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Abstract—A new problem of automatically designing an 

optimal stereo vision system using two omni-directional 
catadioptric cameras to yield the highest 3D data accuracy is 
studied. Factors of the system configuration considered in the 
design include camera pose, FOV, and mirror shape. To find the 
optimal vision system configuration, an analytic formula is 
derived to model the 3D measurement error, which takes into 
consideration the variations of pixel-quantization precisions and 
angular resolutions in images by conducting error propagation 
analysis in the data computation process. The formula is then used 
in an optimization framework to find the optimal system 
configurations for different shapes of system setup environments. 
For regular cases with rectangular cuboid-shaped 3D 
measurement and camera placement areas, two fast algorithms 
are proposed to solve the problem, one being bisection-based and 
relatively slower for deriving the optimal solution; and the other 
faster using analytic formulas for deriving a sub-optimal solution 
which is proved to be close to the optimal one in precision. 
Experimental results of simulations and real application cases 
show the feasibility of the proposed method. 
 

Index Terms—stereo vision system, omni-cameras, optimal 
system configuration, 3D data measurement accuracy. 

I. INTRODUCTION 

uman-computer interaction is an important research area 
of modern technologies, attracting more and more 

attention in recent years. To become a successful product, 
many commercial applications are seeking better interfaces for 
man-machine interaction. Two examples are the Nintendo Wii 
and the Microsoft Kinect in the home entertainment industry. 

One way to offer friendly interfacing is to provide the 3D 
data of the user’s movement, making it possible to interact with 
the computer without wearing or holding any device, like the 
case of using the Microsoft Kinect. In the meantime, the 
provision of a wide field of view (FOV) by a vision system is 
also desired in order to offer faster and more comfortable 
interaction. One approach is to use two wide-FOV cameras  
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(such as fisheye or catadioptric omni-cameras) to compose a 
stereo vision system for capturing the visual information in the 
application environment. The main goal of this study is to 
investigate methods for designing binocular vision systems that 
can be used to acquire accurate 3D data. The type of system 
considered is composed of two catadioptric omni-cameras as 
depicted in Fig. 1, with each omni-camera consisting of a 
hyperboloidal-shaped mirror and a perspective camera. 

Related to this study, Eisert and Girod [1] reconstructed 3D 
objects from images acquired by uncalibrated cameras by 
simultaneously estimating the camera-motion parameters and 
refining the object shape. Wang and Wu [2] recovered the 
projective depth for perspective 3-D Euclidean reconstruction 
by perspective factorization [3]. Starck et al. [4] constructed a 
3D production studio using multiple cameras and gave 
suggestions for camera deployment. When constructing stereo 
vision systems, it is well known that the precision of the 
calculated 3D data is strongly affected by the system 
configuration [4]-[19], including the placements, directions, 
mirror shapes of the used cameras. Thus, it is desired in this 
study is to derive the optimal configuration of a stereo vision 
system to yield the most accurately measured data. 

Several methods have been proposed to derive optimal 
vision system configurations. Mittal [5] proposed a formula to 
assess 3D data errors in terms of the object distance and the 
cameras’ baseline and focal lengths. Hanel et al. [6] derived the 
optimal vision system configuration that makes the visual hull 
of the detected object more accurate. Cowan and Kovesi [7] 
generated camera locations such that better image resolutions 
can be obtained and all the object surface points appear within 
the cameras’ FOVs, unoccluded, and in focus. In these methods, 
the issues of the variations of pixel-quantization precisions and 
angular resolutions in images are not considered. In contrast, 
the method proposed in this study takes these issues into 
consideration by analyzing the error propagations in the 3D 
data measurement process. 
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(b) 
Fig. 1. Stereo vision system with two omni-cameras for this study. (a) 
Illustration of the vision system. (b) A user playing a game using the system.
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Alternatively, the optimal system configuration can be 
derived by considering the angular error produced by the 
cameras [8]-[11]. Bishop et al. [8] assessed the 3D data 
measurement error using the Fisher information matrix. Zhao et 
al. [9][10] used the frame theory to prove the existence of only 
two types of optimal placement of bearing-only sensors. Herath 
and Pathirana [11] analyzed the sensor-target geometry in 
terms of the Cramer-Rao inequality and the corresponding 
Fisher information matrix. However, in these studies the 
angular information is assumed to include Gaussian noise, and 
the effects of the variations of pixel-quantization precisions and 
the angular resolutions yielded by the cameras are ignored, 
yielding less accurate modeling of 3D data errors. In contrast, 
the error model proposed in this study takes such effects into 
consideration via analytic error propagation analysis. 

One way to consider the effect of pixel-quantization 
precision variations is to assess the 3D measurement error by 
the use of the covariance matrix [12]-[17]. For this, Wenhardt 
et al. [12] determined the locations of mobile cameras to yield 
the best 3D model reconstruction by assessing the covariance 
of the resulting 3D data in three ways, namely, using the 
determinant, eigenvalues, and trace of the covariance matrix, 
respectively. Hoppe et al. [15] used the eigenvalues of the 
covariance matrix to model the 3D measurement error for 
precise camera localization and object modeling. Alsadik et al. 
[14] established a camera network for precise reconstruction of 
a cultural heritage object by the use of the trace of the 
covariance matrix. Olague and Mohr [16] proposed a 
multi-cellular genetic algorithm to decide camera locations, 
which yield minimal 3D measurement errors, by the use of the 
maximum diagonal element of the covariance matrix. Zhang 
[13] determined the optimal 2D spatial placement of multiple 
sensors participating in a robot perception task utilizing the 
determinant of the covariance matrix. Rivera-Rios, et al. [17] 
analyzed 3D measurement errors due to feature-point 
localization errors and found accordingly the optimal camera 
pose by the mean-square-error criterion using the covariance 
matrix of the 3D measurement data. In these methods, the 
precisions of the 3D measurements are all assessed by the use 
of the covariance matrix. Additionally, a local-affineness 
assumption is made when deriving the covariance matrix (as 
stated in [20]). Contrastively, an approach without making this 
assumption is proposed in this study, which is achieved by 
detailed analysis of the error propagations in the 3D data 
computation process. Furthermore, it is shown by experimental 
results in Section VII.B that the proposed approach yields more 
precise assessments by a factor of four than the covariance 
matrix-based methods. 

Besides the use of the covariance matrix, some alternative 
methods have also been proposed to assess the 3D 
measurement error. Ercan et al. [18] studied the problem of the 
optimal placement of multiple cameras and the selection of the 
best subset of the cameras for single target localization in a 
sensor network, with the goal of localizing an object as 
accurately as possible in the ground plane. The cameras are 
assumed to be oriented horizontally and far enough from the 
object. Blostein and Huang [19] analyzed the relationship 
between the geometry of a stereo camera setup and the 
accuracy in the obtained 3D measurements. The probability 

that the position estimates obtained from triangulation are 
within a specified error tolerance was derived, with the error 
being modeled as known spatial image plane quantization. The 
error model is only derived for perspective cameras.  

Briefly speaking, the method proposed in this study differs 
from the existing ones in two aspects: 1) the 3D measurement 
precision is assessed by error propagation analysis which 
considers the effect of pixel-quantization precision variations; 
and (2) the assessed 3D measurement precision is related to the 
resolutions of the pixels in such a way that a feature point in a 
higher resolution area is with a lower error in the calculated 3D 
measurements, and vice versa. As a result, the proposed method 
can be applied both to perspective cameras and to wide-FOV 
cameras. Contrarily, the above-mentioned methods make the 
assumption of uniform resolutions across the entire image, 
which is unreasonable when wide-FOV cameras are used. 

Contributions of this study include the following aspects. (1) 
Analytic formulas describing the error propagations in 3D data 
computation using a binocular omni-camera vision system are 
derived for assessing the 3D measurement precision. (2) 
Algorithms for determining the optimal system configuration, 
including the mirror shape, FOV, and the pose of the two 
omni-cameras, are derived for use in establishing a more 
precise stereo vision system. (3) Three optimization algorithms 
are designed for various environments to meet different 
applications: one for general cases but slower; another for 
regular cases but faster, yielding the optimal solution by an 
iterative scheme; and the third for regular cases and even faster 
but finding a near-optimal solution using analytic formulas. 

In the remainder of this paper, an optimization framework to 
find the optimal system configuration is proposed in Section II. 
Some formulas modeling the catadioptric omni-cameras are 
derived in Section III. A measure of 3D data accuracy for use 
in the optimization process is derived in Section IV. The 
mentioned three optimization algorithms for finding the 
optimal system configuration are presented in Sections V and 
VI. Finally, experimental results and conclusions are given in 
Sections VII and VIII, respectively. 

II. AN OPTIMIZATION FRAMEWORK 

An optimization framework is proposed in this study, as 
illustrated in Fig. 2, to facilitate the determination of the 
optimal system configuration of a binocular omni-vision 
system, which includes the intrinsic parameters, locations, and 
orientations of the two omni-cameras of the system, for the 
purpose of acquiring the most accurate 3D data. Some 
observable properties of this frame are: (1) if the two 
omni-cameras are close to each other, the length of the line 
segment L connecting the two cameras, namely, the baseline, 
will become small, and the computed 3D data accuracy will so 
be low; (2) if the baseline is very large, the space points in front 
of the cameras will become relatively close to L, and the 
resulting accuracy will so be low as well; and (3) since the 
distortion of an image taken by an omni-camera is significant, 
the resolution also varies significantly in the taken image so 
that, if a feature point is located in a higher resolution area, the 
computed 3D data accuracy will become higher, and vice versa. 
According to these observed facts, it can be seen that optimal 
system configurations do exist; therefore, it is meaningful to 
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propose an optimization framework, as conducted in this study, 
for use in finding the optimal system configuration. 

The proposed optimization framework, as depicted in Fig. 2, 
includes three main steps. First, an area where the 3D data are 
measured is specified, called the 3D measurement area; and an 
area where the cameras can be placed is also specified, called 
the camera placement area. Then, the optimal locations, 
optical axes, and intrinsic parameters of the two omni-cameras 
are derived according to one of the three proposed system 
optimization algorithms presented in Sections V.B, V.C, and 
VI.A, respectively. The three optimization algorithms are based 
on the use of an analytic formula indicating the degree of 
accuracy of the computed 3D data, which is derived according 
to error propagation analysis as described in Section IV. The 
found optimal configuration is just the one with the highest 
degree of 3D data accuracy, which is shown to the user to tell 
him/her how to place (and/or design) the cameras. 

 
 

 

Fig. 2. Proposed optimization framework. 
 

III. OMNI-CAMERA STRUCTURE AND FORMULAS 

A. Omni-camera Structure 
The catadioptric omni-camera is composed of a hyperboloid 

mirror and a perspective camera looking toward the mirror, as 
depicted in Fig. 3. A camera coordinate system (CCS) x-y-z and 
an image coordinate system u-v are defined in such a way that 
the x- and y-axes are parallel to the u- and v-axes, respectively, 
and the two focal points of the mirror are at O(0, 0, 0) and Oc(0, 
0, 2c). In this way, the mirror shape can be expressed [21] by 

 2 2 2 2 2( ) ( ) 1z c a x y b    ,   2 2c a b  ,   z < c, (1) 

with its eccentricity  being defined by c/a > 1. A projection 
equation describing the relation between the complementary 
elevation angle  of a space point P and image coordinates (u, v) 
of the projected pixel p can be expressed [22] as 

 tan = 
2

2

( 1)sin

( 1)cos 2

 
  


 

, (2) 

where cos and sin, as seen from Fig. 3, can be expressed by 

 
2 2 2

cos
f

u v f
 

 
; 

2 2

2 2 2
sin

u v

u v f
 


 
. (3) 

B. Determination of Intrinsic Parameters of Omni-cameras 

By assuming the perspective camera in the omni-camera is 
well-calibrated and distortion-free, the only parameter of the 
perspective camera is its viewing angle 2max. Also, as specified 
in the projection equation (2), the eccentricity  describes all 
the distortion effect produced by the mirror. Therefore, the 
intrinsic parameters of an omni-camera to be determined are the 
viewing angle 2max of the perspective camera and the 

eccentricity  of the mirror. In the following, we first derive the 
formula for the eccentricity  under the assumption that the 
viewing angle 2max of the perspective camera is fixed. Then, 
we provide a guideline to determine the angle 2max. 
 

Theorem 1. If the viewing angle of the perspective camera is 
2max and the viewing angle of the omni-camera is 2max, then 
the eccentricity  of the hyperboloidal-shaped mirror is 

 max max

max max

sin sin

sin( )

 


 





. (4) 

Proof. According to the projection equation (2), we have 

    2
max max max max max maxtan tan 2 tan sec tan tan 0            . (5) 

Accordingly, two solutions of  can be obtained to be 

  = max max max max

max max

tan sec tan sec

tan tan

   
 




 = max max

max max

sin sin

sin( )

 
 




. (6) 

The solution 1 with the minus sign is proved to be invalid as 
follows. First, 1, as an eccentricity, is larger than one, i.e., 

 1 max max max max(sin sin ) sin( ) 1        . (7) 

Next, since the viewing angle 2max of the omni-camera is 
larger than the viewing angle 2max of the perspective camera, 
we have  > max > max > 0, leading to cot(max/2) < cot(max/2), 
which, according to the cotangent half-angle formula [23], 
results in 

 max max max max

max max

sin sin
cot cot

2 1 cos 1 cos 2

   
 

            
, (8) 

or equivalently, 

 max max
1

max max

sin sin
= 1

sin( )

  
 





, (9) 

which is a contradiction to (7). Therefore, the other solution 
described by (4) should be taken as the desired result. □ 

2 2u v

 
Fig. 3. Catadioptric omni-camera structure and its camera coordinate system.

 

The effect of choosing different viewing angle 2max of the 
perspective camera is shown by some images in Fig. 4 obtained 
from simulations with a checkerboard placed in front of the 
omni-camera, and the hyperboloidal mirror designed according 
to Theorem 1 in such a way that the entire checkerboard can be 
viewed. As seen from Fig. 4, the taken omni-images are not 
severely influenced by the magnitude of the viewing angle, 
implying that one may choose freely the viewing angle as long 
as the camera is distortion-free. 

C. Resolution Formula for Omni-cameras 

Baker and Nayer [24] proposed a formula to calculate the 
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resolutions at different pixels in an omni-image as follows. Let 
dA be an infinitesimal area on the image plane near a pixel p, 
which, as illustrated in Fig. 5, is the projection of an area in the 
space described by an infinitesimal solid angle d coming from 
a point P. The resolution of pixel p is formulated as 

 
2 2 2

2
32

( 1) ( 2 cos 1)
( , , )

2 ( 1)cos

dA
R f f

d

    
   

  
 

   

, (10) 

where  is the eccentricity of the mirror, f is the focal length of 
the camera, and  is the complementary elevation angle of P. 

IV. FORMULA FOR DESCRIBING DEGREE OF ACCURACY 

A criterion function measuring the degree of accuracy of the 
computed 3D data is proposed in this section, for uses in the 
optimization algorithms proposed in Sections V and VI. 

A. 3D Calculation Function and Its Differentials 

A right-handed world coordinate system X-Y-Z is defined, as 
shown in Fig. 6, in such a way that the camera centers O1 and 
O2 are located at (D, 0, 0) and (D, 0, 0), respectively, and the 
XY-plane contains the space point P. An assumption that, the 
two optical axes a1 and a2 lie on the XY-plane, is made in the 
following derivations, and this assumption is analyzed more 
thoroughly in Section IV.C. 

 
 

   

(a) (b) (c) 
Fig. 4. Simulated omni-images using perspective cameras with different 
viewing angles: (a) 20°; (b) 40°; and (c) 60°. 

 

 
Fig. 5. Illustration for defining the resolution at a pixel. 

 

 
 

 

 
Fig. 6. Top-view illustration of triangulation process and error propagation.

 
As depicted in Fig. 6, the two axes a1 and a2 are defined by 

the angles 1 and 2, respectively. To calculate the 3D data of P, 
two images are acquired first by the two omni-cameras, and a 
feature detection process is applied to extract the two pixels p1 

and p2 corresponding to P in the two omni-images. Then, the 
complementary elevation angles 1 and 2 are derived by (2) 
using the coordinates of p1 and p2, respectively. Finally, the 
angles 1 and 2 as depicted in Fig. 6 are computed by: 

 1 = 1  1, and 2 = 2  2. (11) 

Proposition 1. As depicted in Fig. 6, the position (Px, Py) of 
space point P can be calculated in terms of 1 and 2 as 

   2 1 2 1
1 2

2 1 2 1

sin( ) sin sin
( , ) , , 2

sin( ) sin( )x yT P P D D
   

 
   

 
     

, (12) 

and the differentials of Px and Py are 

 2 2 1 1 1 2

2 2 2
2 1 2 1 1 2

sin cos sin cos2

sin ( ) sin sin

x

y

dP d dD
dP d d

     
     

   
      

. (13) 

Proof. As depicted in Fig. 6, the position of the feature point P 
can be calculated by two parametric equations 

 1 1 1 1 2 2 2 2(cos ,sin ); (cos ,sin )P O s P O s          (14) 

where P, O1, and O2 are regarded as 2D coordinate vectors, and 
s1 and s2 are unknown parameters. Eq. (14) is equivalent to: 

 1 1 2 2 1 1 2 2cos cos ; sin sin ,x yP D s D s P s s           (15) 

which may be solved to get s1 and s2, leading to the results 

 Px = 2 1 2 1

2 1 2 1

sin cos cos sin

sin cos cos sin
D

   
   


  = 2 1

2 1

sin( )

sin( )
D

 
 




;  

 Py = 
1 2

2 1 2 1

sin sin
2

sin cos cos sin
D

 
    = 2 1

2 1

sin sin
2

sin( )
D

 
  . (16) 

And, the differentials of Px and Py can be derived accordingly to 
be those described by (13). □ 

B.  Considering Variations of Pixel-Quantization Precisions 
and Angular Resolutions 

The infinitesimals d1 and d2 are derived by considering the 
varying pixel-quantization precisions and angular resolutions 
as follows. As can be seen from Fig. 6, if the feature detection 
process to extract p1 and p2 in the two images is inaccurate so 
that the angles 1 and 2 are with errors d1 and d2, 
respectively, then an inaccurate triangulation result Pe, as 
depicted in Fig. 6, will be produced. Assume that the pixel 
quantization and feature detection process introduces an error 
within a small area dA, then, as depicted in Fig. 5, the measured 
angle  will be with an error d related to the angular 
resolution function R. In the sense that d is a 2D solid angle 
and the angle d is the corresponding 1D angle, and under the 
assumption that the back-projected cone forming by d is 
circular, the value of d can be estimated by 

 d d dA R     , (17) 

in which the term d is expressed by the resolution formula (10). 
Also, by taking the differentiations of the equations in (11), one 
can get a relation between d and d as d = d, which, after 
being combined with (17), leads to 

 d dA R   . (18) 
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Accordingly, the errors d1 and d2 can be derived to be 

 1
1 1 1( , , )

dA
d

R f


 
  , and 2

2 2 2( , , )

dA
d

R f


 
  . (19) 

C.  Proposed Error Model and Its Limitations 

To assess the 3D measurement error of a feature point P, an 
error function E(P) is proposed in the following, and the degree 
of accuracy of the point P is defined as E(P) in the sequel.  

Theorem 2. With reference to Fig. 6, when the triangulation 
process yields an imprecise point Pe due to small errors d1 and 
d2, the 3D measurement error E(P), which is the distance 
between the actual point P and the measured point Pe, is 

  1 2( ) max ( ), ( )E P E P E P  (20) 

where 

 
2 2

1 1 2 2 1 2
1

2 1

( ) 2 ( ) ( ) cos( ) ( )
( )

sin( )

G P G P G P G P dA
E P

 
 

  



, 

 
2 2

1 1 2 2 1 2
2

2 1

( ) 2 ( ) ( )cos( ) ( )
( )

sin( )

G P G P G P G P dA
E P

 
 

  



, 

 1

1

1 1 1

( )
( , , )

O P
G P

R f 
 , and 2

2

2 2 2

( )
( , , )

O P
G P

R f 
 . (21) 

Proof. The measurement error E, which by definition is the 
distance between P and Pe, may be computed from (13) to be 

E(P) = ||dT|| =    22

x ydP dP   

2 2

2 1 2 1 1 2 1 2
2 1

2 1 2 1 2 1 2 1

2 1

2 sin 2 sin 2 sin 2 sin
2cos( )

sin( ) sin( ) sin( ) sin( )

sin( )

D d D d D d D d        
       

 

   
           


. (22) 

From Fig. 6, it can be derived, from the law of sines, that 

 1 2

2 1 2 1

2

sin( ) sin sin

O P O PD

   
 


. (23) 

By combining (22) and (23), we get 

2 2
1 1 2 1 1 1 2 2 2 2

2 1

( ) 2cos( )( )( ) ( )
( )

sin( )

O P d O P d O P d O P d
E P

     

 

  



,(24) 

which, when combined with (19), leads to (20) and (21). □ 

V. FAST CONFIGURATION OPTIMIZATION FOR REGULAR CASES 

The optimization framework proposed in Section II can deal 
with general cases, in which the 3D measurement area and the 
camera placement area may both be of irregular shapes, and the 
two used perspective cameras may be different from each other. 
However, in regular indoor vision systems (called the regular 
cases), the two perspective cameras are of the same type, and 
the 3D measurement area and the camera placement area can be 
specified by two rectangular cuboids as illustrated in Fig. 7. In 
the following, the formal definition of the optimization 
problem for such regular cases is derived in Section V.A. Then, 
the derivation of the proposed optimization algorithm for 
generating the corresponding optimal system configuration is 
proposed in Section V.B. Another sub-optimal but analytic 
optimization method is derived in Section V.C, which is shown 

additionally there to be a good approximation to the optimal 
solution. 
 

 

Fig. 7. An illustration of the regular cases. 
 

A. Problem Definition 

As described in the optimization framework proposed in 
Section II, a system configuration includes all the necessary 
parameters to design a vision system, and an optimization 
process needs to find the optimal system configuration which 
yields the best 3D measurement accuracy. A criterion function 
Ew for the optimization is defined in this study to be the 
maximum measurement error within the 3D measurement area 
W, i.e., 
  ( ) max ( )w

P W
E W E P


 , (25) 

where E(P) is the measurement error of a feature point P as 
derived by (20) in Theorem 2. By choosing the maximum value, 
all the 3D measurements errors are ensured to be lower than the 
value Ew. Next, as assumed, the two perspective cameras used 
in the omni-cameras are identical, so their focal lengths f1 and f2 
are both equal to f, and their viewing angles 2max1 and 2max2 
are both equal to 2max. The two omni-cameras are identical in 
structure and placed symmetrically, so the two optical axes a1 
and a2 are coplanar so that the two optical axes can be defined 
by the two angles 1 and 2 as shown in Fig. 7. Then, a system 
configuration can be defined to be the parameter set (Dx, Dy, 1, 
2, 1, 2), where (1) the omni-cameras are placed, as seen from 
the top, at O1(Dx, Dy) and O2(Dx, Dy), respectively; (2) the 
orientations of their optical axes are defined by 1 and 2, 
respectively; and (3) the eccentricities of the mirrors are 1 and 
2, respectively. Hence, the optimization problem is just to find 
the optimal parameter set (Dx

*, Dy
*, 1

*, 2
*, 1

*, 2
*) derived in 

the following way: 

 (Dx
*, Dy

*, 1
*, 2

*, 1
*, 2

*) =  
1 2 1 2( , , , , , )

arg min ( )
x y

w
D D

E W
   

. (26) 

Since it is desired that the captured image be fully filled up 
with the 3D measurement area, the cameras should be oriented 
to face the 3D measurement area. Accordingly, the optical axes 
a1 and a2 can be figured out to be just the bisectors of the angles 
spanned by the measurement area as depicted in Fig. 7, that is, 
the optical axis a1 of the left omni-camera is the bisector of the 
viewing angle formed by 1 1OW  and 1 2O W , and the optical axis a2 
is the bisector of the viewing angle formed by 2 1O W  and 2 2O W . 

In view of these facts, the angle max and the optical-axis angles 
1 and 2 can be calculated in terms of Dx and Dy as follows. 
First, the fact 2 =   1 can be derived from Fig. 7. Then, 
from the triangle formed by O1, W2, and Q2, we have Dy = (Dx + 
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1)tan(1  max). Similarly, from the triangle formed by O1, W1, 
and Q1, we have Dy = (Dx  1)  tan(1  max). Accordingly, 
the two unknowns 1 and max can be solved respectively to be 

 
1 1

1

1 1
max

0.5 tan ( 1) tan ( 1) ;

0.5 tan ( 1) tan ( 1) .

y x y x

y x y x

D D D D

D D D D





 

 

       


      

 (27) 

Then, based on Theorem 1, the eccentricities 1 and 2 are 

 1 2 max max max max(sin sin ) sin( )           , (28) 

where 2max is the viewing angle of the perspective cameras. To 
sum up, the optimization problem (26) is now reduced to 
include two parameters as follows: 

       * *

( , ) ( , )
, arg min ( ) arg min max ( )

x y x y

x y w
P WD D D D

D D E W E P


  . (29) 

For further simplifications, two claims are given as follows. 
 

Claim 1. The function Ew described by (25) can be rewritten as 

 Ew(W) =  max ( )
P W

E P


= max(E(O), E(W2)), (30) 

if the two terms R(, f, 1) and R(, f, 2) are equal, where points 
O and W2 are located at (0, 0) and (1, 0), respectively. 

Proof. At first, by referring to Fig. 8(a), the measurement error 
of a point P at coordinates (Px, 0) can be derived using (20) and 
(21) with 

 1
1 22

cos
( )

x x

x x y

P D

P D D
  


 

,  1
2 22

cos
( )

x x

x x y

P D

P D D
  


 

, 

 G1(P) =  2 2

1( , , )

x x yP D D

R f 

  , and G2(P) = 
22

2

( )

( , , )

x x yP D D

R f 

  .(31) 

Next, the function E(P) is proved to be an even function as 
follows. From Fig. 8(a), the angles 1 and 2 can be seen to be 

 1 = |1  1|, and 2 = |2  2|. (32) 

From the resolution formula (10), we can get the equality R(, f, 
) = R(, f, ) for any angle . Accordingly, we have 

 R(, f, 1) = R(, f, 1  1); R(, f, 2) = R(, f, 2  2). (33) 

Let P′ be the point located at (Px, 0), and let the related angles 
1′, 2′, 1′, and 2′ be defined as those shown in Fig. 8(a). Since 
the triangles O1O2P′ and O1O2P are similar, we get 1′ =   
2 and 2′ =   1. Combining these facts with (32), we have 

 1′ = |1  1′| = |(  2)  (  2)| = |2 + 2| = 2; 
 2′ = |2  2′| = |(  1)  (  1)| = |1 + 1| = 1. (34) 

Thus, the following equality can be derived: 

    2 22 2

1 2

1 2

( ') ( )
( , , ) ( , , )

x x y x x yP D D D P D
G P G P

R f ' R f   

    
   . (35) 

The function E1(P) can be proved accordingly to be an even 
function by 

 

2 2
1 1 2 2 1 2
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.(36) 

Similarly, we can prove E2(P) = E2(P′), meaning that E2(P) is 
an even function, too. 

Finally, we prove in the following the property that if R(, f, 
1) and R(, f, 2) are equal, the maximum of E(P) will occurs at 
O(0, 0) or W2(1, 0). Firstly, let Px

* be a value of Px such that the 
case 2  1 = 90° occurs. When 0 ≤ Px ≤ Px

*, we get 90o ≤ 2  
1 ≤ 180o so that cos(2  2)  0, implying that E2(P)  E1(P) 
according to (21), which leads to the following fact according 
to (20): 
 2( ) ( )E P E P . (37) 

Furthermore, by applying the law of cosines and the 
assumption R(, f, 1) = R(, f, 2), E2(P) can be reduced in the 
following way: 

  
   

2 2

1 1 2 2 1 2 1 2
2

2 1 2 1

2 cos
( )

sin sin

O P O P O P O P O O
E P

 
   

  
 

 
. (38) 

Accordingly, since the angle 2  1 decreases from 180o to 90° 
when Px increases from 0 to Px

*, the maximum of E(P) occurs at 
Px = 0. For the other case that Px

* ≤ Px ≤ 1, we can get 0o ≤ 2  
1 ≤ 90o so that cos(2  1)  0, implying that E1(P)  E2(P) 
according to (21), which leads to the following fact according 
to (20): 
 1( ) ( )E P E P . (39) 

Furthermore, according to (31), E1(P) can be expressed as 

 
 

   
 

22
1 21 2 1 2

1
2 1 2 1

4 , ,4
( )

sin sin

x x y x x yO O P D D P D DO O PO PO
E P

   

    
 

 

 
.(40) 

Accordingly, since the angle 2 1 decreases from 90° to 0o 
when Px increases, the maximum of E(P) occurs at Px = 1. 
Combine the results of the two cases, we get the conclusion that 
the maximum occurs at O(0, 0) or W2(1, 0).  

Finally, since both E1(P) and E2(P) are even functions, this 
conclusion may also be proved to hold for the “left-side” range 
1  Px  0. Therefore, the overall conclusion described by (30) 
may be drawn. □ 

In the above proof, the assumption R(, f, 1) = R(, f, 2) is 
made, which is proved later by simulation results to be 
appropriate with very little affection on the 3D measurement 
precision of the derived system configuration (see Fig. 12). 

 

 
(a) 

 
(b) 

Fig. 8. Analysis of function Ew. (a) Illustrations of related terms. (b) 
Drawing of distribution of measurement errors E of a configuration. 
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Claim 2. A larger value of Dy always yields a smaller value of 
the criterion function Ew. 

Proof. The inscribed angle theorem says that an angle  
inscribed in a circle is a half of the central angle 2 that 
subtends the same arc on the circle [25]. That is, if the viewing 
angle is 2max, the possible positions of the cameras can be 
figured out to be constrained on the dashed circle shown in Fig. 
9(a), and the upper bound of Dy occurs at the bottom of the 
circle. Also, while recalling that the two cameras are 
omni-directional, we assume their viewing angle 2max to be 
larger than 120°. So we have 

 max(Dy) = cotmax  cot(60)  0.6. (41) 

With this upper bound, the function Ew is plotted in Fig. 9(b), 
which shows that a larger value of Dy yields a smaller value of 
Ew. □ 

With Claim 1, Eq. (29) can be re-formulated as 

 (Dx
*, Dy

*) =  2
( , )

arg min max( ( ), ( ))
x yD D

E O E W . (42) 

Also, recall that the upper bound of Dy is limited by the camera 
deployment constraint, which we denoted as y in Fig. 7. With 
Claim 2, the optimal value Dy

* in (42) can be derived to be 
min(y, 0.6), leaving Dx

* to be the only parameter to be 
optimized according to the following constraint: 

   * * *
mid boundarg min max ( , ), ( , )

x

x x y x y
D

D E D D E D D , (43) 

where Ebound and Emid are defined as 

 Ebound(Dx, Dy
*) = E(W2);    Emid(Dx, Dy

*) = E(O). (44) 
 

 

 
(a) 

 

(b) 
Fig. 9. Finding the optimal value of Dy (a) An illustration to find the upper 

bound. (b) A plot of Ew for different values of 2max: 20, 40, and 60. 
 

B. Optimization by Numerical Methods 

An optimization algorithm to solve Dx
* in (43) by a bisection 

scheme is proposed in this section. By referring to the plots of 
Emid and Ebound depicted in Fig. 10(a), the optimal solution Dx

* is 
found at the intersection of the two functions of Emid and Ebound. 
So, if the two functions intersect each other, the intersection 
point may be defined to be the optimal solution Dx

*; otherwise, 
the optimal solution Dx

* is defined to be the maximum value 
which will also be derived later in this section. 

In more details, at first we define a new function Eopt as 

 Eopt(Dx, Dy
*) = Emid(Dx, Dy

*)  Ebound(Dx, Dy
*). (45) 

Then, the optimal solution Dx
* is just the root of Eopt, which can 

be derived by a bisection scheme. Before the scheme is 
conducted, the initial range of the root must be determined. The 

lower bound lowerDx of Dx is obviously zero, and the upper 
bound upperDx is derived as follows. From Fig. 10(b), we have 

 2cO O  = 2cO W  = csc(  2max) = csc(2max). (46) 

And the coordinates of the circle center Oc is 

 Oc = (0, cot(  2max)) = (0, cot(2max)). (47) 

According to the Pythagorean Theorem, we have 

 Dx
2 = 

2 2

2 2c cO O O O  = csc2(2max)  [Dy
* cot(2max)]

2 

  = 1  Dy
*[Dy

* cot(2max)], (48) 

and the first derivative of Dx
2 with respect to 2max is 

 
2

max

( )

(2 )
xD





 = 2Dy
*(csc2(2max)). (49) 

Since Dy
* > 0, the first derivative of Dx

2 is smaller than zero, 
meaning that Dx decreases as 2max increases, or equivalently, 
that the maximum of Dx occurs when max is minimized. So, the 
upper bound of Dx can be derived from (48) to be 

 upperDx = * *
max1 [ 2cot(2 )]y yD D   . (50) 

A method to solve the optimization problem is proposed below. 
 

(a) 

2O '

 

(b) 

Fig. 10. Illustrations of finding the optimal solution Dx
* and its upper 

bound. (a) Plot of Emid and Ebound versus Dx when Dy
* = 0.1 and 2max = 

60.0. (b) Derivation of the upper bound of Dx. 

 
Algorithm 1. Finding the optimal configuration (Dx

*, Dy
*). 

Input:  the viewing angle 2max and the focal length f of the 
cameras. 

Output: the optimal system configuration (Dx
*, Dy

*), meaning 
that the omni-cameras are placed at O1(Dx

*, Dy
*) and 

O2(Dx
*, Dy

*), and oriented as shown in Fig. 7. 

Steps. 
Step 1. Calculate y according to the deployment size as stated 

in Section V.A, and set Dy
* = min(y, 0.6). 

Step 2. Set variable lowerDx = 0 and calculate Eopt(lowerDx, Dy
*) 

as follows and assign the result to the variable lower. 
2.1 Set Dx = lowerDx and calculate max according to (27). 
2.2 Calculate the eccentricity  according to (28). 

 

2.3 Calculate Emid and Ebound by (44) with O1 = (Dx, Dy
*) 

and O2 = (Dx, Dy
*), and calculate Eopt by (45). 

Step 3. Calculate the upper bound upperDx of Dx
* by (50). 

Step 4. Calculate Eopt(upperDx, Dy
*) in a way similar to Steps 

2.1 through 2.3, and assign the result to the variable 
upper. 

Step 5. If lower and upper are with opposite signs, then find the 
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root in a bisecting fashion as follows [26]. 
5.1. Set variable newDx = (lowerDx + upperDx)/2. 
5.2. Calculate Eopt(newDx, Dy

*) in a way similar to Steps 2.1 
through 2.3 and assign the result to the variable new. 

5.3. If (new < lower), then set lower = new and lowerDx = 
newDx; otherwise, set upper = new and upperDx = newDx. 

5.4. If (upperDx  lowerDx) < , where  is a predefined 
precision threshold, then take (Dx

*, Dy
*) = (newDx, y) as 

the output and exit; otherwise, go to Step 5.1. 
Step 6. If lower > 0 and upper > 0 or if lower < 0 and upper < 0, 

then choose Dx
* to be the upper bound upperDx, and 

take (Dx
*, Dy

*) = (upperDx, y) as the output. 

C. Derivation of Analytic Formula for Sub-optimal Solution 

The method proposed in Algorithm 1 is further simplified to 
get an analytic formula for deriving a sub-optimal solution. Let 
v1 and v2 be two vectors, and  be the included angle. We have 

 |v1±v2|
2 = (v1±v2)  (v1±v2) = |v1|

2 ± 2|v1||v2|cos + |v2|
2. (51) 

By referring to Fig. 11, the formula of the measurement error 
Emid can be derived, using (44), (20), (21), and (51), to be 

 
22

1 1 2 mid2 mid1 2*
mid

mid2 mid1 mid

max( 2 cos( ) )
( , )

sin( ) ( , , )
x y

O O O O O O O O dA
E D D

R f

 

   

  





 

    *
1 2 1 2

mid2 mid1 mid mid2 mid1 mid

max , max 2 , 2

sin( ) ( , , ) sin( ) ( , , )

y x
O O O O O O O O dA D D dA

R f R f       

 
 

 

   
.(52) 

Referring to Fig. 11 and based on the double-angle formula of 
the sine function, we can get 

 
*

mid2 mid1 mid2 mid1
mid2 mid1 2 * 2

2
sin( ) 2sin( ) cos( )

2 2 ( )
y x

x y

D D

D D

      
  


.(53) 

Thus, the function Emid in (52) can be rewritten as 

 

 
 

2 * 2 *2 2

*
mid * *

mid mid

*

( ) ( )
( , )

2 ( , , ) min , ( , , )

max 2 , 2

x y x y

x y

y x x y

y x
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E D D

D D R f D D R f

D D

   

        
 (54) 

Similarly, the measurement error Ebound of the feature point 
W2(1, 0) can be simplified, using (20), (21), (44) and (51), to be 

 
2 2

1 2 1 2 2 2 max2 max1 2 2*
bound

max2 max1 max

max( 2 cos( ) )
( , )

sin( ) ( , , )
x y
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E D D
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   * 2

max2 max1 max

max 2 1 ( ) , 2

sin( ) ( , , )

y xD D dA
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. (55) 

From the geometry shown in Fig. 11, we have 

 

 

*

21 2 2 2
max2 max1 22 * 221 2 2 2

2
sin( - ) 1 ( )

( ) 1 4

x y
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   (56) 

Thus, the function Ebound in (55) can be rewritten to be 

   22 * 2 *2 2

*
bound *

max

( ) 1 4 max 1 ( ) ,
( , )

( , , )

x y x y x

x y

x y

D D D D D dA
E D D

D D R f 

   
 . (57) 

By combining (54) and (57), the function Eopt can be 
re-formulated as 

  
 

2 * 2

*
opt *

mid

( )
( , )

min , ( , , )

x y

x y

y x

D D dA
E D D

D D R f 


   

    2* 2 * 22 2

*
max

max 1 ( ) , ( ) 1 4

( , , )

y x x y x

x y

D D D D D dA

D D R f 

   
 . (58) 

To calculate the optimal system configuration, the value Dy
* 

is firstly derived in the same way as stated in Algorithm 1. Then, 
the optimal solution Dx

* is just the root of the function Eopt 
described by (58). However, the root does not have an analytic 
formula since the involved terms mid, max and  are all with 
complicated formulas with respect to Dx. In order to derive an 
analytic solution for the root, we first propose a skillful 
approximation method to produce a new function Eopt′ to 
approximate the original one Eopt, and then derive an analytic 
formula to compute a sub-optimal solution Dx′. This 
sub-optimal solution Dx′ is a good approximation to the optimal 
one Dx

* as will be shown later in this section. 
To simplify the function Eopt described by (58), we assume 

further 

 R(, f, mid)  R(, f, max), (59) 

which is a special case of the assumption R(, f, 1) = R(, f, 2) 
made before in the proof of Claim 1. This new assumption can 
be proved as well later by simulation results to be proper with 
very little affection on the 3D measurement precision of the 
derived system configuration (see Fig. 12). Consequently, 
Equation (58) may now be simplified to be  

 *
opt

max

( , )
( , , )

x y

dA
E ' D D

R f 

 
   
 

  

 
 

 * 2 * 22 2 22 * 2

**

max 1 ( ) , [ ( ) 1] 4( )
( )
min ,

y x x y x
x y

x yy x

D D D D DD D

D DD D

   
 . (60) 

Thus, the root Dx′ of the equation Eopt′(Dx, Dy
*) = 0 satisfies 

 
   

*2 2 2 2*2 2
* 2

**

[( ) ( ) 1] 4( )( ) ( )
max 1 ( ) ,

min ,

x y xx y
y x

x yy x

D ' D D 'D ' D
D D '

D 'DD D '

  
  . (61) 

 

mid2 mid1 

mid1 mid2
max1 max2

max 2 max1- 

 

Fig. 11. Related parameters involved in Emid and Ebound. 

 

Theorem 3. The solution of Dx′ in (61) is 

 
* *4 2 24( ) ( 2)( ) 5

3
y y

x

D C D C C
D '

C

     
 , (62) 

where 

 * * *6 4 23 0.5 8( ) 48( ) 46.5( ) 5.5y y yC Q D D D     ; 

   * * * * *2 8 6 4 227 1 ( ) 128( ) 352( ) 288( ) 75( ) 23y y y y yQ D D D D D      .(63) 
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Proof. To deal with the involved min/max function in (61), 
four cases are discussed separately, which are: (1) Dx′ < Dy

* and 
Dx′  (1+(Dy

*)2)0.5; (2) Dx′ < Dy
* and Dx′ > (1+(Dy

*)2)0.5; (3) Dx′ 
 Dy

* and Dx′  (1+(Dy
*)2)0.5; and (4) Dx′  Dy

* and Dx′ > 
(1+(Dy

*)2)0.5. It is proved next that only Case (3) is valid. 
For Case (1), we have the assumptions Dx′ < Dy

* and Dx′  
(1+(Dy

*)2)0.5, so that (61) can be reduced to be 

 
*2 2 2 2*2 2

* 2
*

[( ) ( ) 1] 4( )( ) ( )
1 ( )

x y xx y
y

x x y

D ' D D 'D ' D
D

D ' D 'D

  
  , (64) 

or equivalently, to be 

 * * * *2 2 2 2 2 2 2[( ) ( ) ] 1 ( ) [( ) ( ) 1] 4( )y x y y x y xD D ' D D D ' D D '      . (65) 

Defining A = (Dx′)
2 and B = (Dy

*)2, Eq. (65) can be expressed as 

 A2  2A + (3B2 + 3B  1) = 0. (66) 

Since the discriminant of (66) is 4  4(3B2 + 3B + 1) < 0, the 
solution of A does not exist, or equivalently, Dx′ does not exist. 
As a result, the assumptions made for Case (1) are invalid. 

The assumptions made for Case (2) are Dx′ < Dy
* and Dx′ > 

(1+(Dy
*)2)0.5. Since these two inequalities are contradictory to 

each other, Case (2) is also out of consideration. 
For Case (4), the two assumptions are Dx′  Dy

* and Dx′ > 
(1+(Dy

*)2)0.5. Thus, Equation (61) can be rewritten to be 

 * *2 2 2 2 2 2( ) ( ) [( ) ( ) 1] 4( )x y x y xD ' D D ' D D '     . (67) 

Defining A = (Dx′)
2, B = (Dy

*)2 and taking the squares of both 
sides of the above equation, we have (A + B)2 = (A + B + 1)2  
4A, or equivalently, 2A = 2B + 1. However, from the second 
assumption Dx′ > (1+(Dy

*)2)0.5, we get A > B + 1, which is a 
contradiction to the equation 2A = 2B + 1 derived previously. 
Therefore, the assumptions made for Case (4) are also invalid.  

As a result, Case (3) is the only valid one, for which the two 
assumptions are Dx′  Dy

* and Dx′  (1+(Dy
*)2)0.5. Accordingly, 

Equation (61) can be rewritten to be 

 
*2 2 2 2*2 2

* 2
* *

[( ) ( ) 1] 4( )( ) ( )
1 ( )

x y xx y
y

y x y

D ' D D 'D ' D
D

D D 'D

  
  , (68) 

or equivalently, to be 

 aA3 + bA2 + cA + d = 0 (69) 

where A = (Dx′)
2, B = (Dy

*)2, a = 1, b = B  1, c = 2  B2, and d = 
(B + 1)3. To find the solution of A for the cubic function (69), 
we first calculate its discriminant , according to [27], as 

  = 18abcd  4b3d + b2c2  4ac3  27a2d2 
  = (B + 1)(128B4 + 352B3 + 288B2 + 75B + 23), (70) 

which is smaller than zero because B = (Dy
*)2 > 0. Thus, we get 

to know that the cubic polynomial equation has only one real 
root which can be described by (62) according to [27]. □ 

The above-described process of generating the sub-optimal 
configuration (Dx′, Dy

*) is summarized as an algorithm below. 
 

Algorithm 2.  Finding a sub-optimal configuration (Dx′, Dy
*) 

by analytic formulas. 
Input:  the viewing angle 2max and the focal length f of the 

cameras. 

Output: the sub-optimal configuration (Dx′, Dy
*), meaning that 

the omni-cameras are placed at O1(Dx′, Dy
*) and 

O2(Dx′, Dy
*), and oriented as shown in Fig. 7. 

Steps. 
Step 1. Calculate y according to the deployment size as stated 

in Section V.A, and set Dy
* = min(y, 0.6). 

Step 2. Calculate the upper bound upperDx of Dx
* by (50). 

Step 3. Calculate Dx′ by (62) derived in Theorem 3. 
Step 4. Set Dx′ = min(Dx′, upperDx). 
Step 5. Output the optimal system configuration (Dx′, Dy

*). 
 

The sub-optimal configuration (Dx′, Dy
*) is shown to be a 

good approximation to the optimal one (Dx
*, Dy

*) as follows. 
Recalling that the goal of the optimization is to minimize the 
measurement error Ew defined by (43), we use the function Ew 
as a criterion to analyze the precision of the approximate one. In 
Fig. 12, we plot the curves of the measurement error values of 
the optimal and sub-optimal configurations for all the possible 
values of Dy, from which we see that the measurement errors 
are very close to each other, meaning that the sub-optimal 
configuration also yields precise 3D measurement results as the 
optimal configuration does. Also, we use a difference ratio 
defined by 

 (Ew′  Ew
*) / Ew

* (71) 

to determine the goodness of the performance of the 
sub-optimal configuration, where Ew

* and Ew′ denote the 
measurement errors using the optimal and sub-optimal 
configurations, respectively. As shown in the figure, the 
difference ratio is smaller than 0.4%, showing that the 
sub-optimal solution is indeed a good approximation. 
 

 
Fig. 12. Comparison of optimal configuration (Dx

*, Dy
*) and sub-optimal 

configuration (Dx′, Dy
*) with viewing angle 2max = 60o. 

VI. OPTIMIZATION FOR GENERAL CASES 

A. Idea of System Optimization for General Cases 

To design a system configuration for the general case, the 3D 
measurement area and the camera placement area are 
specified first. To make the descriptions of the possibly 
irregular shapes of the two areas easy, each area is described by 
multiple sampled points, called the 3D measurement locations 
and camera placement locations, respectively. For example, a 
cuboid can be described by 10000 evenly-distributed points. 
The occlusion problem can be handled by just eliminating the 
camera locations where the 3D measurement locations will be 
partially occluded if the camera was placed there [29]. 

After the 3D measurement locations and the camera 
placement locations are both identified, the optimal system 
configuration can be found out as follows (see Fig. 13 for a 
flowchart). At First, two locations are chosen from the camera 
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placement locations to be the positions of the left and right 
cameras, respectively. Then, the cameras are oriented to face 
the 3D measurement area as described next in Section VI.B to 
determine the extrinsic parameters of the omni-cameras. Also, 
their intrinsic parameters, including the mirror-shape parameter 
and the viewing angle of the perspective camera, are 
determined by the method proposed in Section III. 

To decide which configuration yields the most precise 3D 
measurements, a measure indicating the degree of accuracy of 
the computed 3D data defined as min(E(Mi)) is calculated, 
where E(Mi) is the degree of accuracy of a 3D measurement 
location Mi as derived in Theorem 2. It is noted that, by 
choosing the minimum value, all the 3D measurement locations 
are ensured to be at least with this degree of accuracy. Then, to 
find the optimal system configuration, the previously-described 
steps are executed repeatedly for all possible camera locations 
as shown by the loop in Fig. 13, and the configuration with the 
highest degree of accuracy is picked out finally as the desired 
result. 
 

 

 
 

Fig. 13. Proposed optimization process to deal with general cases. 
 

B. Determination of Camera’s Optical Axes and View Angles 

After the positions of the two omni-cameras are decided, it is 
necessary to determine the optical axis and the viewing angle of 
each omni-camera. To solve this problem, the camera should 
face the 3D measurement locations, and this in turn determines 
the orientations of the camera. Specifically, let Mi denote the 
points in the 3D measurement locations, and O the chosen 
location of each omni-camera (i.e., the camera center). Then, 
the problem may be solved, as depicted in Fig. 14, by three 
steps: (1) find the smallest viewing cone containing all the 3D 
measurement locations Mi and with O as its apex; (2) set the 
optical axis as the viewing cone axis; and (3) take the viewing 
angle 2max of the omni-camera to be the aperture of the cone. 

C. Speed-Up Techniques 

To speed up the optimization method described in Fig. 13, 
three techniques are proposed as follows. 
(1) Longest baseline first. When picking up the locations of 

the cameras in Step 3, the ones with large baselines (i.e., 

the distance between the cameras) are picked up first. 
(2) Farthest 3D point first. When calculating the 3D data 

accuracy in Step 6, the 3D points which are farther from 
the two cameras are calculated first. 

(3) Early stopping. If the computed 3D data accuracy is larger 
than that of the so-far best configuration, then the current 
configuration cannot be a better one, and so the algorithm 
continues to perform Step 3 for the next configuration. 

These techniques were implemented and tested by 
experiments, and the results show that they reduced the running 
time from 56.6 seconds down to 22.3, indicating a speedup of 
about 2.5 times. 
 

 
Fig. 14. An illustration of finding the optical axis and the viewing angle.

D. Choosing Optimization Methods for Different Applications 

Three optimization methods have been proposed in Sections 
V.B, V.C, and VI, for the regular-optimal, regular-suboptimal, 
and general cases, respectively. These methods have their own 
advantages and disadvantages as described in the following. 
(1)  If the 3D measurement area and the camera placement area 

are both approximately of rectangular shapes, the first and 
second methods can be used; otherwise, the third one. 

(2) If the optimization process can be done in an off-line 
fashion, the third method is suitable; otherwise, the first 
two methods should be used. 

(3) If it requires a fast computation time, or the system has a 
low computation capability, the first two methods are 
suitable; and among the two, the second is the faster one 
but a little bit less accurate. 

Some possible applications are stated next to demonstrate the 
uses of the three optimization methods. When designing a 
vision system for home entertainment, exhibitions, wide-area 
video surveillance, etc., since the camera positions can be 
derived in advance and the environment may be 
irregular-shaped and possibly with occlusions, the third 
optimization method should be used. However, if the cameras 
can be oriented automatically by computer, the first 
optimization method may be used in an online fashion to 
achieve better 3D measurement accuracies. On the other hand, 
if the cameras are mounted, for example, on unmanned vehicles 
to collect wide-area 3D information in realtime, the second 
optimization method should be used because fast computations 
according to analytic formulas can be conducted, and the saved 
computation power can be used for navigation, learning, event 
recognition, etc. 

VII. EXPERIMENTAL RESULTS 

In this section, the experimental results of a case study of 
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finding the optimal system configuration in a simulated indoor 
environment are described first in Section VII.A. And the 
proposed method is then compared with four existing methods 
by experimental results for a real laboratory environment in 
Section VII.B. 

A. A Case of Constructing an Indoor Stereo Vision System 

A room with size 10m2.5m3m, as depicted in Fig. 15(a), 
was considered, and the 3D data of a user’s body moving 
within the 3D measurement area were required to be calculated 
accurately. Also, the omni-cameras need be designed and 
placed in the camera placement area. In the following, the 
optimal system configuration for this simulation case study is 
derived first using the proposed method. Then, comparisons of 
the 3D measurement accuracies yielded by the optimal system 
configuration and some non-optimal ones are presented.  

1) Finding Optimal System Configuration 

To find the optimal system configuration, a coordinate 
system is defined first as depicted in Fig. 15(a) with the floor 
being taken to be the plane Z = 0, and the viewing angles 2max 
of the perspective cameras chosen to be 60. Next, about 100 
evenly distributed points were generated in the 3D 
measurement area, and about 1000 similarly distributed points 
were generated in the camera placement area. Then, the 
optimization process proposed in Section VI.A (depicted in Fig. 
13) was applied to such a general case of environment. And the 
generated configuration with the minimum 3D measurement 
error was chosen finally to be the desired optimal system 
configuration S1

*, which, as illustrated in Fig. 15(a), includes: 
(1) the locations O1 and O2 of the two cameras at (  3.92m, 
0.5m, 2.5m), respectively; (2) the optical axes a1 and a2 
oriented in accordance with the vectors (0.093, 0.996, 0.0), 
respectively; and (3) the eccentricities 1 and 2 of the mirrors 
both being 1.8967. The images taken by the two cameras were 
simulated by a ray tracing program POV-Ray, with two 
examples shown in Figs. 15(b) and 15(c). 

Alternatively, the above problem of vision system design can 
be seen as a 2D one, in which only the XY-plane is considered, 
and the two cameras are installed at the middle height of 2.5m 
(recalling that the room is with a height of 5m). As depicted in 
Fig. 16(a), let W be the boundary line 1 2WW  of the 3D 
measurement area which is nearer to the camera placement area, 
and let C be the boundary line of the camera placement area 
which is farther to the workspace. The 2D coordinate system is 
defined in such a way that the coordinates of W1 and W2 are (1, 
0) and (1, 0), respectively. In this sense, a unit in the coordinate 
system represents 5m in real space, so that the distance y 
between the line segments W and C, as depicted in Fig. 16, can 
be derived to be 0.1. Then, with the use of y, the two proposed 
optimization schemes described by Algorithms 1 and 2 in 
Section V were performed to such a regular case of 
environment to derive the optimal two camera locations.  

The optimal camera locations derived by Algorithm 1 are 
(  0.753, 0.1) in the 2D coordinate system, which then were 
mapped back to the world coordinate system. Subsequently, the 
methods proposed in Sections VI.B and III.B were applied to 
find the optical axes directions and eccentricities, yielding the 
optimal system configuration S2

*, which includes: (1) the 

locations O1 and O2 of the two cameras at (  3.766m, 0.5m, 
2.5m), respectively; (2) the optical axes a1 and a2 oriented in 
accordance with the vectors (0.163, 0.987, 0.0), respectively; 
and (3) the eccentricities 1 and 2 of the mirrors both being 
2.0067. In a similar way, the sub-optimal system configuration 
S3

* were derived by applying Algorithm 2 and the methods 
proposed in Sections VI.B and III.B, which includes: (1) the 
locations O1 and O2 of the two cameras at (  3.822m, 0.5m, 
2.5m); (2) the optical axes a1 and a2 oriented in accordance with 
the vectors (0.172, 0.985, 0.0), respectively; and (3) the 
eccentricities 1 and 2 both being 2.0194. It can be seen that the 
data of the two configurations S2

* and S3
* are quite close as 

expected. 
 

 
(a) 

 
(b) 

 
(c) 

Fig. 15. Optimal system configuration for the general case derived by the 
optimization process proposed in Section VI. (a) An illustration of the 
optimal system configuration. (b)(c) Simulated images taken by the two 
cameras, with 3D measurement area drawn as a checkerboard cube. 

 

2) Comparison of 3D Measurement Accuracies 
To compare the 3D measurement accuracies yielded by the 

three different optimal system configurations S1
*, S2

*, and S3
* 

derived in the previous section, three additional system 
configurations S1, S2 and S3 were chosen arbitrarily, in which 
the two cameras are located at (2.5m, 0.5m, 2.5m) in 
configuration S1, at (1.67m, 0.5m, 2.5m) in S2, and at 
(3.33m, 0.5m, 2.5m) in S3. Their optical axes’ directions 
were calculated as proposed in Section VI.B, and the 
eccentricities of the two mirrors were calculated by the scheme 
described in Section III.B.  

Similar to the experiments described in 1) of this section, 
about 10,000 points were uniformly generated in the 3D 
measurement area. Each of the 10,000 point was firstly 
back-projected onto the two omni-images with coordinates (u1, 
v1) and (u2, v2). Then, Gaussian noise with zero means and 
standard deviations 1.0 (pixel) were applied to the four 
coordinate values, and the estimated location of the 3D point 
was calculated accordingly by mid-point triangulation [28]. 
The distance between the ground-truth 3D point and the 
estimated 3D point was then computed as the 3D measurement 
error. The minimum, maximum, and standard deviation of the 
3D measurement errors resulting from the 10,000 points are 
listed in Table I. Also, the function E proposed in Section IV 
was used to estimate the maximum 3D measurement errors, 
whose minimum, maximum, and standard deviation values are 
also listed in Table I for comparison. Note that, since the values 
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calculated by the use of E are unitless, they were scaled in such 
a way that the standard deviations are the same as the one 
derived with Gaussian noise added. 

Recall that a good system configuration is one with a small 
maximum 3D measurement error (listed in the 3rd column with 
bold fonts in Table I). Accordingly, we can see that the three 
optimal system configurations S1

*, S2
*, and S3

* are better. Also, 
recall that the function E is proposed to estimate these 
maximum values for use as a criterion to find the optimal 
system configuration. The effectiveness of E in this aspect can 
be seen from the similarity of the maximum values max listed 
in the 3rd columns of Table I to those listed in the 6th column. 
 

0.5m

 
Fig. 16. The corresponding 2D problem of the case study. 

 

 

TABLE I. 3D MEASUREMENT ERRORS 

3D measurement errors  Estimated 3D measurement 
error (by proposed method)System 

config. 
min [cm] max [cm] std. [cm] mina maxa std.a 

S1
* 0.395 12.287 1.965 4.127 12.499 1.965 

S2
* 0.393 12.673 2.000 3.860 11.799 2.000 

S3
* 0.385 12.379 1.985 4.004 11.579 1.985 

S1 0.342 22.773 3.235 1.655 17.159 3.235 
S2 0.362 15.196 2.223 2.704 12.950 2.223 
S3 0.314 36.685 5.326 1.078 27.236 5.326 

aThe values are scaled such that the standard deviations are the same as the ones 
derived with Gaussian noise added. 

B. Comparisons with Existing Methods 

1) Introduction to Existing Methods 

The proposed method to assess the 3D measurement error is 
based on analytic error propagation analysis, as described in 
Section IV. Another approach found popular in the literature is 
to use the covariance matrix to assess the 3D measurement 
error [12]-[17] as surveyed in Section I. Four different methods 
of this approach were implemented by programs in this study. 
They are briefly introduced first here and then compared with 
the proposed method by experimental results in this section. 

When using the covariance matrix to assess the 3D 
measurement error yielded by a binocular vision system, let P 
be a feature point in the space, (u1, v1) be the coordinates of the 
pixel P' corresponding to P in the left-camera image, and (u2, v2) 
be those of P' in the right-camera image. By mid-point 
triangulation [28], if the 3D location of P is calculated by a 
function f(u1, v1, u2, v2), then, according to [30], the covariance 
matrix P of the measured 3D location data of P can be assessed 
by 

    T

P pf p f p       , (72) 

where p is the vector (u1, v1, u2, v2), p is the covariance matrix 
of p, and T denotes the operation of matrix transpose. The 
covariance matrix p can be estimated in complicated ways 
[12]-[16] or by constant values [13][17]. For simplicity, the 
matrix was estimated by an identity matrix in our 
implementations, and the first-order derivatives of f were 

obtained by a finite difference approach [31] with the 
difference taken to be 1010. After the covariance matrix P is 
derived, the four implemented methods use the following data 
of P to assess the 3D measurement error: (1) the determinant 
[12][13], (2) the trace [12][14], (3) the maximum eigenvalue 
[12][15], and (4) the maximum diagonal element [16]. These 
four different methods are named DET, TR, MAXEIG, and 
MAXDIAG, respectively, subsequently. 

2) Comparisons of Proposed Error Model with Others 

A simulation environment for comparisons of the proposed 
error model with others is constructed as follows. The 3D 
measurement area is defined to be rectangular-shaped with two 
corners located at ( and (1, 0, 1), including about 
100,000 equidistant points for use as the 3D measurement 
locations. The two omni-cameras were placed at (0.7, 0.1, 0), 
and the viewing angles of the used perspective cameras are 60 
and the resolution of acquired images is 600600. In each 
simulation, two omni-images were taken firstly, and the 
projections of each 3D measurement location Li were extracted 
as two pixels li and ri in the left and right omni-images, 
respectively. To simulate the imprecision introduced by the 
feature detection process, noise values within the range from 
1.0 to 1.0 were introduced into the coordinates of the 
extracted pixels li and ri. The mid-point triangulation process 
[28] was then conducted to compute the 3D position Li′ of each 
landmark point located at Li using the coordinates of image 
pixels li and ri. Since the coordinate values were interfered with 
noise, the calculated 3D position Li′ is slightly different from 
the ground truth Li. With the recall that the measurement error 
is defined as the distance between the actual point and the 
measured one (see Section IV), the measurement error yielded 
by the simulation was computed accordingly to be ||Li  Li′||. 

The above simulation was conducted several times, and an 
average measurement error was calculated for each landmark 
point as plotted in Fig. 17(a). These average measurement 
errors are considered as ground-truth values, and were 
compared with the measurement errors calculated by the 
proposed error model and those proposed by the four 
implemented existing methods shown in Figs. 17(b) through 
17(f), respectively. The peak signal-to-noise ratio (PSNR) 
values and the running times of the five methods are listed in 
Table II, from which one can see that the proposed error model 
yields the highest PSNR, and the TR method is the best of the 
four existing methods in this aspect but worse than the 
proposed model by a factor of 10(2.367  1.760) = 100.607  4.04, and 
the running time of the proposed method is smaller than that of 
the TR method by a factor of 273.97/8.56  32.01. 

3) Comparisons of the Optimization Algorithms 

In this section, we describe the derivation of the optimal 
configuration of a vision system for a real laboratory 
environment. In the environment, a user was allowed to move 
freely in a specified 3D measurement area, and the two 
omni-cameras were placed within a specified camera 
placement area. The optimal positions and orientations of the 
two omni-cameras were computed for this environment by the 
proposed method and the four existing methods mentioned 
previously. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 17. Images for 3D measurement errors (with darker colors indicating 
smaller errors) calculated by (a) simulations, (b) proposed method, (c) 
method DET [12][13], (d) method TR [12][14], (e) method MAXEIG 
[12][15], and (f) method MAXDIAG [16]. 

 

TABLE II 
PSNR VALUES AND RUNNING TIMES IN THE SIMULATION 

Method PSNR Running Time 

Proposed error model 23.67dB 8.56 milliseconds 
Method DET [12][13] 12.07dB 273.22 milliseconds 
Method TR [12][14] 17.60dB 273.97 milliseconds 

Method MAXEIG [12][15] 15.32dB 344.03 milliseconds 
Method MAXDIAG [16] 15.24dB 277.24 milliseconds 

 

Specifically, as shown in Fig. 18(a), the floor of the 
environment is the XY-plane, the 3D measurement area is the 
cuboid with two diagonal points being (5.0, 2.0, 2.0) and (5.0, 
0.0, ), and the camera placement area is the rectangle on the 
plane Z = 0 with two diagonal points being (5.0, , 1.0) and 
(5.0, 0.5, 1.0). The goal of the optimization algorithm is to 
find the optimal positions O1 and O2 of the two omni-cameras, 
and their optical axes directions a1 and a2, such that the 3D 
measurements of an object located in the 3D measurement area 
are as accurate as possible. The two cameras are hyperboloidal 
catadioptric ones with eccentricity  being 1.6571, the viewing 
angle of the perspective camera is 2max = 38°, and the 
omni-image size is 600600. 

The optimization process was conducted firstly for a general 
case as stated in Section VI-A. At first, some points, for use as 
3D measurement locations, were sampled within the 3D 
measurement area with a fixed interval 10cm, and some points, 
for use as the camera placement locations, were sampled within 
the camera placement area with a fixed interval 1cm. Then, for 
each possible positions O1 and O2 of the cameras, the directions 
of the optical axes were derived as stated in VI.B, and the 3D 
measurement error were assessed by the error model proposed 
in Section IV. Finally, the poses of the two omni-cameras 
which yield the minimum 3D measurement error were taken to 
be the parameters of the best system configuration. The result 
of this process says that two cameras should be placed at (3.78, 
0.5, 1.0), respectively, and the optical axes be oriented in 
accordance with the vectors (  0.14, 0.99, 0.0), respectively. 

To test the 3D measurement accuracy using such a system 
configuration, a checker board were placed on the planes with Y 
= 0.0, 1.0, and 2.0 in the 3D measurement area, as shown in 
Figs. 19(a) and 19(b). The image pixels corresponding to all the 
cross points were manually picked out from the captured 
omni-images, and the obtained coordinates of these pixels were 

disturbed with additive noise within the range [5, 5] to 
simulate errors introduced by the feature detection process. 
Then, by mid-point triangulation [28], the 3D data of the cross 
points were derived, called the measured data. Finally, the 3D 
measurement errors were taken to be the distances between the 
measured data and the ground-truth data, the latter being 
measured manually in advance. The 3D measurement errors of 
the cross points on the calibration board at plane Y = 0.0 are 
drawn in Fig. 19(c), whose shape, as can be found, is consistent 
with that of Fig. 8(b) or Fig. 17(b), though depicted in different 
ways. Also, these results of the proposed method are listed in 
Table III for comparison with those obtained similarly of the 
aforementioned four existing methods. As can be seen from the 
table, the proposed method yields the minimum measurement 
errors, and runs faster than the others for about 20 times. 
 

 
(a) 

 
(b) 

 
(c) 

Fig. 18. Environment where experiments were conducted. (a) An 
illustration. (b)(c) Two omni-images captured in the environment. 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 19. Testing the 3D measurement accuracy of the derived best system 
configuration. (a)(b) A checkerboard is placed at Y = 0 to test the accuracy. 
(c) The 3D measurement errors of the points on the board. 

 
TABLE III 

THE OPTIMIZATION RESULTS OF THE METHODS 

Method 
Two Cameras’ 

Positions 
(unit: meter) 

Maximum 3D 
Measurement 

Error (unit: cm)

Run Time
(unit: sec)

Proposed method (3.78, 0.5, 1.0) 26.290 11.413 

Method DET [12][13] (4.02, 0.5, 1.0) 29.185 216.927 

Method TR [12][14] (3.95, 0.5, 1.0) 28.007 217.241 

Method MAXEIG [12][15] (3.94, 0.5, 1.0) 27.843 254.599 

Method MAXDIAG [16] (3.88, 0.5, 1.0) 26.877 220.423 
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VIII. CONCLUSION 

The issue of designing the optimal configuration of a stereo 
vision system with two catadioptric omni-cameras to compute 
3D data with minimum errors is investigated in this study. The 
solution includes the poses and the mirror-shape parameters of 
the omni-cameras. An analytic formula is derived to model the 
3D measurement error, which takes into consideration the error 
propagation in the data computation process. Two fast and 
elegant optimization algorithms have been designed 
accordingly for “regular” environments with rectangular 
cuboid-shaped 3D measurement and camera placement areas. 
One of them, based on a bisection scheme, is optimal but 
relatively slower, which may be used for off-line applications. 
And the other, using analytic formulas to calculate approximate 
solutions, is faster for realtime applications with the computed 
precision being sub-optimal but close to that of the former. An 
algorithm for dealing with general environments with 
irregular-shaped 3D measurement and camera placement areas 
has also been developed for general uses. Experimental results 
show the feasibility of the proposed method. 

In real applications, a manufacturer may produce 
omni-cameras according to the derived optimal mirror shape. 
Then, a consumer may bring them back and deploy them in the 
optimal or nearly-optimal pose using the proposed algorithms. 
As a result, a stereo vision system which yield precise 3D 
measurement results can be set up. Future studies may be 
directed to generalizing the proposed optimization method to a 
stereo vision system with more than two omni-cameras. 
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