cp, L) p(L L)q(w2 IL, L)

* p(C,, L)q(w31C,,, L)
= p(b12 a)q(w bi2, a,)

p(b21 a2)q(w2 b21, a2)
* p(b33 a3)q(W3 b33, a3)

= 0.2 - --ex [- I(1.12 0.2
1.0)2/0.22]

exp [-_(10 - 0)2/62]2ir 6

0.7 -
I exp [-2(0.9 -1.0)2/0.12]

,./2i7r 0.1 2

* 7i;; exp [-1(105 - 120)2/42]

0.1 1 exp [-2(1.2 - 1.0)2/0.221_,1/- -0.2

exp [- (235 - 240)2/62]
2irs 6

= 4.95 x 10 -9.

IV. BAYES STRUCTURE-PRESERVED ERROR-
CORRECTING PARSERS

In this section we derive structure-preserved error-

correcting parsers (SPECP) optimum in the Bayes sense for
locally deformed patterns. Given a pattern class consisting
ofvarious pure patterns which can be generated by a pattern
grammar, we can, from the statistical point ofview, consider
each pure pattern together with all its possible locally
deformed versions as a distinct subclass of the given pattern
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class. Then the SPECP's to be derived, which we will call
Bayes SPECP's, are optimum in the sense that, in addition
to possessing syntactic parsing capability, they are Bayes
subclass classifiers which assign each given observed pattern
to a subclass according to the Bayes decision rule.

A. Bayes Decision Rule and Bayes Distances
Given an observed pattern i = (S, A) with

A = tail| ai = (Si, Xi), Xi = (Xi1, Xi2, * ,XiLi) i 1, 2, *,n} of
a certain pure pattern class C which consists, for simplicity,
of only two pure patterns w1 = (S, B ) and w2 = (S, B2) with
B1 = tbWlbl = (t0, y), yi = (yiX,yt2,N, ),i= 12.,
n} and B2 {biJ bi = (t,y3), y3 = (Yi2 * YAM2) = 1,
2, , n}, we want to assign w to one of the two pure pattern
subclasses wo1 and W2 according to the theory of statistical
hypothesis testing. Using the Bayes decision rule, we get,
according to the analysis for the deformational model in
Section III under the independence assumption for local
deformations,

Decide ) I 1

1(2
or

Decide co ' jic0
1(O2

if P(w 1Iw) t 1
P(w02fwO)

f p(wj wIj)P(wI)
p(c) Oj2)P(w02)

-[A r(aiIbit)]. P(C91)
[i= 1 r(ai b3)J P(w2)
[ p(si ti )q(xj si, t) 1 P(w1)

..i (iI Ii _(iIS,t P((02 )
After taking logarithms, we obtain

Decide CO 1

n

if E [In p(si tI ) + In q(xil si, t0)] + In P(o1)it~~~~~~~~~~f=l

n

E [In p(siIt3) + In q(x,Isi, ti)] + In P(W2)
,==

(13)

where P(w I Iwco),P(w1 w), P(o1), P(W2) are a posteriori and
a priori probabilities for pure pattern subclass w, and w)2.
When the pure pattern class C consists of more than two
patterns, the above decision rule can be extended as follows.
Let ,j be such that

n

ln A, = - E [In p(si tJ) + In q(xi si, tJ)]

-ln P(ojj), (14)
j= 1, 2, .., M, with M, either finite or infinite, being the
total number ofpure patterns in C. Then decide co) wOkifk is
such that

to co;, and the term -In Ak the minimum Bayes distance B(w,
C) from w to the pure pattern class C.
With the Bayes distance defined, the Bayes SPECP,

constructed from the pattern grammar G, for the given pure
pattern class C, is used to search, for the given input
observed pattern w, a pure pattern w0k accepted by G, with a
minimum Bayes distance B(P, (Ok) = B(w, C). So our prob-
lem now is reduced to the computation of Bayes distances
-In %j during parsing. Since the parsing will pass each
primitive at least once, there is no problem in computing the
first term =1 [p(siIt') + In q(xiIsi, ti)] in (14), as will be
seen later. But how to get the information about the a priori
probability P(wj) for the pure pattern wjduring parsing is on
the contrary not so obvious. The solution is to use a
stochastic grammar for the pattern class C.

B. Use of Stochastic Grammars for Computing
Pattern Probabilities

Stochastic grammars have been introduced to character-
ize noisy patterns including the probability ofoccurrence for
each pattern generated by the pattern grammars [7]. This
property is exactly what we want for computing pattern
probabilities P(Qzj). To be more specific, a stochastic gram-
mar is a grammar each of whose production rules is
associated with an occurrence probability. When a sto-
chastic pattern grammar is used to generate the structural
representation of a given pattern, a pattern occurrence
probability is also generated simultaneously, which is the
product of all the production rule probabilities used in
deriving the structural representation. For details, see Fu
[7]. And for inference of production rule probabilities, see
Lee and Fu [15]. Here we briefly review the basic notations
and definitions of stochastic context-free string grammars
and stochastic tree grammars [7], [17].

Definition 1: A stochastic context-free string grammar is a
4-tuples Gs= (VN, VT, PS, S), where VN is a finite set of
nonterminals, VT is a finite set of terminals, S is a start
symbol, PS is a finite set of stochastic production rules, each
of which is of the form

Pij

Ai - Laij,j = 1, 2, , ni, i= 1, 2, * *, 1, (16)
where Ai E VN, cxi E (VT U VN)*, ni is the number of distinct
production rules with Ai at the left side, 1 is the number of
nonterminals, and pij is the probability associated with this
production rule. Furthermore,

ni

O<Pij< 1 and E Pij= 1.
j=l

(17)
Definition 2: A stochastic context-free string grammar Gs

is in Chomsky normal form if each of its production rules is
of the form

p p

A -+ BC or A -+a

-ln Ak= min (-ln A). (15)
j= 1,2, , M

We call the term -ln Aj the Bayes distance B(w, coj) from co

where A, B, C E VN, a E VT.
Definition 3: A stochastic tree grammar over < VT, r> in its

expansive form is a 4-tuple G, = (VN U VT, r, P, S), where VN,
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VT, S are the same as defined in Definition 1, r: VT--+ N, the
set of nonnegative integers, is a rank function denoting the
number of direct descendants of a node with a symbol in VT
as its label, and P is a set ofstochastic production rules, each
of which is in the form

Pij Pij

or X; - a; (18)I -J\-/ \

Xijl Aij2 A ijr(aj)

where aj E VT, Xi, Xijl Xij2i * * Xz ijr(aj) C VN, 1 < j < ,n
1 < i < 1, ni, 1, pij are the same as defined in Definition 1, and

0 < Pi <. 1

ni

and E pij=1.
j=l

C. Bayes SPECP for String Languages

We describe in the following a Bayes SPECP for context-
free string languages. Given a stochastic context-free string
grammar G, = (VN, VT, PS, S) for a pure pattern class, assume
that the terminal set VT= {ai ai= (ti, wi), i = 1, 2, ..., 1}
contains all possible pure primitives used by the pure

patterns. For each ai, i = 1, 2, -, 1, let p(. ai) = p( I ti) be
the conditional probability function defined on

Dai = {bij bij = (uij, yij), ai bij, j = 1, 2, ,, kl}, and
syn.l.d.

q(- ai, bij) = q( ti, uij) be the conditional probability or

density function defined on Dbij {Cijk Cijk= (uij, Zijk),
bJi Cijk, Zijk Rij}- Let

seml.d.

I ki

VT =
U U Db,j (19)
i=l _j-l

denote all possible deformed primitives, and note that
VT ' V+ . The following algorithm for the Bayes SPECP is a
modified Cocke-Yonger-Kasami parsing algorithm [16],
which essentially tries to construct a parse table T for an

input observed string representation y and then parses

through the table to obtain a pure string representation x

with a minimum Bayes distance B(y, x). The table T consists
of entries tij, 1 i. n, 1<j< n-i+1, where n is the
length of string y. Each tij is a set of triplets (A, d, k), where
A E VN is an intermediate nonterminal used in deriving x,

d E (0, cx) is part of the Bayes distance, and k specifies the
product rule used with A at its left side.

Algorithm 1: Bayes structure-preserved error-correcting
parser for string languages.

Input: A stochastic context-free string grammar

Gs= (VN, VT, Ps, S) in Chomsky normal form without

P-productions, and an observed string representation
ye VT*,y=clc2 ...cn,ci=(si,xi),i 1,2, -,n.

Output: A pure string representation x accepted by Gs
with a minimum Bayes distance B(y, x), if y is
structure-preserved.

p

Method: Label all production rules and let k: A -- a
p

denote that A -a L is the kth rule in Ps.
Step 1: Construct tiI for each i, i = 1, 2, * n. Let

A E VN. For every kh: A - ahin PS,h= 1,2 ,nA,where
ah = (th, Wh), nA is the number of production rules each with
A on the left side and a terminal on the right side, let

dih= -[In p(Si th) + ln q(x| th, si) + ln PhI. (20)
a= 1 2, , n. Then set

ti= {(A, dil, k1) di, = min dih, A E VN}.
h = 1,2, .., nA

(21)

Step 2: Construct ti,j = 2,, n, inductively. Assume
that tij, has been computed for all i, 1 < i < n, and for all j',

Ph

1 .j' < j. For every kh: A Bh Ch, h = 1, 2, n'A,where
n' is the number of production rules with A on the left side
and two nonterminals on the right side, if there exists some
m, 1 < m < j, such that (Bh, ehl, khl) e tim and (Ch, eh2
kh2) E ti+m,j-m, let eih= ehl + eh2 -In Ph. Then set

tij= {(A, eil, k) I ei = min eih, A E VN}. (22)
h= 1,2, nA

Step 3: Repeat Step 2 until tij is computed for all
. i< n and 1 .j. n - i + 1.

Step 4: When the entire table T is completed, exa-
mine entry t1,. Ifthere exists a triplet (S, d, k)in tIn forsomed
and k, then set B(y, x) = d, and the desired pure string
representation x can be easily traced out from the parse table
T, starting from the kth production rule. If no (S, d, k) exists
in t1l,, then input observed string representation y is not
structure-preserved.

D. Bayes SPECP for Tree Languages

Using the minimum-Bayes-distance criterion again, we
propose a Bayes SPECP for tree languages. Given a stoch-
astictree grammar G, = (VN u VT, r, Ps, S)over <VT, r> in its
expansive form, let VT, p( a,) = p( ti), q( | a , bij) = q( | tI,
uij), Da,, Dbij, and VT be all the same as those defined in
Section IV-C. The following algorithm for the Bayes SPECP
follows the concept of tree automata [17], and is a backward
procedure for constructing a tree-like transition table T for
an input observed tree representation /3. Let the tree struc-
ture (i.e., the tree domain) of / be denoted as D#, then
corresponding to each node b in D, is an entry tb in T, which
consists of a set of triplets (A, d, k), where A E VN is a

candidate state for node b, d is part of the Bayes distance,
and k specifies the production rule used with A at its left side.

Algorithm 2: Bayes structure-preserved error-correcting
parser for tree languages.

Input: A stochastic tree grammar G,= (VN u VT, r, PS,
S) over < VT, r> in its expansive form, and an observed tree

representation P with /3(b) = (Sb, Xb) as its observed primi-
tive at node b, (Sb, Xb) E VT.

Output: A pure tree representation a accepted by GS
with a minimum Bayes distance B(,B, x), if /3 is
structure-preserved.

Method: Let tb. idenote the entry in T, which consists of
the set of triplets corresponding to the ith descendant of
node b.
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Step 1: For each node b in f such that r[f,(b)] = 0 (i.e.,
b has no descendant), add to tb a triplet (A, d, k) with
d = -[In p(Sbl tk) + In q(xb I tk, Sb) + In Pk],

Pk

if A - ak (23)
with ak = (tk, Wk) is the kth production rule in P,.

Step 2: For each node b in 1 such that r[fl(b)] =
N #- 0, add to tb a triplet (A, do, k) with

do = -[In P(Sbl tk) + In q(Xb Itk, Sb) + In Pk]

+d, + d2+ + dN,
Pk

if A - ak (24)

Al ..N
with ak = (tk, Wk) is the kth production rule in P,and (A 1, d ,
kl) E tb. 1' (A2, d2, k2) E tb. 2, ., (AN, dN, kN) e tb.N.

Step 3: For any two triplet (B,, di, ki), (Bj, dj, kj) in
each tb, delete the former if di > dj, or the latter if di < dj.

Step 4: Repeat Steps 1-3 until all nodes in 1 have
been processed.

Step 5: Examine to, the root entry of the transition
table T. If (S, d, k) E to for some d and k, then set B(f3, aL) = d,
and the desired pure tree representation a can be easily
traced out from T, starting from the kth production rule in
P, If no (S, d, k) exists in to, then the input observed tree
representation # is not structure-preserved.
E. Comments on Various SPECP and Least-Square-Error
Distance Criteria
Fung and Fu [3] have proposed a maximum-likelihood

SPECP for string languages, but the grammars used are
nonstochastic, so their SPECP is suboptimal with the
assumption that all pattern subclasses occur with equal
probability. SPECP's using stochastic grammars has been
proposed by Fung and Fu [18], Lu and Fu [20], and
Thompson [2], but from the view point ofour deformational
model, these SPECP's consider only syntactic local defor-
mations, and so are limited in their usage in syntactic pattern
recognition problems where useful semantic information,
especially when it is continuous, is contained in the pattern
primitives.3 Of course, these SPECP's still can be used to
handle continuous types of semantic information by
thresholding them into finite discrete levels, but obviously
this will decrease the error-correcting recognition accuracy
of the SPECP's, as mentioned previously in Section II, and
as will be shown by an example in Section V-D.

Next, SPECP's for string and tree languages using the
minimum-distance criterion have also been proposed [1], [4].
In addition to being limited to syntactic local deformations,
these SPECP's are statistically optimum only under very
special conditions, although they are convenient and impor-
tant in practical applications where deformation probability
or density functions are difficult to infer.

Finally, we propose in the following a new criterion,
namely, the least-square-error (LSE) distance criterion for

3 Deletion and insertion errors are also considered in [2], [20].

SPECP's, which is a special case of the minimum-Bayes-
distance criterion but is useful for semantic local deforma-
tions where the observed semantic vector in a primitive is
normally distributed. Such cases often occur when patterns
are corrupted with random noise.
Assuming that no syntactic local deformation is involved,

we want to derive the Bayes distance between a pure pattern
O = (S, B) and one of its locally deformed observed patterns,
co= (S, A), where A = {ai ai = (si, xi), xi = (xi1, xi2, ,
XiN), i = 1 2, , n} and B = {bi I bi = (si, wi), wi = (wi1, wM2,

wiN), i= 1, 2, , n}, under the following conditions.

1) Component random variables xij of xi are all indepen-
dently and normally distributed with mean wij and
variance a3jj = 1, 2, , N:

fiL(xii) =,2 exp[-e(xp - w ij)2/]. (25)

An example for this case happens when every xi is
corrupted by random noise with zero mean and var-

2iance a2

2) The pure patternw occurs with the same probability as
any other, so that P(co) is a constant for every pure
pattern co.

Then the Bayes distance from w' to w is

B(o', )) -In A
n

= _-E [In p(siI si)
i=l

+ In q(xiIsi, si)] - In P(w)
n N

E Infij(xij) -In P(w)
i=1 j=1

n N

=K+iE
i=l j=l

I*- (
2

+ In aij , (26)

where K is a constant, and as far as discrimination is
concerned, we can define the normalized square-error dist-
ance as

n N [I 2
B1(wo',c)= Z Z (Xii Wii1 + 2 In oaIj,

i=l j=l [( aij )i

and the (unnormalized) square-error distance as
n N

B2(Qo', Ot) = E E (Xij-Wij
i=1 J=1

(27)

(28)

which is appropriate under a further assumption that all
ai = 1. A SPECP using the normalized or unnormalized
least-square-error (LSE) distance criterion is called a nor-
malized or unnormalized LSE SPECP. These two kinds of
LSE SPECP's for tree languages have been used by Tsai and
Fu [5] for picture segmentation and discrimination of
textures corrupted by random noise, and the result obtained
from the normalized LSE SPECP, as expected, is better than
that from the unnormalized version.
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V. BAYES ERROR-CORRECTING RECOGNITION SYSTEM-
A HYBRID PATTERN CLASSIFIER

What we have investigated so far is just one-class
classification problems: given an unknown pattern o' and a
pattern grammar G, we can use the Bayes SPECP of G to
parse o' and find out a pure pattern o which is accepted by G
and is the closest to a!' in the sense ofBayes distances. In this
section we will study multi-class problems, i.e., given m
pattern classes C1, C2, , Cm of pure patterns and their
pattern grammars G1, G2, ..., Gm, we want to assign co', a
given observed pattern, to one of these m classes according
to the Bayes decision rule.

A. A Multi-Class Bayes Recognition System
Applying the Bayes decision rule, we get

Decide o'! C, if P(CjlIo') = max P(CIJ c'), (29)
i-1,2, ***, m

or

Decide ao' C, if

p(a! C1)P(CI) = max p(!'l Ci)P(Ci) (30)
i= 1,2, * *, m

where P(Cj) is the a priori probability of class Ci, and
p(co' Cj) is the conditional probability or density function of
co' given that a!' E Ci. Due to the possible ambiguity existing
in Gi and the error-correcting capability of the parsing
algorithm, ao' may be derived by Gi in several different ways,
or, in other words, co' may be regarded as deformed from
several pure patterns Oc1, (02, ' 0ki C Ci. SO

fki

p(!' C1) = E p(o! (0j)P(1)j CI) (31)
j=1

'Wj E C i

and the multi-class classification rule now becomes

Decide (0' C, if
ki

E P(w' (0j)P(-jIC,) P(CI)
Coj e Cl

ki

max p(ov'l wj)P(wjlCj p(Cj. (32)
i= 1,2, ,m j=1

(OjE Ci

where P(Qoj C) can be obtained from stochastic pattern
grammars (denoted as P(wj) in Section IV for one-class
problems). Note that in (32), each p(ao!jwj)P((oej0Cj) is
related to the Bayes distance B(a', (0s) by the following
equality:

p(o ' eojj)P(wjj Cj) = exp [-B(a!, WAj)]. (33)

Also note that in the Bayes SPECP's for the string and tree
languages proposed previously in Section IV-C and IV-D,
only the minimum Bayes distance

B(a!l, Cj) = min B(aoI, (0j) (34)
j= 1,2, , k

(Ij eCi

is computed. So, in order to compute the conditional
probability or density function

ki

p(j' Ci) = exp [- B(ao, oj)],
i=l
(eje C

(35)

the two Bayes SPECP algorithms (Algorithm 1 and 2) must
be modified. This is discussed in the next section. We call a
classification scheme using the above optimum multi-class
classification rule (32) a Bayes error-correcting recognition
(BECR) system.

B. Modification of Bayes SPECP's for Bayes Error-
Correcting Recognition System

Bayes SPECP's which are useful for intraclass pattern
classification only are modified in this section to serve the
purpose of interclass Bayes error-correcting recognition.
Since we want to obtain the Bayes distances between an
input observed pattern (o' and all the pure patterns from
which co' may be deformed statistically, the modification is
made such that all possible partial derivations of a', instead
of only the one with a minimum partial distance (dih, eih in
Algorithm 1, or d, do in Algorithm 2), are kept in the
intermediate steps. As a distinction, the resulting SPECP's
are called interclass SPECP's.

Algorithm 3: Interclass SPECP for string languages for
BECR.

Input: Same as that of Algorithm 1.
Output: A set of pure string representations tx 1, x2,,

XL} accepted by G, with a set of Bayes distances B(y, xi), B(y,
X2 ., B(y, XL), if y is structure-preserved.

Method: Same as that of Algorithm 1 except

1) In Step 1, set

ti = {(A, dih, kh) Idij * 00,
h= 1, 2, , nA, Ae VN}.

2) In Step 2, set

=- {(A, eh, kh) Ih = 1, 2,n*n, A E N}

3) In Step 4, when examining t ,,, let Lbe the total number
of triplets in t1i, each of the form (S, d, k) for some d
and k. Then for ith such triplet (S, di, ki), set B(y, xi)=
di. If L = 0, then y is not structure-preserved.

Algorithm 4: Interclass SPECP for tree languages for
BECR.

Input: Same as that of Algorithm 2.
Output: A set ofpure tree representations {a 1 t72 '* L}

accepted by G,with a set ofBayes distances B(f3, a 1), B(#, L2),
B(f1, cxL), if, is structure-preserved.
Method: Same as that of Algorithm 2 except

1) Step 3 should be deleted.
2) In Step 5, when examining to, let L be the total number

of triplets in tln, each ofthe form (S, d, k) for some d and
k. Then for ith such triplet (S, di, ki), set B(,B, ic ) = di. If
L = 0, then y is not structure-preserved.
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C. A Suboptimal Bayes Error-Correcting Recognition
System
The Bayes error-correcting recognition system proposed

previously, though optimum statistically, is impractical
when the pattern grammar used is highly ambiguous, since
the parsing will then become very inefficient due to the
accumulation ofmany triplets (A, d, k) in the entries tijofthe
parse table (Algorithm 3), or in the entries tb ofthe transition
table (Algorithm 4). Note that each such triplet corresponds
to a partial derivation of the input pattern representation.
So, in practical applications, the pattern grammar usually is
made unambiguous.4 Also, we assume that each observed
pattern is deformed from only one pure pattern. Then,
without loss of generality, we can infer a pattern grammar G1
for pattern class Ci in such a way that even though an input
observed pattern co' grammatically may have several error-
correcting parses w1I, w1)2 * **, (A with respect to Gi, statist-
ically only one of these ki pure patterns will result in a large
value of p(w' wj)P(wj C1) being computed, compared with
those of other remaining wj. So, in a suboptimal sense, the
conditional probability or density function p(co' C1) can be
approximated by

ki

P((O' I Ci) = E, P(W' wi)p((@i Cj)
j=1

max p(wO' Oj)P(DjI C1) (36)
j=1,2,*- ki

which, by using the output minimum Bayes distance B(w',
Ci) of the more efficient Bayes SPECP (Algorithm 1 or 2),
can be computed as

p(w' C1) = exp [-B(w', CM)].
We thus have a more efficient, though suboptimal, error-
correcting recognition rule for practical applications [10].
That is, decide w' C, if

[mmax p(poI I)j)P(wPj CC) ] P(CI)
j = 1,22,m, k2

max [max p((' cj)P(cOj| Ci) P(Cj). (37)
i=1,2, -,m -j=1,2,- ,ki

Coje Ci

A recognition system using such a decision rule is called a
suboptimal Bayes error-correcting recognition system.
The above suboptimal recognition system essentially has

also been proposed by Fung and Fu [18] and Lu and Fu [20]
for syntactic local deformations. The proposed Bayes error-
correction recognition system (Section V-A) and its subopti-
mal version, however, not only can perform stochastic
syntax analysis of input pattern structures by using the
SPECP's, but also can take the numerical information
contained in pattern primitives into consideration. There-
fore, they can be regarded as hybrid pattern classifiers

4 Note that unambiguity of the pattern grammar does not guarantee a
unique error-correcting parse of an input pattern.

a3

a3

a3

(1 1

a1

(a)

b3 b2

b3 b2
W22

b1 b1

(b)

al a2

bI b2

a3

b3

(c)

Fig. 4. (a) Pure pattern class C1. (b) Pure pattern class C2. (c) Pure
primitives for Fig. 4(a) & (b).

because advantages of both syntactic and statistical pattern
recognition techniques have been utilized.
Compared with the syntactic recognition approach using

stochastic grammars only [7], [15], the proposed deforma-
tional scheme may be regarded as a special case ofstochastic
transformational grammar which is expected to handle com-
plex noisy input patterns when simple stochastic grammars
are not adequate to apply [3].

D. An Illustrative Example-Classification using the
BECR System
An example for string languages is given in this section to

illustrate the applicability of the proposed (optimum) Bayes
error-correcting recognition system and to compare its
performance with other error-correcting systems which
handle continuous semantic information by thresholding it
into finite discrete levels.
Example 2) Classification ofa deformed triangle: Assume

that we have two pure pattern classes. One pattern class C1
consists of two equilateral triangles ow I,, O12, as shown in
Fig. 4(a), and the other class C2 consists of two other
different equilateral triangles w21, W22 as shown in Fig. 4(b).
The primitives used, which are fixed-length line segments,
are shown in Fig. 4(c).

Also assume the following probability values: P(Cj)=
0.5, P(C2) = 0.5, P(wo11 C1)= 0.60, P( 121 C1) = 0.40,
P(O21 C2) = 0.80, P(W22 C2) = 0.20. Two stochastic pat-
tern grammars G 1, G2, consistent with these probabilities for
C1, C2, respectively, are given in the following:

G1 = (VN1, VT,, P1, S1)

VN1 = {A, B, C, D, A1, B1, C1, D1}

VT, = {a1, a2, a3}
0.6

P1: 1) SI *-AD
0.4

2) S1 A1ID1
1.0

3) D - BC
1.0

4) A1l AA
1.0

S) Di BC
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1.0

6) B1 - BB
1.0

7) C1- CC
1.0

8) A - a,
1.0

9) B- a2
1.0

10) C - a3

and
= (VN2, VT2, P2, S2)

VN2 = {A, B, C, D, A1, B1, C1, D1}

VT2 = {b,, b2, b3}

P2: 1)
0.8

S2 - AD
0.2

2) S2 -A1DI
1.0

D o BC3)
1.0

4) A1 - AA
1.0

5) DI B1C1
1.0

6) B1- BB
1.0

7) C1- CC
1.0

8) A-+ b
1.0

9) B - b2
1.0

10) C- b3

To use the interclass SPECP of Algorithm 3 for illustra-
tive purpose, the above two grammars are inferred in their
context-free forms, although simpler finite-state grammars
can certainly be used. They are also in Chomsky normal
form.
Now assume that each pattern wcij (i = 1, 2, j= 1, 2) is

subject to both syntactic and semantic local deformations
with each line segment in o ij being deformed independently.
Each line segment can be syntactically deformed into a curve
segment with a fixed curvature and a fixed length but with a
variable direction. We use the 2-tuple (L, 0) and (C, 0) to
characterize the pure primitives-line segments, and the
deformed primitives-curve segments, respectively, where L
and C are syntactic symbols, and 0 denotes the one-
dimensional semantic vector the direction of the primi-
tives with respect to x-axis. So we have all the 2-tuples for the
pure primitives shown in Fig. 4(c) as

a1 = (L, 300) b= (L, 00)

We also assume that each ai (i = 1, 2, 3) can be deformed
syntactically into a curve segment with probability 0.1, and
that each bi (i = 1, 2, 3) can be deformed syntactically into a
curve segment with probability 0.13. Furthermore, each line
or curve segment is semantically deformed on its direction 0
approximately with a normal distribution as shown in the
following data (for notations, see Section III-B):

Dai= {a1l = ai = (L, 9ai), ai2 = (C, 0a)}
where

Oai= 300 +(i-1)- 1200

with

p(ai jai) -0.9, p(ai21 ai) = 0.1, for i= 1,2,3.

Dbi = {bil = bi= (L, Obi), bi2 = (C, 0bj)}
where

Ob = (i - 1) 1200
with5

p(biII bi) = 0.87, p(bi bi) = 0.13, for i-1,2, 3.

Daj {aijklaijk = (Si, Ok) I Ok - Oai .-4001
where

i=1, 2, 3, =1, 2,

Sj =L, when = 1

=C, when j=2,

and

q(aijk ai, ai) - 2I

with

exp [- (0k -f9i)2/a2]

(T = 80, 0 = 300 + (i- 1). 1200,

Dbij =Jbijk bijk = (Si, 0,) I Ok - Obi | -400}1
where

i = 1, 2, 3, j = 1, 2,

Sj=L, whenj = 1

= C, when j = 2,

and

q(bijk|bij, bi) = exp [- (,k -Obi)lab

with

Cr = 10°,0,Ob (a1) 1200.

The six semi-pure primitives, i.e., the six curve segments
corresponding to a12, a22, a32, and b12, b22, b32 are shown in
Fig. 5(a). Two possible observed patterns are shown in Fig.
5(b) and Fig. 5(c), respectively.

a2= (L, 150°) b2= (L, 1200)

a3= (L, 2700) b3 =(L, 2400).
5 Mathematically, there is no limitation on the value of ok, SO the

assumption is strictly for computational convenience.
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a12 a22 a32

b2, b

(a) (b)

C6

(c)

Fig. 5. (a) Semi-pure primitives for Fig. 4(a) and (b). (b) An observed
pattern. (c) Another observed pattern w'

(a)

(S2,34.19,2)

1

P(C2l)') = exp (- 34.19). 0.5

-70.87 x 10-17

and decide that wo' belongs to C2. This completes our
illustrative example for the proposed Bayes error-correcting
recognition system.

In the following, we threshold the continuous 0 values
into intervals as is usually done in other error-correcting
schemes, and show how contrary decision can be made for
the previous input pattern co'. Since the proposed Bayes
recognition system always gives optimum decisions in the
Bayes sense, we thus have shown its better performance than
other systems using thresholding approaches on continuous
semantic information.

Ifwe threshold 0 values starting from 006 in steps of200 for
class C1, and from 3006 in steps of 200 for C2, then Daij and
Db3j can be changed to the following:

Dai; = {aijkI k = 1, 2, 3, 4, aijk = (Si, Ok)

(k- 2) * 200 .k - Oai . (k - 1) 200}

with discrete probabilities

q(aijk| aij, ai) = 10.49,
k= 1,4
k = 2, 3,

(A1,10.86,4) I(B1, 10.86,6) * (C1,10.86.7)

Dbj = {bijkl k = 1, 2, 3, 4, bijk = (Si, 0k)

(k- 2). 200. Ok- 0bi<(k- 1)- 200}

with discrete probabilities4 8 j I .4 ,9) -I

(A, 4. 48, 8) (A, 6. 38, 8) (B,6. 38, 9) (B,4. 48, 9) ( C,4. 48,10) (C,6. 38, 10)

(b)

Fig. 6. (a) Parse table T1. (b) Parse table T2.

Now suppose we want to classify the deformed pattern to'
shown in Fig. 5(c) with the following string representation:

Ct = ClC2C3C4C5C6
where

Ci = (L, 150), C4 =(L, 1350),

q(bijk bij, bi) = J0.02,
10.48,

k = 1, 4
k = 2, 3,

with Si the same as defined previously. And by convention,
only the following probability values are used in parsing [3]:

r(aijk| ai) 0.009,

= q(aijkI ai, aij) * p(aij ai) = 00441,0.001,
0.049,

j= I,ik= 1,4
j= l,k=2,3
j=2,ik= 1,4
i = 2, k = 2, 3

c2= (C, 15°), c5 = (L, 2550),
C3= (C, 1350), c6 = (C, 2550).

To apply the BECR system, at first, we use the interclass
SPECP's (Algorithm 3) for grammar G1 and G2 to parse to'.
We obtain two parse tables T1, T2 for G1 and G2, respec-
tively, as shown in Fig. 6(a) and (b). Since S1 is in t16 of T1,
and S2 in t16 of T2, to' is accepted by both classes C1 and C2
with Bayes distances d1= 36.68 and d2= 34.19, respec-
tively. Since only one triplet exists in each t16, using Bayes
SPECP's will also get the same result. Next, we apply the
interclass Bayes decision rule, compute

P(C1 to') = p(tO' C1)P(C1)
= exp (-36.68). 0.5
= 5.88 x 10- 17

r(bijk | bi) |0.0174,

= q(bijk| b ij) - p(bij bi) =
04176,

0.0026,

0.0624,

j=l,k= 1,4
j=l,k=2,3
j=2,k= 1,4
J=2, 2, 3

i = 1, 2, 3. The previous data show that each ai or bi can be
deformed into eight different observed primitives with differ-
ent probabilities, in which four are line segments and the
other four are curve segments.
Now again use the interclass SPECP's (Algorithm 3) for

G1, G2 to parse ', respectively. Note that after thresholding
the 0 values in t' and transforming into string representa-

6 Starting from different points to threshold is just for convenience
because the directions of a1, b, are 00 and 300.
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(a)

(b)

Fig. 7. (a) Parse table T3. (b) Parse table T4.

tions, we get

11=l3a123a223a2,3a313a323

for class C1, or

C(Of b112b122b222b212b312b322

for class C2 . Also note that the term [In p(si th) + In q(xi I th,
si)] contained in dih of Algorithm 3 should be replaced by
In r(c, ah) before the algorithm is applied to our discrete
case here, where ci= a ijk or b ijk now. From the resulting
parse tables (Fig. 7(a) and (b)), we get

P(C 1 o) = exp (- 12.44) 0.5
= 1.98 x 10-6

P(C2 )') = exp (- 12.53) 0.5

= 1.81 x 10-6

and decide that a!' belongs to C1!
A careful study reveals that such contrary conclusion to

the previous Bayesian decision c'- C2 is due to the coarse

thresholding used. Using smaller intervals in thresholding
will improve the result, but will not be better than that
obtained from the proposed system.

VI. CONCLUDING REMARKS

Suboptimal Bayes error-correcting recognition systems
using Bayes error-correcting parsers and Bayes interclass

decision rule have been proposed both by Fung and Fu [18]
and by Lu and Fu [20]. The proposed systems described in
this paper can be considered, from the viewpoint of local
deformation, as a generalization of theirs with respect to the
use ofsemantic information, which is often more relevant for
practical pattern recognition when both structural and
numerical informations are available for primitive discri-
mination [6], [13], [19]. Further investigations should be
directed to include error-correcting capability for structural
deformations under the formalism ofthe proposed deforma-
tional model and thus provide a complete error-correcting
recognition system.
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