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Abstract The pattern deformational model proposed by Tsai and
Fu [11] is extended so that numerical attributes and probability or
density distributions can be introduced into primitives and relations
in a nonhierarchical relational graph Conventional graph isomor-
phisms are then generalized to include error-correcting capability for
matching deformed patterns represented by such attributed rela-
tional graphs. An ordered-search algorithm is proposed for deter-
mining error-correcting isomorphisms. Finally, a pattern
classification approach using graph isomorphisms is described, which
can be considered as a combination of structural and statistical
techniques.

I. INTRODUCTION

RELATIONAL GRAPHS are used in syntactic pattern
recognition to represent the structural information of

given patterns [1]. The nodes in a relational graph denote
subpatterns and primitives, and the branches between two
nodes represent the relations between subpatterns and
primitives. Other terms, such as relational structures [2],
webs [3], [26], and labeled graphs [4], are also adopted for
such structural representations. As an example, given the
scene in Fig. l(a), a relational graph to represent the
structure ofthe scene is shown in Fig. 1(b). Relational graphs
or their simpler versions (without branch labels or even
node labels) are found in such applications as scene analysis,
chemical structure descriptions, relational database
systems, network representations, switching theory, etc.
One way to recognize the structure of a given unknown

pattern is to transform this pattern into a structural rep-
resentation using a relational graph and then to match this
graph with those which represent structures of prototype
patterns. Such graph matching, or graph isomorphism, is
necessary and important when a grammatical analysis in
terms of parsing is not applicable. This case happens, for
example, when training samples are too few to infer pattern
grammars or when each pattern itself could be regarded as a
prototype of the pattern class. There is a significant amount
of literature on graph isomorphisms [2], [5]-[9], but most of
these investigations deal with unlabeled graphs except for
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Fig. 1. (a) A scene. (b) A relational graph for (a).

those by Barrow et al. [2] in which several labeled relational
graph matching methods are discussed and compared.

In some practical applications a certain amount of uncer-
tainty may exist in the pattern structures under study.
Deformations on patterns due to noise or distortion may
cause an input pattern different from all prototype patterns,
either in primitive properties or in their relations, so that the
assignment of it to any pattern class is rejected by conven-
tional graph isomorphisms, even though the input pattern is
deformed very slightly and still can be easily recognized as
coming from one of the known classes. Such weakness of
conventional graph isomorphisms is due to the following
two reasons. 1) The isomorphism procedures lack error-
correcting capability; only exact matching is allowed. 2) The
procedures are symbolic in nature [5], [6]; they cannot
process continuous numerical attributes which are often
associated with node and branch labels to give more precise
descriptions of primitives and their relations [2], [10].

It is attempted to solve these two problems in this paper.
Definitions of relational graphs are first extended to include
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numerical attributes. The pattern deformational model
proposed by Tsai and Fu [11], [12] is then extended to
include relation deformations. Under such an extended
deformational model, error-correcting isomorphisms and
matching criteria are defined. Graph isomorphisms are next
formulated as state-space search problems [13]. By using the
probability distributions or weighted distances introduced
on the nodes and branches in the graphs to guide the
state-space search, an ordered-search algorithm is proposed
for determining error-correcting isomorphisms of two rela-
tional graphs. Finally, a hybrid approach to pattern analysis
using error-correcting isomorphisms and various decision
rules is described which may be regarded as a combination
of statistical and structural techniques [14].

II. RELATIONAL GRAPHS WITH ATTRIBUTES
In this section basic concepts about primitives and their

relations are first formalized with emphasis on the necessity
of numerical attributes for more precise descriptions ofthese
terms. According to these concepts a definition for at-
tributed relational graphs is then given, which can be
considered as a generalization of conventional ones without
numerical attributes.

1) Primitives: As pointed out in [1], [11], and [15], two
kinds of information are usually needed to give a precise
description of a pattern primitive, viz., the primitive structure
and its (numerical and/or logical) attributes. Conventional
syntactic approaches usually use symbolic notations only to
specify primitive structures, and if numerical information
has to be utilized, thresholding usually is resorted. For
example, the octal chain code [16] uses the thresholding
results of directional attributes of line segments.

Definition 2.1: A pattern primitive a is denoted as a
2-tuple or a pair

a = (s, x)

where s is a syntactic symbol denoting the structure of a, and
X = [XI, X2, . Xm] is a semantic vector denoting m numeri-
cal and/or logical attributes of a. When m = 0, or no
semantic attributes are used, set x = 4.

2) Relations: To denote the relation between a given
pair ofprimitives, phrases such as "above," "left of," "inside,"
etc., are used, which essentially only describe the syntactic
information of the relations. Ifmore accurate descriptions of
the relations are required, semantic information such as
numerical attributes can again be added. So, similar to the
description of a primitive, we can describe a relation be-
tween two primitives by two kinds of information: the
syntactic structure and the semantic attributes. For exam-
ple, in Barrow and Popplestone [10] syntactic structures
such as "above," "besides," etc., and semantic attributes such
as relative sizes and distances, boundary adjacency and
convexity, etc., are proposed to describe relations between
pairs of picture regions.

Definition 2.2: A relation e between a pair of primitives
a, and a2 is denoted as a 2-tuple

e = (u, y)

where u is a syntactic symbol denoting the structure ofe, and
y = [YI, Y2, . , YA] is a semantic vector denoting n numerical
and/or logical attributes of e. When n = 0, or no semantic
attributes are used, set y = 4.
The above definition is almost identical to that for a

pattern primitive; this is no wonder because we can consider
the description of a primitive as a relation between the
primitive and itself. We will call either a primitive or a
relation a terminal. Note that only binary relations are to be
treated in this paper although generalization is easy in [2]
and [5]. Actually, as pointed out in [1] and [17], given an
n-ary relation it is easy to convert it into a set of binary
relations.

3) Attributed Relational Graphs: With primitives and
relations defined, a formal definition for attributed rela-
tional graphs is given in the following, which essentially
follows that defined in Brayer and Fu [3] but includes
semantic attributes for more general applications.

Definition 2.3: An attributed relational graph over
V = V, u VB is a 4-tuple

(i)= (N, B, /1, E)

where

N is a finite nonempty set of nodes
B C N x N is a set of distinct ordered pairs of distinct

elements in N called branches;
VN is a finite nonempty set of node labels

(primitive descriptions) each of which is of
the form (s, x) as defined in Definition 2.1;

VB is a set of branch labels (relation descrip-
tions) each of which is of the form (u, y) as
defined in Definition 2.2;

,u: N -* VN is a function called node interpreter;
£: B -+ VB is a function called branch interpreter.

III. A DEFORMATIONAL MODEL FOR RELATIONAL GRAPHS

In Tsai and Fu [11], [12] a pattern deformational model is
proposed to take care of noisy or distorted pattern primi-
tives with attributes, and based on such a model, a Bayes
error-correcting parsing and classification system has been
constructed for string and tree languages. In this section this
deformational model is reviewed from a relational-graphic
point of view and is extended to cover relation deforma-
tions. The extended model will serve in the next section for
constructing an error-correcting isomorphism procedure
for attributed relational graphs.

A. The Deformational Model
An observed pattern can usually be regarded as deformed

from a pure pattern. Given a pure pattern there may exist a
set of corresponding observed patterns' which form a

pattern cluster or a subcluster of a pattern class.
Using relational graphs as pattern representations, let

0 = (N, B, ji, e) over VN u VB and w' = (N', B', ', ')over
VN, u VB. be a pure pattern and one of its observed version,

I A pure pattern is also regarded as a possible observed pattern.

758

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 21, 2008 at 02:23 from IEEE Xplore.  Restrictions apply.



TSAI AND FU: ERROR-CORRECTING ISOMORPHISMS

respectively, which we will call a pure relational graph and an
observed relational graph. Note that VN c VN and VB c VB.
When B = B', e = s', and N = N', butp *p', i.e., when all
relations are kept unchanged, and only primitives of graph
nodes are deformed, we say that a local deformation is
induced on w and that w' is deformed locally from a. Since
the pattern structures ofa and Cl' represented by B, e, and N
are the same, such a deformation is usually called a
structure-preserved deformation [12]. On the other hand,
when the difference between w and co' is more than just
p 4 ji', we say that a structural deformation is induced on o
and that wo' is deformed structurally from w. Though various
types of structural deformations can be identified, we con-
sider in this paper only the case where B = B' and N = N',
but e $ e' and p * p'. This case happens when the deforma-
tion does not affect the structure of the underlying un-
labeled graph Gm, = (N, E) for w but only corrupts the
information contained in the primitives and relations. It
includes the local deformation as a special case and is in
nature quite general to include pattern deformations en-
countered in many practical applications. We will call this
kind of deformation as graph-preserved.

B. Graph-Preserved Deformation
As proposed in [11] and [12], a primitive deformation can

further be decomposed into two steps. Let a = (s, x) be a
primitive in the pure pattern w and c = (t, z) be a corre-
sponding deformed version ofa in the observed version w' of
co. Then the two-step primitive deformation can be viewed in
the following way:

a = (s, x)

pure
primitive

p(tls)

syntactic
deformation

b = (t, y)

semipure
primitive

q(zlt, s)

c = (t, z),
semantic i

deformation

observed
primitive

where the first step is a syntactic deformation induced on the
syntactic symbol s of primitive a. It transforms a into a
so-called semipure primitive b = (t, y) with discrete probabil-
ity p(t Is), where y is a representative semantic vector for t.
The second step is a semantic deformation induced on the
semantic vector y of b. It corrupts b into the observed
primitive c = (t, z) with probability (or density) q(z I t, s). The
total probability (or density) for a to be deformed into c is

r(c|a) = q(zjt, s)p(tjs)

which is called the primitive deformation probability (or
density) of c from a. Note that in the previous discussion we
have already assumed implicitly that a primitive is deformed
independently from any other terminals. This assumption is
often made in discussing pattern deformations [11], [19],
[20], although it means that no contextual information from
primitives is to be utilized in subsequent recognition
procedures.

In the case of relation deformations it becomes impracti-
cal if we also assume that a relation is deformed indepen-
dently from any primitive or relation in the same graph.
Actually, it is more likely for a relation to be changed

according to how its two end primitives are changed and
vice versa. So, given a pure relation e = (u, x) between two
primitives a, b in w and its corresponding observed relation
g = (v, z) between primitives c, d which are deformed locally
from a, b, respectively, we can decompose the relation
deformation induced on e into two steps as follows:

e = (u, x)

I
pure

relation

p(vlu, c, d)

syntactic
deformation

f= (V, y)

I
semipure
relation

q(zjv, u, c, d)

semantic
deformation

g = (V, Z).
I

observed
relation

The explanation is analogous to the one for primitive
deformations except that the probability (or density) func-
tions p and q also depend on the observed primitive c, d on
the two end nodes of relation g. Now the probability (or
density) for e to be deformed into g becomes

r(g e, c, d) = q(z v, u, c, d)p(v u, c, d),
which is called the relation deformation probability (or
density) of g from e.
Note that the decomposition of a terminal deformation

into two steps is just for discussion convenience; the two
steps may not be independent of each other. In the cases
where the syntactic and semantic deformation probabilities
(or densities) cannot be inferred separately, the total proba-
bilities (or densities), i.e., r(c I a) or r(g I e, c, d), should be
inferred directly.
C. Pattern Deformation Probabilities (or Densities)

Recall the following two assumptions made in Section B
on the interdependency of terminal deformations.

1) A primitive in co is deformed independently of any
other terminals in co.

2) A relation in w is deformed independently ofany other
terminals in w except those two on its two end nodes; it
is deformed according to the observed primitives on
these two end nodes.

Of course, more complicated assumptions other than these
can also be made if more contextual information is to be
utilized. Now let co = (N, B, 4u, £) over VN U VBand w' = (N,
B, u', £') over VN, U VB' be the relational graph of a pure
pattern and one of its observed versions, respectively, where

N= oil i=1, 2, .. nN}S

B= 7il7i= (Oil, (i2)c-N x N, i= 1, 2, --, nB},
VN = {aiai= p(ai)- (si, xi), i= 1, 2, , nN},
VB = {eijei-= (yi)= (ui, yi), i- 1, 2, ? nB},

VN,= {a1a ='(7i) = (s,, x,), i = 1, 2, -.., nN},

VB' = {e'le'= £'(Yi) = (u', y), i = 1, 2, nB},
and let a -+ a' denote a primitive deformation of a' from a,pd

and e - e'denote a relationdeformation ofe'from e.Therd

pattern deformation probability (or density) of 'ftom co, i.e.,
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the probability (or density) that w' is deformed from a,
P(w' I)), can be computed as follows according to the
above-mentioned assumptions (note that the two end primi-
tives of relation ej corresponding to branch yj= (aji,
ehE B are aj1 and aj2 according to the above notations):

P(co' (c) = P) ai a', i= 1, 2 , nN)

Iej el, j = 1, 2,", nN

- Pla. -a', i 1,2, ...n
I pd

N

Ple -- e'.,j 1, 2, nBntai +a'i,
rd pd

Xa=1, 2,, Nf

nN I s

=flPlaP,-÷ai)
i = 1 pd

nBX
P)rIP-e e'laj, --a , aj2a2

j = I I rd pd pd

nN nB

= 1l r(ajl ai) 171 r(e Iej, a,1, aj2),
i=l j=1

where r(a a,) and r(e' ej, a'1, a'2) are primitive and relation
deformation probabilities (or densities), respectively, as
defined in the last section. Or, in more detail, by decompos-
ing r(al ai) and r(e' ej, a',, a2) into syntactic and semantic
deformation probabilities (or densities), we get

nN

P(ow)' co) = H q(x s', si)p(s'l si)
i=1

nB

f1 q(y uJUj, a',, a2)p(uJ|uj, a',,a2)

D. Pattern Deformation Distances

In some practical applications, due to an inadequate
number of available sample patterns, it might be difficult to
infer deformation probabilities or densities for use. Then
nonstochastic methods must be adopted for measuring the
possibility for a given pattern w to be deformed into another
pattern co'. In this section we propose two such measure-
ments, called weighted distance and weighted-square-error
distance, for two special cases of our proposed general
deformation formalism.
When there is no semantic deformation involved in a

pattern deformation, we can assign a positive deformation
weight, instead of a probability or density value, to specify
howfar an observed terminal (a primitive or a relation) is
deformed syntactically from its pure version:

w(tls) w(vlu,c,d)
(s, x) - (t, x') and (u, y) - ) (v, y')

syntactic syntactic
deformation deformation

for a primitive deformation induced on a = (s, x) and for a
relation deformation induced on e = (u, y) with deformed
primitives c, d on its two end nodes, respectively. Then the
weighted distance for the pattern deformation of o' from o is
defined to be

nN nB

W(w'l w) = E w(s,ISi) + E w(uJluu, a', aJ2).
i=1 j=1

If no syntactic deformation is involved in a pattern
deformation, then given a pure primitive (or relation) a = (s,
x) with x = [x1, x2, ., Xna] and an observed primitive (or
relation) b = (s, y) with y = [Y 1, Y 2, * * * Yj, we can define the
weighted square error of b with respect to a as

na

E(b a)= , wi(a)- [yi-XJ2,
it=

where wi(a) is the deformation weight for the ith attribute of
the semantic vector x in a. And the weighted-square-error
distance for the pattern deformation of co' is defined to be

nN na,i

E(w' co) = E 3 w,(ai) [x' -XJ2
1=l 1=1

nB ne.j

+ E E Wk(ej) [Yjk
j= 1 k=-

Yjk]
2

where x,1 is the corresponding observed version of the Ith
attribute xi, in the semantic vector xi = [xil, xi2, xina, j of
the primitive ai in w, and y'k is the observed attribute ofyjk in
Yi= [Yi, Yj2, * Yjne,j] of the relation ej in co.
The larger these two distances are, the more impossible

the corresponding pattern deformation is. Although these
two kinds of pattern deformation distances are practical for
use, they are optimal only under certain special conditions
which were discussed in Tsai and Fu [25].

IV. ERROR-CORRECTING ISOMORPHISMS OF
RELATIONAL GRAPHS

Given several pure patterns and an unknown observed
pattern a!', all of which are represented by attributed
relational graphs after appropriate preprocessing, we would
like to assign ao to the same class as one ofthe pure patterns
according to a certain similarity criterion. One way to
accomplish this pattern analysis problem is to use graph-
matching procedures or graph isomorphisms. As pointed
out in the Introduction most conventional graph isomor-
phism procedures do not have error-correcting matching
capabilities. They also cannot handle semantic attributes
which are often included in the description ofprimitives and
relations in a graph. We will propose in this section an
error-correcting graph isomorphism procedure for at-
tributed relational graphs.

A. Definitions of Error-Correcting Isomorphisms
Conventional graph isomorphisms are exact matchings; a

successful matching requires every pair of matched node
labels and branch labels to be identical. In this section we
define error-correcting isomorphisms. Let C)= (N, B. i, e)
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over VN U VF be a pure relational graph with N, B, VN, VE
as denoted in Section 111-C. Let the set of observed primi-
tives into which a pure primitive ai E VN might be deformed
be denoted as

D(ai) = |ajIaj = (Si, Xi), ai ai
pd

and let the set of observed relations into which a pure
relation ei E VB (with a',, af2 as the two deformed primitives
on its two end nodes) might be deformed be denoted as

D(ei a',, ai2) lee= (Ufs, Yj), ei -+e I
2 j I)I rd

Note that D(ei a',, a'2) D(ei a2, ai).
Definition 4.1: Let w' = (N', B', eu', £') over VN, u VB' be

an observed relational graph of the pure relational graph
w= (N, B, Iu, e), where N'={tcxi= 1, 2, * , nN} and
B' = {yIy = (al i2) E N' x N', i = 1, 2, , nB,}. A func-
tion h: N' -- N is called an error-correcting isomorphismfromco' to w, which we denote as h: w' -+a), if the following
conditions are satisfied:

1) for each a, E N', a; E D(aj), where a;= ju'(x,) and
aj = P(h(ax)), i.e., a; is one of the observed versions of
aj;

2) for each y = (ax, a2) e B', h(y') E B, and e; E D(ej |a
a;2), where

h(y) = (h(x;1), h(x;2)),

el = El(,)

ej = (h(yi)),

ai2 = (CX.2)
i.e., e, is one of the observed versions of ej;

3) h is one-to-one, i.e., for any two nodes al, a' E N',
h(x1) h(ax2) implies a'L=2

Definition 4.2: An error-correcting isomorphism (ECI)
is called full or graph-preserved if N' = N and B'= B.
Otherwise, it is called partial. A partial ECI is also called a
subgraph ECI.

Since only graph-preserved deformations are studied in
this paper, we are mainly concerned with graph-preserved
error-correcting isomorphisms (GPECI) in the following
discussions, leaving subgraph error-correcting isomor-
phisms for further investigations. As an example to illustrate
the definition of a GPECI, let Fig. 2 and Fig. 3 be the
observed and the pure graphs o' = (N', B', u', £') and
co = (N, B, p, 4), respectively, where

N' = {a', a', x'3, a}, N= {al, a2, O3, O4},

B'= {Al = (o', ) = ('1, 2), A3

= ('1, 4), 74= (4S, Y'3)', A = ('2, aX4)},
B = {y1 = (X2, XI) 72 = (X4, C2), 73

= (@4, 0l), 4 = (X3, X2), 75 = (X4, 3)},

a b

x

a c

Fig. 2. Observed graph !'.

c

b t

Fig. 3. Pure graph wo.

y(oal) = a,

p(al)= a,

£tA=7)X,

u'(a'2)= b, u'(x'3)= a, I'(4 =c,

Y(u 2)= C, g(Cx3)= b,

(Y,2 ) = Y, 9'(Y'3 ) = Z,
I(a4)= b,

9 (Y4) = x, £'(y5) = Z,

6(YJ = x, 8(Y2) = x, (Y3) =Z

E(Y4) = Z, EG() = Y.

Obviously, w' cannot match w because w' has two "a" node
labels and w has only one. Now suppose we have the
following deformations:

D(a) = {a, c}, D(b) = {a, b}, D{c} = {a, c},

D(x Ia, c) = {x, z}, D(x c, a) = {x, y},
D(y a, b)= {y, z}, D(ylb, b)= {x, y},
D(z la, a) = {x, z}, D(z lb, c)={x, z}.

Then with the following one-to-one function h:

a2 3h:
Ot X

at3 (XI

a4 (2,

we check the first two conditions of Definition 4.1:

1) p'(c')= a E D(b)= {a, b}
where b= P(CX4) =p(h(a1

2) u'(0x2)= b E D(b)= {a, b}
where b = p(=3)=(h(ac));
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3) '(x3) = a e D(a) = {a, c}
where a = u(ac) =(h(a'));

4) u'(Y) = c E D(c)= {a, c}
where C =-(a2) =(h(a'));

and

1) h(y')= h(l, cx3)= (a4, aI)=3 ce B
and E'(7') = x E D(z a, a) = {x, z}
where z = 8(73) = (h(y')), a = (l
and a== '3);

2) h(y') = h(o1, a2)= (c-, 3)= y5 e B
and 8'(y')=y e D(y a, b) ={y, z
where y = (75) = (h(y'2)), a = /it
and b ='(a);

3) h(y'3)= h(a, '4)= (L4, L2)=72 e B
and 8'(7'3) = z e D(x a, c) = {x, z}
where x = E(Y2) = 8(h(y'3)), a = p (al)
and c = (a');

4) h(y'4)= h(a4, aX'3) = (2, c1) = 7Y e B
and E'(y4) = x e D(x c, a) ={x, y}
where x = e(7j)= 8(h(y'4)), C= (04
and a== a' );

5) h(y;)2=h(,'4) = (x3, a2) = E B
and 8'(y') z E D(z lb, c)
= {x, z} where z = 8(74)==

y (Y ) = b, and tu'(a'&) = c
Since all three conditions are satisfied and N = N, B' = B,
we conclude that there exists a GPECI from w' to o.

Using the notations in the previous definitions and
according to the discussion in Section III, it is easy to derive
for a GPECI h: !' -c o the pattern deformation probability
(or density) of ! from o as

nN nB

Ph('Io) = 17- r(a,1 aj) H r(e'I,ej a', a'2),
i=1 i=l

which specifies a measure for the goodness of matching by
the GPECI and will be called the likelihood of the GPECI.
Similarly, when only syntactic deformations are involved in
the pattern deformation of a! from w, we can derive its
weighted distance as

nN nB

W,(w'Io-))- EW(S,|ISj)+ Ew(u,Iuj,a',a,2)
i=l i=l

which will be called the distance between wo and a! of the
GPECI. Or when only semantic deformations are involved,
we can derive for the pattern deformation its weighted-
square-error distance as

nN na,j

Eh(w' w) = E E wj(ai) [x1 -

i=1 1=1nB ne,j

+ EEWI(ej) .[y.l-_yjl]2

which will be called the square error between woand a' ofthe
GPECI.
Now, given two relational graphs a' and co, since there

may exist several GPECI's from c' to w due to the varieties

of terminal mappings between a' and w, it is necessary to
determine a GPECI h with the maximum likelihood
P,(wl) wC), or with the minimum distance Wh(w' w), or with
the least square error Eh(w' w), as the desired graph
matching.

B. Graph Isomorphism as a State-Space Search Problem

It is well known that conventional graph isomorphisms
for unlabeled graphs can be solved by tree-search methods
[6], [13]. Without information such as path costs to guide
such search procedures, graph isomorphism falls into the set
of nondeterministic polynomial-time complete (NP-com-
plete) problems [18] and needs exponential time with
respect to the node number of an input graph, although
various attempts have been tried to reduce the time require-
ment [6]-[9]. However, in the search of an error-correcting
isomorphism, blind-search methods can be avoided because
all the primitive and relation deformation probabilities (or
densities) can be used to guide the search procedure. Ac-
tually, taking the negative logarithm of the likelihood
Ph(t!'I w) of a GPECI h, we get

nN

-ln Ph(!IC)==-E ln r(ai Iaj)
i=l
nB

-2.; ln r(e;l ej, a',, a;2);
it

and we can consider each term -ln r(a' aj) or -In r(e' ej,
all, ai2) as the cost of matching a node or a branch so that a
uniform-cost search, or more generally, an ordered-search
procedure [13] can be applied to determine maximum-
likelihood (ML) GPECI's.

Before describing an ordered-search method for finding
MLGPECI's, we first formulate an isomorphism problem as
a state-space problem and explain how a blind tree-search
procedure can be used to find an error-correcting subgraph
isomorphism from an observed relational graph a' to a pure
one w), where ao' = (N', B', p', 8') over VNJu VB and w = (N,
B, U, E) over VN U VB are as those specified in Definitions 4.1
and 4.2. Considering the problem as finding an isomorphism
function h: N' -* N such that all primitives and relations in w
match observed versions of corresponding primitives and
relations in !o', we have the following state-space formula-
tion [13].

a) State Descriptions-A state is described by a collection
M of 2-tuples (i, j), each of which denotes a pair of
matched nodes a' e N' and oc; e N found so far. The
initial state is M =

b) Operators-Let M1 = {i (i, j) E M} and M2 = {j (i,
j) e M}, then an operator performs the following
actions to a state M.

1) Pick up a node ax E N' with k M1, and a node
L E N with 1 C M2, and form a 2-tuple (k, 1).

2) Add (k, 1) to M if it is valid by satisfying the
following conditions.

i) Let ak- '(xk) a, =ja ), then a' ED(ae )
i.e., a' is a deformed version of a, in w9.
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ii) For each (i, j) E M, if yI = (c'k, oti) (or
ym= (xi, 4c)) B' then an= (Oa, oce) (or
= (j, al)) E B and e' E D(en a', a') (or

el E D(e, ai, a')) where e' = s'(y'
en,=e() and a' = y'(ac), a, '(a'), i.e.,
each relation em related to 4k is a deformed
version of the corresponding relation en
in w.

3) If (k, 1) is not valid then the operator is not
applicable. Operators corresponding to other
2-tuples (k', 1') must be tried.

c) The Goal State-A state M with its corresponding
Ml = N' is a goal state. (Note that for a subgraph
isomorphism, M2 = N is not required.)

Next, define the cost for adding a 2-tuple (k, 1) to M as

c(k, I) = -In r(ak a,)
+ , [-In r(e, nen, a', a')],

y' E R

where R = {y' ym = (4' ao,) or (a4 4c) E B' and (i, j) E MI,
i.e., the set of all branches between 4k and all nodes aC in co'
which have been matched already. The value c(k, 1) specifies
a negative quantitative measurement of the possibility for 4k
in w' to match a, in w(. The smaller the cost is, the more
possible it is to match 4x to aci. Then the MLGPECI can be
found by searching through the state-space graph for a
solution path with the minimum path cost, which can be
achieved by a uniform-cost search algorithm [13]. But since
all the deformation probabilities or densities contained in ao
provide us with more information than the cost function c(k,
1), an ordered-search algorithm becomes feasible for a more
efficient search which uses an evaluation function more
informed than the cost function, although a uniform-cost
search is enough to guarantee a MLGPECI solution.

C. An Ordered-Search Algorithm for MLGPECI
During the search for a solution path in the state-space

graph, each state description in the state space is called a
node. The successors ofa node are obtained by applying all
applicable operators to the state description ofthe node. The
process of calculating all the successors of a node is called
"expanding a node." Then an ordered-search algorithm uses
an evaluation function to order nodes for expansion [13].
For a node Ni we take an evaluation function as

f(Ni) = AI(Ni) + A2(N,),
where A (Ni) is the minimum total path cost from the start
node S (corresponding to the initial state description) to N1
calculated during the search, and g2(Ni) is a consistent lower
bounded estimate using any heuristic information available
of g2(Ni) which is the cost of an optimal path from node n to
a goal node. Then, as long as 92(Ni) < g2(Ni), a correspond-
ing ordered-search algorithm will expand fewer nodes,
compared with a search algorithm using no heuristic infor-
mation (such as a uniform-cost search algorithm) and will
still be guaranteed to find a minimal cost solution path in the
state-space graph.

In the case of finding a MLGPECI, each collection of
2-tuples M defined previously denotes a node NM in the
state-space graph. gl(NM) is just the total cost ofadding all
matched 2-tuples found so far to M. A heuristic information
source for estimating g2(NM) lies in the fact that when a
2-tuple (k, 1) is to be added to M to specify a mapping h:
4k-a+ c., all the nodes in a' related to a4 must match those
nodes in a) related to a, in terms of node numbers, node
labels, and associated branch labels. Following this discus-
sion, an evaluation function for the order-search algorithm
to be proposed for MLGPECI's is defined as follows. Let
M = {(il, i)' (i2,j2), ..., (iULL)} with (iL, L) = (k, 1) as the
most recently added 2-tuple to M, then set the evaluation
function for node NM as

f(NM) = Ah(NM) + A2(NM) (1)
where Al(NM)= I c(ik, ik), and A2(NM) takes various
values according to the following rules to specify a partial
quantitative measurement of the possibility for the mapping
h: 4k-a ol to be accepted.

Estimation Rules for g2(NM):
1) Let M1 = {i (i, j) e M}

M2 = {jj (i, j) e M}
M31 = {a,|j (a4 4c) E B', ai 0 MI,
with n31 elements,
M3= {a (a, a) e B', j MI},
with n32 elements,
M3= M31 u M32 = all unmatched nodes
related to 4k in B',
M41 = {aj (c:j1, a,) e B, ajx M2},
with n41 elements,
M42 = {CjI (al, ctj) e B, cxj 0 M2}
with n42 elements, and
M4= M41 u M42 = all unmatched nodes
related to a, in f,

if n3l = n4l and n32 = n42, then check the next rule,
or else set 92(NM) = so which means 4k cannot
match cal due to unequal numbers of directed
branches related to 4x and a.

2) For each oi E M3, ifY/m = (a44c') (or ym = (a4, a,)), try
to find at least one xj E M4 such that a', E D(aj) and
em E D(en a,, a') (or e' E D(en a', a')), where
ak= , ,'(4c),a= aj = @(aj), e'm = el(y), and
= e(y,) with yn= (c.j, cx:) (or yn= (at, cj)). If no

such aj exists for some Ox E M3 then set
92 (NM) = x, which means that the mapping a4 -a cl
is impossible due to unmatched labels of neighbor-
ing nodes and branches, or check the next rule.

3) Let )'(a4) and a)(aL) be two reduced relational
graphs from a)' and ao whose nodes are {4k} u M3
and {acl} u M4, respectively. Try to find a one-to-one
mapping h': cIa') -+a)(al) constrained with h':
4k -a such that the following cost is minimized:

c'(h')= , [-In r(aj I aj)eci'E M3

-ln r(e., I en, ai, ak)],
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and let c'(k, 1) = minh, c'(h'), where h': a'-+ xjand all
notations are as defined in Rule 2) above. If such a
mapping cannot be found, set 92(NM) = oo. Other-
wise, set 92(NM) = c'(k, 1) which specifies partially
the goodness of a solution containing the mapping
h: x -+ OL1.

Rule 3) is essentially a reduced-size error-correcting isomor-
phism problem constrained with the fixed mapping h':
k* a,. Rule 2) is actually included in Rule 3). However,

since Rule 3) becomes computationally impractical when
n31 or n32 is large,2 we may in such cases have to replace
Rule 3) with a simpler one as long as we canfind some lower
bound ofc'(k, 1) to be set as the value of92(NM) and keep Rule
2) for use. We suggest the following simpler rule for Rule 3).

4) For each a, E M3, find an aj E M4 such that the cost
for the mapping h": a -+j,

c"(o')= -In r(a laj) - In r(e,|e',aI, ak),
is minimized. Note that h" may be many-to-one. Let
the total cost be

c"(k, 1)= min c"(a'),
9i'EM3 2jeM4

then set g(NM) = c"(k, 1).

Rule 4) essentially tries to find an error-correcting homo-
morphism h": M3 -_ M4 (an isomorphism not necessarily
one-to-one) which can always be found easily if Rule 2) is
already satisfied. Note that c"(k, 1) < c'(k, 1) is always true
such that c"(k, 1) also serves as a lower bound forg2(NM). We
are ready now to propose an ordered-search algorithm for
finding MLGPECI's.

MLGPECI Algorithm
Input: An observed relational graph w' = (N', B', i',

£' over VN, u VB' and a pure relational graph
o = (N, B, i, e) over VN u VB, where N = N',
B =B'.

Output: A maximum-likelihood graph-preserved
error-correcting isomorphism h: o' -+ o with
likelihood Ph(o' c)).

Steps: Let NM denote a node in the state-space graph
with state description M. M1 is as defined
previously.
1) Put the start node NM with MO = + on a

list called OPEN, and set f(NM)= 0.
2) If OPEN is empty then no MLGPECI

exists; set P(W' o) = 0. Otherwise execute
the following steps.

3) Remove from OPEN the node NM with a
smallest f value and put it on a list called
CLOSED.

4) If the M1 of this node NM is equal to N',
then a MLGPECI h represented by M is
found whose likelihood is given by

2 A case for this happens when the connectivity among nodes is high, i.e.,
when there exists a relation between almost every node pair.

Ph(w')w) = exp [-gl(NM)],
where g1 (NM) is as defined previously.
Otherwise continue.

5) Expand node NM, using all operators
applicable to M as defined in Section B.
Compute the value f(NM.) for each succes-
sor NM of NAI according to (1) and the
estimation rules for g2 mentioned
previously. Put these successors on OPEN.

6) Go to Step 2).

The above algorithm follows that given in [13]. If g2(NM)
is always set zero, it is reduced to a uniform-cost search
algorithm. Note that during the computation of f(NM'),
numerical attributes are included in the deformation prob-
abilities or densities and thus have been utilized for guiding
the search. Consequently, we have obtained an isomorphism
algorithm with an error-correcting capability for attributed
relational graphs.
The previous discussions and the ordered-search algor-

ithm for MLGPECI's certainly can be easily modified for
determining the minimum-distance GPECI (MDGPECI)
and the least-square-error GPECI (LSEGPECI) as follows.

i) For MDGPECI's, replace the negative logarithm of
each terminal deformation probability (or density) with its
corresponding weight and the likelihood Ph()' co) with the
weighted distance Wh(w' w) in the search algorithm, and set
Wh(W' 1w) = gl(NM) in Step 4) of the algorithm.

ii) For a LSEGPECI, replace the negative logarithm of
each terminal deformation probability (or density) with its
corresponding weighted square error and Ph(wo' co) with the
weighted-square-error distance Eh(cw' o) in the algorithm,
and set Eh(wj' Io-)) = gl(NM) in Step 4).

D. An Illustrative Example for Determining MDGPECI

The example given in the following is used to illustrate the
usage of the proposed ordered-search algorithm for deter-
mining minimum-distance GPECI's. We use Figs. 4 and 5 as
the observed and pure relational graphs co' and co, respec-
tively. In summary, we have the following notations for
o = (N', B', I1', £ ) over VN, u VB' and w = (N, B, j, £) over
VN VB:

N'= {ac'j i = 1, 2, 3, 4, 5},

N= {ajji= 1,2,3, 4, 5}

B' = t71 = (al, a2)I 72 = (@', '), '3 =(3', 5)C

74 = (31 7.1), T5 = 22 a3)9

76 = ('X3, L4), 77 = (a', a'),

PY8= @'4Lx'), 7 = (@', '2)}

B = {7 1= l, 2), 72 = (a3,3,L4 73 = (al, a4),

74 = (al, a5), 75 = (2, x3),

T'6= (@2, a4), 77 = @43, a5),

78 = (L4, OC3), 79= (@4, as)}
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a b

x xtX
U

a
a

Fig. 4. Observed graph a!'.

a

Fig. 5. Pure graph wo.

VN' = {a' = a, a'2 = b, a'3 = a, a'4= a, a'5 = b}
VN = {al = a, a2 = a, a3 = b, a4 = a, a5 = b}
VB' = {e'1 = U, e'2 = u, e'3 = x, e'4= X,

e= u, e'6= U, e7 = u e'8 = x, e9= u}
VB = {e1 = u, e2 = u, e3 = x, e4= X,

e= u, e6= x, e7 = x, e8 = u, e9 = u}.

Note that ad= '(a'), ai= 4u(oi), e = e'(y7), and e==(y ).
Next we assume the following possible deformations for
primitives and relations in w together with the specified
deformation weights:

w(ala)= 0.

a pa,
pd

w(alb)=0.4
b - a,

pd

w(ulx)=0.6
x 0 U,

rd

w(ulu)=O.l
U - U,

rd

w(bla) = 0. 3
a - o b

pd

w(bib)=O.l
b - b

pd

w(xlx) =O.1
x - I x

rd

w(xlu)= 0.7

U - I X.
rd

For simplicity we have assumed that each terminal is
deformed identically regardless of its position in the graph
and, furthermo-re, that each relation is deformed indepen-
dently from how its two end primitives are deformed. Now
we want to find out a minimum-distance GPECI from w' to
co by the ordered-search algorithm. We use Rules 1), 2), and
4) when computing 92(NM). The resulting state-space graph
is shown in Fig. 6 with dark arcs showing the solution path.
The numbers beside the arcs are the values f(NM) of the
pointed nodes. The distance of the solution GPECI is 1.5.
Totally, only five nodes are expanded with 11 nodes gen-
erated. As a computational example, the valuef(NM) asso-

0 M =M (START STATE)

~~~~~~~2.1 2.8 0.9

{t1,1)} {(1,2)} ((1,3)1 J ((1,4)1 {(1,5)}

0.9,.7
( {(l,4),(2,3)1 ((1,4),(2,5))

1.0

W{(1,4),(2,3),(3,1)}

1.2

©(1,4),(2,3),(3,1),(4,2)1}

1.5

((1,4), (2,3), (3,1),(4,2), (5,5)1

Fig. 6. State-space graph using ordered-search algorithm (circled num-
bers specify node expansion order).

ciated with the arc from node 3 to node 4 (i.e., forM = {(1, 4),
(2, 3), (3, 1)}) is computed as

9l(NM) = c(l, 4) + c(2, 3) + c(3, 1)
- w(a'ua4) + [w(a'2 a3) + w(euIe8)]
+ [w(a'3Ia,) + w(e4Ie3) + w(e'51e2)]

= w(ala) + [w(blb) + w(ulu)]
[w(aja) + w(xjx) + w(ulu)]

=0.1 + (0.1 +0.1)+ (0.1 +0.1 +0.1)
= 0.6,

92(NM) = c"(3, 1)

= minm 04
aJ eM4

+ min c"(ax)
(aj e M4

= [w(a'4 1a2) + w(e'6 1 el)]
+ [w(a' las) + w(e'7 e4)]

[by Rule 4)]

[M4 = {a2, X5}]

[for o4 - a2]

[for x .-- cx5]
= [w(aIa) + w(ulu)]

+ [w(bIb) + w(xjx)]
= (0.1 + 0.1) + (0.1 + 0.1)
=0.4,

and

f(NM) = gl(NM) + 92(NM) = 1.0.

For comparison, we also use the uniform-cost search
algorithm (with g2(NM) always set zero) to obtain the
same MDGPECI. The resulting state-space graph is shown
in Fig. 7. As can be seen, many more nodes are expanded and
generated before a solution path is found.

V. PArrERN ANALYsIs BY GRAPH ISOMORPHISMS
Given pure patterns w1 w2,w2 *,w and an observed

pattern c', all represented by relational graphs, we would
like to assign w' to the same class as a pure pattern in the
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(ON = (START STATE)

1 10 842 Cu11)} 3 C(1.2)} 8 {(1,3)} 4 {(0,4)) 9 (01 S)}

((1,1),(2,2)) {(1,1),(2,4)) {(1,1),(2,5)) 1(1,2),(2,3)) {(1,2),(2,4)) ((1,3),(2,1)1 W(1,3),(2,5)1 ((1,4),(2,3)} ((1,4),(2,5)} W(1,5),(2,2)}

1.71 2.21 1.2 2.0 2.2 1.7 2.2 2.0j 0.6 06 1.4 2.2

((1,1),(2,2),(3,3) C(1,1),(2,4),(3,3)i ((1,2),(2,4),(3,5)) (1,3),(2,5),(3,2)} (1,4),(2,5),(3,2))

((1,2),(2,3),(3,1)} ((1,2),(2,3),(3,5)) ((1,3),(2,1),(3,2)) ((1,3),(2,1),(3,4)} |(1,5),(2,2),(3,3)) {(1,5),(2,2),(3,4))

I1i 1.
{ (1 ,4), (2,3), (3, 1 ) }

l1.0 {(1,5),(2,2),(3,3),(4,1)}

(1,4),(2,3),(3,1),(4,2))

I1.5

((1,4),(2,3),(3,1),(4,2),(5,5))

(GOAL STATE)

Fig. 7. State-space graph using uniform-cost search algorithm (circled numbers specify node expansion order).

sense ofmaximum likelihood P(co, co'). This can be accom-
plished by the following rule. Decide

(co/ ', if P(co, Ico')= max P(cow I co'), or

i= 1,2, - *, c

if P(co'j co1)P(co) = max P(co' Ijcj)P(co),
i = 1.2,..,c

where P(co) is the a priori probability for pure pattern cwi,
and P(co' coi), the so-called likelihoodfor coi with respect to
co.', is exactly the pattern deformation probability (or
density) of co' from co and can be computed by the proposed
MLGPECI algorithm in the last section.
When no terminal deformation probabilities (or densi-

ties) are available and only syntactic deformations occur in
the pattern deformation, the minimum-distance GPECI
algorithm (modified from the MLGPECI algorithm by the
methods discussed in Section IV-D) can be used for comput-
ing the value W(co' I co), I = 1, 2, ..., c, and co' can be
classified according to the following rule. Decide

co' -+1O, if W(w'l co,)= min W(co' I coi).
i=-1.2, * *. c

If all terminal deformations are semantic, the least-
square-error GPECI algorithm (also modified from the
MLGPECI algorithm) can be used for computing the value
E(co' co), I = 1,, , c, and co' can be classified according to
the following rule. Decide

' W1, if E(' co,)= min E()' Iwi).
i=1,2, ., c

Both of the two nonstochastic classification rules are

statistically optimal only when all a priori probabilities
P(cow) are equal and when those conditions given in [25] are

satisfied, although they are useful for practical applications.

A. An Application Example-Shape Analysis
Feng and Pavlidis [21] proposed a procedure for decom-

posing the polygonal approximation of a given shape into
simpler components and described the decomposed com-

ponents by labeled graphs. Each node primitive ofthe graph
is a convex, T-type, or spiral-type object which can be
described by such numerical attributes as width, elongation,
etc., [22]. The branches connecting the nodes certainly need
some attributes to describe the relative positions and
adjacencies of the nodes if detailed descriptions are neces-

sary. The resulting labeled graph is an attributed relational
graph we have defined previously, and for shape
classification using this approach, the proposed error-

correcting isomorphisms obviously are necessary and appli-
cable. For example, given two different aircrafts shown in
Figs. 8(a) and 9(a), respectively, after they are decomposed
(marked by dotted lines), two identical symbolic relational
graphs are obtained as shown in Figs. 8(b) and 9(b),
respectively. This illustrates that conventional relational
graphs are insufficient for describing certain patterns. The
only way to discriminate these two aircrafts by relational
graphs is to use primitive and relation attributes. Now given
a distorted unknown aircraft shown in Fig. 10(a), polygonal
decomposition again results in a graph (Fig. 10(b)) identical
to those shown in Figs. 8(b) and Fig. 9(b). Again, we have to
extract attributes for primitives and relations, and the
recognition ofthis distorted aircraft can be accomplished by
applying the proposed error-correcting isomorphism algor-
ithm and the classification rule using the weighted least-
square-error criterion. For details and more examples refer
to Tsai and Fu [25], which also discusses two other possible
applications-scene analysis and texture analysis. Recently,
a database system for images has been proposed [27] in
which an attributed relational graph can be transformed
into a corresponding relational database. The proposed
error-correcting isomorphism algorithm certainly can be
applied when images with specific graph structures and
attributes are searched in the database system.

VI. CONCLUSION
A hybrid approach to pattern analysis as suggested by

several investigators [14], [23], [24] has been formulated in
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(a) (b)
Fig. 8.

(a) (b)
Fig. 9.

(a) (b)
Fig. 10.

767

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 21, 2008 at 02:23 from IEEE Xplore.  Restrictions apply.



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. SMC-9, NO. 12, DECEMBER 1979

this paper, which consists of both statistical classification
methods, such as the use of deformation probabilities and
the maximum-likelihood decision rule, and structural
techniques, such as representing patterns by relational
graphs and finding their isomorphisms. Suggested direc-
tions for further investigations include 1) extension of the
proposed approach to cover subgraph isomorphisms which
can take care of observed patterns with deleted or inserted
primitives, 2) inference of primitive and relation deforma-
tion probabilities (or densities) or weights under the forma-
lism of the proposed deformational model, and 3)
application of the proposed approach to more complex real
world problems.

REFERENCES
[1] K. S. Fu, Syntactic Methods in Pattern Recognition. New York:

Academic, 1974.
[2] H. G. Barrow, A. P. Ambler, and R. M. Burstall, "Some techniques

for recognizing structures in pictures," in Frontiers in Pattern Recog-
nition, Watanabe, Ed. New York: Academic, 1972.

[3] J. M. Brayer and K. S. Fu, "Web grammars and their application to
pattern recognition," Purdue Univ., Lafayette, IN, Tech. Rep. TR-EE
75-1, Dec. 1975.

[4] T. Pavlidis, "Grammatical and graph theoretical analysis of pic-
tures," in Graphic Languages, Nake and Rosenfeld, Eds. Amsterdam,
North-Holland, 1972.

[5] R. M. Haralick and J. S. Kartus, "Arrangements, homomorphisms,
and discrete relaxations," IEEE Trans. Syst., Man, Cybern., vol.
SMC-8, Aug. 1978.

[6] J. R. Ullman, "An algorithm for subgraph isomorphism," J. Ass.
Comput. Mach., vol. 23, no. 1, Jan. 1976.

[7] S. H. Unger, "GIT-A heuristic program for testing pairs of directed
line graphs for isomorphism," Commun. Ass. Comput. Mach., vol. 7,
no. 1, Jan. 1964.

[8] D. G. Corneil and C. C. Gotlieb, "An efficient algorithm for graph
isomorphism," J. Ass. Comput. Mach., vol. 17, no. 1, Jan. 1970.

[9] A. T. Berztiss, "A backtrack procedure for isomorphism of directed
graphs," J. Ass. Comput. Mach., vol. 20, no. 3, July 1973.

[10] H. G. Barrow and R. J. Popplestone, "Relational descriptions in

picture processing," Machine Intelligence, no. 6. Meltzer and Michie,
Eds. Edinburgh: University Press, 1971.

[11] W. H. Tsai and K. S. Fu, "A pattern deformational model and Bayes
error-correcting recognition system," in Proc. Int. Conf: Cybernetics
and Society, Tokyo, Japan, Nov. 3-7, 1978.

[12] ",A pattern deformational model and Bayes error-correcting
recognition system," Purdue Univ., Lafayette, IN, Tech. Rep. TR-EE
78-26, May 1978.

[13] N. J. Nilsson, Problem Solving Methods in Artificial Intelligence. New
York: McGraw-Hill, 1971.

[14] F. W. Blackwell, "Combining mathematical and structural pattern
recognition," in Proc. 2nd Int. Joint Conf Pattern Recognition,
Copenhagen, Demark, 1974.

[15] K. C. You and K. S. Fu, "Syntactic shape recognition using at-
tributed grammars," IEEE Trans. Syst., Man. Cybern., vol. SMC-9,
June 1979.

[16] H. Freeman, "On the encoding of arbitrary geometric
configurations," IEEE Trans. Electron. Comput., vol. EC-l0, 1961.

[17] A. C. Shaw, "A formal picture description scheme as a basis for
picture processing systems," Inform. Cont., vol. 14. pp. 9 52. 1969.

[18] M. R. Garey, D. S. Johnson, and R. E. Tarjau, SIAM J. Comput., vol.
5, 1976.

[19] L. W. Fung and K. S. Fu, "Stochastic syntactic decoding for pattern
classification," IEEE Trans. Comput., vol. C-24, no. 6, June 1975.

[20] V. A. Kovalevsky, "Sequential optimization in pattern recognition
and pattern description," in Proc. Int. Fed. Info. Process. Conyr.,
Amsterdam, the Netherlands, 1968.

[21] H. Y. Feng and T. Pavlidis, "Decomposition of polygons into simpler
components: Feature generation for syntactic pattern recognition,"
IEEE Trans. Comput., vol. C-24, no. 6, June 1975.

[22] T. Pavlidis, Structural Pattern Recognition, New York: Springer-
Verlag, 1977.

[23] C. H. Chen, "On statistical and structural feature extraction," Joint
Workshop Pattern Recog. and Art. Intellig., Hyannis, MA, June
1976.

[24] L. Kanal and B. Chandrasekaran, "On linguistic, statistical, and
mixed models for pattern recognition," in Frontier of Pattern Recog-
nition, S. Watanabe, Ed. New York: Academic, 1972.

[25] W. H. Tsai and K. S. Fu, "Error-correcting isomorphisms of at-
tributed relational graphs for pattern classification," Purdue Univ.
Lafayette, IN, Tech. Rep. TR-EE 79-3, Jan. 1979.

[26] J. L. Pfaltz, "Web grammrs and picture descriptions," Comput. Gra-
phics and Image Processing, vol. 1, no. 2, pp. 193-220, 1972

[27] N. S. Chang and K. S. Fu, "A relational database, system for images,'
Purdue Univ., Lafayette, IN, Tech. Rep. TR-EE 79-28, June 1979.

768

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 21, 2008 at 02:23 from IEEE Xplore.  Restrictions apply.


