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Abstract—A stereo vision system using two omni-cameras for 

3D vision applications is proposed, which has an automatic 
adaptation capability to any system setup before 3D data 
computation is conducted. The adaptation, which yields the two 
omni-cameras’ orientations and distance, is accomplished by 
detecting and analyzing the horizontal lines appearing in the 
omni-images acquired with the cameras and a person standing in 
front of the cameras. Properties of line features in environments 
are utilized for detecting more precisely the horizontal lines which 
appear as conic sections in omni-images. The detection work is 
accomplished by the use of carefully chosen parameters and a 
refined Hough transform technique. The detected horizontal lines 
are utilized to compute the cameras’ orientations and distance 
from which the 3D data of space points are derived analytically. 
Compared with a traditional system using a pair of projective 
cameras with nonadjustable camera orientations and distance, the 
proposed system has the advantages of offering more flexibility in 
camera setups, better usability in wide areas, higher precision in 
computed 3D data, and more convenience for non-technical users. 
Good experimental results show the feasibility of the proposed 
system. 

Index Terms—system setup, automatic adaptation, 3D vision 
applications, omni-camera, omni-image, stereo vision. 

I. INTRODUCTION 

ith the advance of technologies, various types of vision 
systems have been designed for many applications, like 

virtual and augmented reality, video surveillance, environment 
modeling, TV games, etc. Among these applications, 
human-machine interaction is a critical area [1]-[4]. For 
example, Microsoft Kinect [5] is a controller-free gaming 
system in the home entertainment field, which uses several 
sensors to interact with players. Most of these human-machine 
interaction applications require acquisitions of the 3D data of 
human bodies, meaning in turn the need of precise system 
calibration and setup works to yield accurate 3D data 
computation results in the application environment.  

 
However, from a consumer’s viewpoint, it is unreasonable to 
ask a user to set up a vision system very accurately, requiring, 
e.g., the system cameras to be affixed at accurate locations in 
precise orientations. Contrarily, it is usually desired to allow a 
user to choose freely where to set up the system components. 

Additionally, many interactive systems used for the 
previously-mentioned applications are composed of traditional 
projective cameras which collect less visual information than 
systems using omni-directional cameras (omni-cameras). To 
overcome these difficulties, a 3D vision system which consists 
of two omni-cameras with a capability of automatic adaptation 
to any camera setup is proposed. While establishing the system, 
the user is allowed to place the two cameras freely in any 
orientations with any displacement. 

Human-machine interaction has been intensively studied for 
many years. Laakso and Laakso [6] proposed a multiplayer 
game system using a top-view camera, which maps player 
avatar movements to physical ones, and uses hand gestures to 
trigger actions. In [7], a special human-machine interface is 
proposed by Magee et al., which uses the symmetry between 
left and right human eyes to control computer applications. 
Zabulis et al. [8] proposed a vision system composed of eight 
cameras mounted at room corners and two cameras mounted on 
the ceiling to localize multiple persons for wide-area exercise 
and entertainment applications. Starck et al. [9] proposed an 
advanced 3-D production studio with multiple cameras. The 
design considerations are first identified in that study, and some 
evaluation methods are proposed to provide an insight into 
different design decisions.  

Geometric features, like points, lines, spheres, etc., in 
environments encode important information for on-line 
calibrations and adaptations [10][11]. Several methods have 
been proposed to detect such features in environments. Ying 
[12][13] proposed several methods to detect geometric features 
when calibrating catadioptric cameras, which use the Hough 
transform to find the camera parameters by fitting detected line 
features into conic sections. Duan et al. [14] proposed a method 
to calibrate the effective focal length of the central catadioptric 
camera using a single space line under the condition that other 
parameters have been calibrated previously. Von Gioi et al. 
[15] proposed a method to detect line segments in perspective 
images, which gives accurate results with a controlled number 
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of false detections and requires no parameter tuning. Wu and 
Tsai [16] proposed a method to detect lines directly in an 
omni-image using a Hough transform process without 
unwarping the omni-image. Maybank et al. [17] proposed a 
method based on the Fisher-Rao metric to detect lines in 
paracatdioptric images, which has the advantage that it does not 
produce multiple detections of a single space line. Yamazawa 
et al. [18] proposed a method to reconstruct 3D line segments 
in images taken with three omni-cameras in known poses based 
on trinocular vision by the use of the Gaussian sphere and a 
cubic Hough space [19]. Li et al. [20] proposed a vanishing 
point detection method based on cascaded 1-D Hough 
transforms, which requires only a small amount of computation 
time without losing accuracy. 

In this study, we propose a new 3D vision system using two 
omni-cameras, which has a capability of automatic adaptation 
to any system setup for convenient in-field uses. Specifically, 
the proposed vision system, as shown in Fig. 1, consists of two 
omni-cameras facing the user’s activity area. Each camera is 
affixed firmly to the top of a rod, forming an omni-camera 
stand, with the camera’s optical axis adjusted to be horizontal 
(i.e., parallel to the ground). The cameras are allowed to be 
placed freely in the environment at any location in any 
orientation, resulting in an arbitrary system setup. Then, by the 
use of space line features in environments, the proposed vision 
system can adapt automatically to the arbitrarily-established 
system configuration by just asking the user to stand still for a 
little moment in the middle region of the activity area in front of 
the two cameras. After this adaptation operation, 3D data can 
be computed precisely as will be shown by experimental results 
in this paper. 

As an illustration of the proposed system, Fig. 1(c) shows the 
case of a user using a cot-covered fingertip as a 3D cursor point, 
which is useful for 3D space exploration in video games, 
virtual/augmented reality, 3D graphic designs, and so on. The 
fingertip is detected and marked as red in that figure, whose 3D 
location can be computed by triangulation. 

In contrast with a conventional vision system with two 
cameras whose configuration is fixed, the proposed system has 
several advantages. First, the system can be established freely, 
making it suitable for wide-ranging applications. This is a 
highly desired property especially for consumer electronics 
applications such as home entertainment or in-house 
surveillance, since the user can place the system components 
flexibly without the need to adjust the positions of the existing 
furniture in the application environment. Second, since the 
proposed vision system uses omni-cameras, the viewing angle 
of the system is very wide. This can be seen as an improvement 
over commercial products like Microsoft Kinect since the 
player can now move more freely at a close distance to the 
sensors. This advantage is very useful for people who only 
have small spaces for entertainments. Also, the two cameras in 
the proposed system are totally separated from each other at a 
larger distance, resulting in the additional merit of yielding 
better triangulation precision and 3D computation results due to 
the resulting longer baseline between the two cameras. 
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Fig. 1. Configuration and an illustration of the usage of proposed system. (a) 

An illustration. (b) Real system used in this study. (c) An omni-image of a user 

wearing a finger cot (marked as red). 

In the remainder of this paper, an overview of the proposed 
system is described in Section II, and the details of the 
proposed techniques for use in the system are presented in 
Sections III through VI. Experimental results are included in 
Section VII, followed by conclusions in Section VIII. 

II. OVERVIEW OF PROPOSED SYSTEM 

The use of the proposed system for 3D vision applications 
includes three stages: (1) in-factory calibration; (2) in-field 
system adaptation; and (3) 3D data computation. The goal of 
the first stage is to calibrate the camera parameters efficiently in 
the factory environment. For this, a technique using landmarks 
and certain conveniently-measurable system features is 
proposed. In the second stage, an in-field adaptation process is 
performed, which uses line features in environments to 
automatically compute the orientations of the cameras and the 
distance between them (i.e., the baseline of the system). In this 
stage, a user with a known height is asked to stand in the middle 
region in front of the two cameras to complete the adaptation. 
Subsequently, the 3D data of any feature point (like the finger 
tip shown in Fig. 1(c)) can be computed in the third stage. 

A sketch of the three operation stages of the proposed system 
is described in the following. To simplify the expressions, we 
will call the left and right cameras as Cameras 1 and 2, and their 
camera coordinate systems as CCSs 1 and 2, respectively. 

Algorithm 1. Sketch of the proposed system’s operation. 
Stage 1. Calibration of omni-cameras. 
 Step 1. Set up a landmark and select at least two feature 

points Pi on it, called landmark points. 
 Step 2. Perform the following steps to calibrate Camera 1. 
 2.1. Measure manually the radius of the mirror base of 

the camera as well as the distance between the 
camera and the mirror, as stated in Section VII-A. 

 2.2. Take an omni-image I1 of landmark points Pi with 
Camera 1 and extract the image coordinates of 
those pixels pi which correspond to Pi. 

 2.3. Detect the circular boundary of the mirror base in I1, 
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compute the center of the boundary as the camera 
center, and derive accordingly the focal length f1 of 
the camera, as described in Section VII-A. 

 2.4. Calculate the eccentricity  of the hyperboloidal 
mirror shape using the coordinates of pi and those 
of Pi, as stated in Section VII-A. 

 Step 3. Take an image I2 of landmark points Pi with 
Camera 2 and perform operations similar to those 
of the last step to calibrate the camera to obtain its 
focal length f2 and eccentricity . 

Stage 2. Adaptation to the system setup. 
 Step 4. Place the two camera stands at proper locations 

with appropriate orientations to meet the 
requirement of the application activity. 

 Step 5. Perform the following steps to calculate the 
included angle  between the two optical axes of 
the cameras as shown in Fig. 1(a). 

 5.1. Capture two omni-images I1 and I2 of the 
application activity environment with Cameras 1 
and 2, respectively. 

 5.2. Detect space line features Li in omni-image I1 using 
the Hough transform technique as well as the 
parameters f1 and 1, as described in Section IV. 

 5.3. Detect space line features Ri in omni-image I2 
similarly with the use of the parameters f2 and 2. 

 5.4. Calculate angle  using the detected line features Li 
and Ri in a way as proposed in Section V. 

 Step 6. Perform the following steps to calculate the 
orientations of the two cameras and the baseline 
between them. 

 6.1. Ask a user of the system to stand in the middle 
region in front of the two omni-cameras and take 
two images of the user using the cameras. 

 6.2. Extract from the acquired images a pre-selected 
feature point on the user’s body, and compute the 
respective orientations  and  of the two cameras 
using the angle , as described in Section VI-A. 

 6.3. Detect the user’s head and foot in the images, 
compute the in-between distance up to a scale, and 
use the distance as well as the corresponding 
known height of the user to calculate the baseline D 
between the cameras, as described in Section VI-C. 

Stage 3. Acquisition of 3D data of space points. 
 Step 7. Take two omni-images of a selected space feature 

point P (e.g., a fingertip, a handed light point, a 
body spot, etc.) with both cameras, and extract the 
corresponding pixels p1 and p2 in the taken images. 

 Step 8. Calculate as output the 3D position of P in terms of 
the coordinates of p1 and p2, the focal lengths f1 and 
f2, the eccentricities 1 and 2, the orientations 1 
and 2, and the baseline D, using a triangulation 
based method described in Section VI-B. 

Via the above algorithm, the meaning of system adaptation, 
which is the main theme of this study, can be made clearer now: 
only with the input of the knowledge of the user’s height (see 
Step 6.3), the proposed system can infer the required values of 
the cameras’ orientations  and 2 and baseline D for use in 
computing the 3D data of space points. This is not the case 
when using a conventional stereo vision system with two 
cameras in which the configuration of the cameras are fixed 

with their orientations and baseline unchangeable. This merit 
of the proposed system makes it easy to conduct system setup in 
any room space by any people for more types of applications, as 
mentioned previously. 

III. STRUCTURE OF OMNI-CAMERAS 

The structure of omni-cameras used in this study and the 
associated coordinate systems are defined as shown in Fig. 2. 
An omni-camera is composed of a perspective camera and a 
hyperboloidal-shaped mirror. The geometry of the mirror shape 
can be described in the camera coordinate system (CCS) as: 
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The relation between the camera coordinates (X, Y, Z) of a 
space point P and the image coordinates (u, v) of its 
corresponding projection pixel p may be described [22] as: 
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where  is the eccentricity of the mirror shape with its value 
equal to c/a, and  and  are the elevation and azimuth angles 
of P, respectively. The azimuth angle  can be expressed in 
terms of the image and camera coordinates as 
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IV. SPACE LINE DETECTION IN OMNI-IMAGES 

We now describe the proposed method to detect horizontal 
space lines in omni-images. Several ideas adopted to design the 
method are emphasized first. First, it is desired to eliminate 
initially as many non-horizontal space lines in each acquired 
image as possible since only horizontal space lines are used to 
find the included angle  as described later in Section V. Second, 
it is hoped that the method can deal with large amounts of noise 
so that it can be used in an automatic process. Third, it is 
desired to utilize certain properties in man-made environments 
to improve the detection result, including the two properties 
that space lines are mostly horizontal or vertical, and that space 
line edges are usually not close to one another. 

 

 

Fig. 2. Camera and hyperboloidal-shaped mirror structure. 
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mRsin + nRtan = 0, (5) 

here R = 

 section is organized as follows. First, a q
rmula describing the projection of a space line in an 

omni-image is derived in Section IV-A. Next, a refined Hough 
transform technique for detecting space lines is proposed in 
Section IV-B, which uses a novel adaptive thresholding scheme 
to produce robust detection results. Also, the projection of a 
vertical space line is derived and analyzed in Section IV-C. A 
peak cell extraction technique proposed for use in the refined 
Hough process is described at last in Section IV-D. 

A. Projection of a Space Line in an Omni-Image 

Given a space line L, we can construct a plane S
rough L and the origin Om of a CCS as shown in Fig. 3. Let NS 

= (l, m, n) denote the normal vector of S. Then, any point P = (X, 
Y, Z) on L satisfies the following plane equation: 

 NS·P = lX + mY + nZ = 0. 

w  the inner-product operator. ) 
with (1) and (3), we get 

 lRcos + 

w 2 2X Y . Dividing (5) by 2 2 2R l m to n  leads 
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which can be transformed into the following form 

 2 2cos 1 sin tan 0A A B B         

ith the two parameters A and B defined as w
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Accordingly, the normal vector NS of plane S, originally being 

n
B 

(l, m, n), can now be expressed alternatively as 

 2 2( ,  1 ,  )SN A A B B    

 is assumed that m  0 in (6) and (8) above. In case that m <It  0, 
we may consider NS = (l, m, n) instead, which also 
represents the same space plane S. Also, it can be seen from (7) 
that, parameters A and B satisfy the constraint A2 + B2 ≤ 1, 
implying that the Hough space is of a circle shape. 

 

 
Fig. 3. Illustration of a space line L projected on an omni-image as IL. 

The parameters A and B are used in the Hough transform to 
detect space lines in omni-images. These two parameters are 
skillfully defined in (7), leading to several advantages. First, 
removals of vertical space lines can be easily achieved by 
ignoring periphery regions as described later in Section IV-C. 
Next, since the possible values of A and B range from 1 to 1, 
the size of the Hough space is fixed within this range. This is a 
necessary property in order to use the Hough transform 
technique, and is an improvement on a previous work [16]. 
Also, the parameters A and B are used directly to describe the 
directional vector of the space line L as will be shown later in 
(1 s to 
yi

4). Hence, one may divide the Hough space into more cell
eld a better precision. 
Combining (6) with (1) through (3), we can derive a conic 

section equation to describe the projection of a space line L 
onto an omni-image as follows: 

 2 2
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where the coefficients C1 through C6 are: 
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T tio  in he quadratic formula (9) will be called the target equa n
the Hough transform subsequently, since the goal of the 

cribed by it in an 
omni-image. 

B. Hough Space Generation with Adaptive Thresholding 

We define the Hough space to be two-dim
eters A and B descri ousl

efine the cell support for a cell at (A, B) i
ulation of 

e value of tha scribed by the 
two parameters (A, B). Two properties of cell supports are 

ore, it is desired that the shape of the cell 
support is of a certain fixed width and not too “thin,” so that 

tion 
er

detection process is to find curves des

ensional with the 
param bed previ y. Furthermore, we 
d n the Hough space as 
the set of those pixels which contribute to the accum
th t cell. Let L denote a space line de

desirable: (1) the pixels of the projection IL of L onto the 
omni-image are all included in the cell support for the cell (A, 
B); and (2) the pixels not on IL are not included in this cell 
support. Furtherm

(edge) pixels originally belonging to IL but with small detec
rors can still contribute to the cell value. In short, a cell 

support is desired to be a space line projection with a certain 
width everywhere along the line, which is called an 
equal-width projection curve hereafter. In this section, we first 
show that commonly-used curve detection methods do not 
generate desired equal-width projection curves as cell supports 
as shown in Figs. 4(a) and 4(b), so we propose in this study an 
adaptive method to solve this problem to yield better results 
like the one shown in Fig. 4(c). 
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(a) (b) (c) 

Fig. 4. Shapes of cell supports of four chosen Hough cells yielded by three 

methods. (a) Using traditional accumulation method. (b) Using a 

threshold  = 3000. (c) Using the proposed technique. 

 
A commonly-used method for curve detection to calculate 

the cell support is as follows [30][31][32]: for each pixel at 
coordinates (u, v), find all the Hough cells with their parameter 
values (A, B) satisfying the target equation (9), and increment 
the value of each cell so found by one. Some cell supports 
calculated by this m thod are shown in g. 4(a), showing that 
the cell supports for some cel re not with equal dths. 

Another straightforward m o calculate the l support 
i ch 
( s 
w ation 



e  Fi
ls a
ethod t

 wi
cel

s as follows [16][33]: define a threshold  first, and for ea
edge) pixel with coordinates (u, v), find all the Hough cell
ith their parameters (A, B) satisfying the equ

2 2
, 1 2 3 4 5 6( , )A BF u v C u C uv C v C u C v C         

and increment the value of each cell so found by one. However, 
as shown in Fig. 4(b), it is impossible to find a good threshold  
which makes all the projection curves to be of equal widths. To 
solve this problem, it is necessary to develop a new method to 
adaptively determine the threshold value  for each different 
ce

ingly. For 
this aim, the method we propose makes a novel use of total 

erivatives to estimate the function values of F on the bo
and sets the threshold value  in (10) accordingly. More 

ll support and each different pixel. 
Conceptually, to draw an equal-width curve of F = 0, we 

have to compute the function values of F on the projection 
curve boundary, and define the threshold  accord

d undary, 

specifically,  is set in the proposed method to be 

 , ,

( , ) ( 1, 1)
( , , , ) max A B A B

u v

F F
A B u v u v

u v


    

  
      

 

for different Hough cells with parameters (A, B) and different 
pi

 Additional Constraint on Vertical Space Lines 

In man-made environments, most lines are either parallel to 

nes from the 
de

e vertically 
placed on the floor, with the Y-axis of the camera coordinate 

As a result, 
th

, results in the equality 
A2

and horizontal 
hords in omn of horizontal

n 
environment mostly are not so close mutually, meaning that 

es usually are separated for a certain 
di

xels at coordinates (u, v). Accordingly, as shown in Fig. 4(c), 
the drawn curves are now with uniform widths. 

As a summary, the Hough space can be generated using (10) 
with threshold  calculated by (11). With this improvement, the 
cell supports become equal-width projection curves, making 
the Hough transform process more robust to yield a precise 
peak value which represents a detected space line. 

C.

the floor (which is called horizontal space lines hereafter) or 
perpendicular to the floor (which is called horizontal space 
lines). If we can eliminate vertical space li

tection results, the rest of them are much more likely to be 
horizontal ones which are desired as stated later in Section V. 
In this section, a constraint on the vertical space line is derived 
for the purpose of removing such lines. 

As mentioned earlier, the omni-camera stands ar

system being a vertical line as depicted in Fig. 1(a). 
e directional vector vL of a vertical space line L is just (0, 1, 0). 

Let S be the space plane going through L and the origin Om 
which is at camera coordinates (0, 0, 0). Also, let NS = (l, m, n) 
be the normal vector of plane S. By definition, normal vector NS 
is perpendicular to vL, leading to the constraint: 

 NSvL = (l, m, n)(0, 1, 0) = m = 0.  

This constraint, when combined with (7)
 + B2 = 1, which shows subtly that the Hough cells of vertical 

space lines are located in the periphery region of the circular 
Hough space (as mentioned earlier in Section IV-A). As a result, 
vertical space lines can be easily removed by just ignoring the 
periphery region of the Hough space. In the proposed method, 
this is achieved automatically by applying a filter on the Hough 
space as described next in Section IV-D. 

Note that, in general, vertical and horizontal space lines do 
not correspond to curve segments with vertical 
c i-images. In fact, the projections  
space lines may be with any direction as shown in Fig. 11(f). 
Also, the removal of a vertical space line will sometimes also 
eliminate a few horizontal space lines lying on the plane which 
goes through the vertical space line and the origin of the camera 
coordinate system. However, as shown in Figs. 7(a), 7(b), 11(e), 
and 11(f), many horizontal space lines can still be extracted. 

D. Peak Cell Extraction 

After the Hough space is generated, the last thing to do is to 
extract cells with peak values, called peak cells, which 
represent the detected space lines. The simplest way to 
accomplish this is to find the cells with large values. However, 
if we do so to get peak cells like those shown in Fig. 5(a), we 
might get a bad detection result like that shown in Fig. 5(b) with 
many of the detected space lines being too close to one another, 
from which less useful space lines may be extracted. 

To solve this problem, we notice that the line edges in a

two detected horizontal lin
stance. This in turn means that extracted peak cells should not 

be too close to one another. To find the peak cells which are not 
too close to each other, a filter is applied on the Hough space: 
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1 1 1 1 1
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Th

Section IV-C: the removal of the periphery region is equivalent 
to the removal of vertical space lines. Thus, expectedly we can 

et more horizontal lines as desired. To
proposed a new method to detect horizontal space lines in 
omni-images, with several novel techniques also proposed in 
Sections IV-A through IV-D to improve the detection result. 

(u, v, A, B) 
satisfies (10) in which the threshold value  is 

valu
 described by (12) to Hough space H, 

Bi) as output. 

en, we extract peak cells by choosing the cells with large 
values in the filtered Hough space to yield a better detection 
result, as shown by Figs. 5(c) and 5(d). 

By the way, it is noted that when applying the filter to the 
Hough space, one of the side effects is the removal of the 
periphery region. This is a desired property mentioned in 

g  sum up, we have 

The proposed method for horizontal space line detection is 
summarized as an algorithm in the following. 

Algorithm 2.  Detection of horizontal space lines in the form of 
conic sections in an omni-image. 

Input: an omni-image I. 
Output: 2-tuple values (Ai, Bi) as defined in (7) which describe 

detected horizontal space lines in I. 
 Step 1. Extract the edge points in I by an edge detection 

algorithm [25]. 
 Step 2. Set up a 2D Hough space H with two parameters A 

and B, and set all the initial cell values to be zeros. 
 Step 3. For each detected edge point at coordinates (u, v) and 

each cell C with parameters (A, B), if 

adaptively calculated by (11), then increment the 
e of C by one. 

 Step 4. Apply the filter
choose those cells with maximum values, and take 
their corresponding parameters (Ai, 

 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 5. Comparison of traditional peak cell extraction method and 

proposed one. (a) Hough space. (b) 50 detected e lines using 

traditional method. (c) Post-processed Hough space. (d) 50 detected space 

lines using proposed method. 

V. CALCULATION OF INCLUDED ANGLE  BETWEEN TWO 

CAMERAS’ OPTICAL AXES USING DETECTED LINES 

In the proposed vision system, the omni-cameras are 
mounted on two vertical stands with the optical axes being 
parallel to the floor plane as mentioned previously, but the 
cameras’ optical axes are allowed to be non-parallel, making an 
included angle  as depicted in Fig. 1(a). To accomplish the 3D 

ation work under an arbitrary system setup, the 
l ust be calculated first. A m o calculate 

t e 
l o 
c to 
c ng multiple automatically extracted 
horizontal space lines. To achieve this, a novel method is 

d 

spac

data comput
included ang e  m ethod t
he angle  using a single manually chosen horizontal spac
ine is proposed first in Section V-A. However, in order t
onduct the adaptation process automatically, we have 
alculate the angle  usi

proposed next in Section V-B, which utilizes all the detecte
space lines from the two omni-images taken with the cameras. 

The proposed method has several advantages. First, only the 
directional information of the space line, which is a robust 
feature against noise, is used. Next, no line correspondence 
between the two omni-images need be derived; that is, it is 
unnecessary to decide which line in the left omni-image 
corresponds to which one in the right omni-image. This makes 
the proposed method fast, reliable, and suitable for a 
wide-baseline stereo system like the one proposed in this study. 
Also, the proposed method makes use of a good property of the 
man-made environment — many line edges in such 
environments are parallel to one another, leading to an 
improvement on the robustness and correctness of the 
computation result. 

A. Calculating Angle  Using a Single Horizontal Space Line 

In this section, a method to calculate the angle  between the 
two cameras’ optical axes is proposed, using a single horizontal 
space line L in the environment. Let (A1, B1) be the parameters 
corresponding to line L in an omni-image taken with Camera 1, 
vL = (vx, vy, vz) be the directional vector of L in CCS 1, and S1 be 
the space plane going through line L and the origin of CCS 1. 
The normal vector of S1 can be derived, according to (8), to be 

 2 2
1 1 1 1 1( ,  1 ,  )n A A B B   .  

Since S1 goes through line L, we get to know that vL and n1 are 
perpendicular, resulting in the following equality: 

 vL·n1 = 2 2
1 1 1 1 0x y zv A v A B v B1     . (13) 

Furthermore, since L, being horizontal, is parallel to the 
XZ-plane as shown in Fig. 1(a), we get another constraint vy = 0. 
This constraint can be combined with (13) to get 

 vL = (vx, vy, vz) = (B1, 0, A1). (14) 

Next, by referring to Fig. 6(a), it can be seen that the angle 1 
between the X-axis of CCS 1 and space line L is 

1 = tan1(A1/B1).   
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 1 1,0,B A

 
(a) (b) 

Fig. 6. Illustration o

2 2 ng to the 
orizontal space line 

derivations described above, the angle 2 between the X-axis of 
CCS 2 and line L can be derived to be 

 2 = tan1(A2/B2).  

As depicted in Fig. 6(b) where L1 and L2 specify identically the 
single horizontal space line L, the angle  between the two 
cameras’ optical axes can now be computed easily to be 

  = 1  2 = tan 1(A1/B1)  tan1(A2/B2). (15) 

B.

an be detected from an omni-image 
using Algorithm 2 as described in Section IV. Let L1 be a space 
lin

he space lines L1 and L2 
are an identical horizontal space line  i  the environment.  

However, the line roblem of deciding 

s and 
ewing fi

nvironme

ca

of 
th

 value for 
an

t wij. After such a 
w

f the angles 1, 2 and . (a) The definition of 1. (b) 

Relation between 1, 2 and . 

Similarly, let (A , B ) be the parameters correspondi
h L in Camera 2. By following the same 



 Calculating Angle  Reliably Using Several Detected Lines 

Horizontal space lines c

e so detected from the left omni-image with parameters (A1, 
B1), and let L2 be another detected similarly from the right 
omni-image with parameters (A2, B2). As stated previously, the 
angle  can be calculated using (15) if t

L n
 correspondence p

whether L1 and L2 are identical or not is difficult for several 
reasons, especially for a wide-baseline stereo system like the 
one proposed in this study. First, the respective viewpoint
vi elds of the two cameras differ largely. Thus, 
e nt features, like lighting and color, involved in the 
image-taking conditions at the two far-separated cameras might 
vary largely as well. Also, the extrinsic parameters of the two 

meras are unknown; therefore, the involved geometric 
relationship is not available for use to determine the line 
correspondences. To get rid of these difficulties, we propose a 
novel statistics-based method to reliably find the angle  
without the need to find such line correspondences. 

More specifically, the proposed method makes use of two 
important properties. First, it is noticed that the correct value 

e angle  can still be calculated using (15) even when the two 
space lines L1 and L2 are not an identical one, but are parallel to 
each other. This can be seen from the fact that the angles 1 and 
2 remain the same if L1 and L2 are parallel so that the computed 
angle  is still correct, as desired. Second, it can be seen that in 
man-made environments, many of the line edges are parallel to 
one another in order to make the environment neat and orderly. 
For example, tables, shelves, and lights are always placed to be 
parallel to walls and to one another. Combining these two 

properties, we can conclude that any two detected space lines 
L1 and L2 are very likely to be parallel to each other. Based on 
this observation, we assume every possible line pair L1 and L2 
to be parallel, and compute accordingly a candidate

gle , where L1 is one of the space lines detected from the left 
omni-image, and L2 is another detected from the right 
omni-image. Then, we infer a correct value for angle  from the 
set of all the computed candidate values via a statistical 
approach based on the concept of “voting.” 

In more detail, the proposed method is designed to include 
three main steps. First, we extract space lines from the left 
omni-image as described in Algorithm 2, and denote the line 
parameters (A, B) of them as li. Similarly, we detect space lines 
from the right omni-image with their parameters denoted as rj. 
In addition, we define two weights w(li) and w(rj) for li and rj, 
respectively, to be the cell values in the post-processed Hough 
space derived in Step 4 of Algorithm 2, which represent the 
trust measures of the detected space lines. Then, from each 
possible pair (li, rj), we calculate a value ij for angle  using 
(15), as well as a third weight wij defined as w(li)w(rj). The 
value wij may be regarded as the trust measure of the calculated 
angle ij. Finally, we set up a set of bins, each for a distinct 
value of , and for each computed value ij, we increase the 
value of the corresponding bin by the weigh

eight accumulation work is completed, the bin with the 
largest value is found out and the corresponding angle ij is 
taken as the desired value for angle . 

An experimental result so obtained is shown in Fig. 7. In Figs. 
7(a) and 7(b), fifty space lines with parameters li and rj were 
detected using Algorithm 2 from the left and right omni-images, 
respectively. For each possible pair (li, rj) where 1≤i, j≤50, the 
corresponding angle ij and weight wij were calculated and 
accumulated in bins as described previously. The accumulation 
result is shown in Fig. 7(c) with the maximum occurring at  = 
23°, which is taken finally as the derived value of angle . 

 

 
(a) (b) 

 
(c) 

Fig. 7. Experimental result of proposed adaptation method for detecting 

included angle . (a) and (b) Left/right omni-images, with the detected 

space lines superimposed on it. (c) Accumulation result for  with 

maximum occurring at  = 23°. 
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VI. PROPOSED TECHNIQUE FOR BASELINE DERIVATION AND 

ANALYTIC COMPUTATION OF 3D DATA 

The world coordinate system X-Y-Z is defined as depicted in 
Fig. 8. The X-axis goes through the two camera centers O1 and 
O2; the Y-axis is taken to be parallel to the Y-axes of both CCSs; 
the Z-axis is defined to be perpendicular to the XY-plane; and 
the origin is defined to be the origin O1 of CCS 1. It is noted 
here that, since the two omni-cameras are affixed firmly on the 
omni-camera stands and adjusted to be of an ntical height as 
described in Section I, the axes X, Z, X1, Z1, X2, and Z2 are all on 
the same plane as illustrated in Fig. 8. 

Since the two omni-cameras are allowed to be placed 
arbitrarily at any location with any orientation, it is necessary to 
find the baseline D and the orientation angles 1 and   (as 
defined in Fig. 8) in advance to calculate the 3D data of space 
points. A novel method to cal ate the orientation angles is 
p re 
d as 
d
h ine the baseline D is proposed in 

as proposed i

1 2

 ide

2

cul
roposed first in Section VI-A. After the orientations a
erived, the 3D data can be determined up to a scale 
iscussed in Section VI-B. Then, a method using the known 
eight of the user to determ

Section VI-C. After the baseline D is derived, the absolute 3D 
data of space feature points can be derived by a similar method 

n Section VI-B. It is emphasized that all 
computations involved in these steps are done analytically, i.e., 
by the use of formulas without resorting to iterative algorithms.  

A. Finding Two Cameras’ Orientations 

Let the camera coordinates of CCS 1 be denoted as (X1, Y1, 
Z1), and those of CCS 2 as (X2, Y2, Z2), as shown in Fig. 8. As 
mentioned previously, the two CCSs X1-Y1-Z1 and X2-Y2-Z2 are 
allowed to be oriented arbitrarily (with Y  and Y  parallel to 
each other), and the only knowledge acquired by the proposed 
system is the angle  between the two optical axes Z1 and Z2, 
which is derived using the detected space lines, as described 
previously in Section V. 

To derive the angles 1 and 2, the user is asked to stand in 
the middle region in front of the two omni-cameras so that a 
feature point Puser on the user’s body may be utilized to draw a 
mid-perpendicular plane of the line segment O1O2 as shown in 
Fig. 8. Let (X1, Y1, Z1) be the coordinates of Puser in CCS 1, and 
(u1, v1) be the corresponding pixel’s image coordinates in the 
left omni-image. From (1) and (3), we have the equality: 

    T T2 2
1 1 1 1 1 1 1 1cos sin tanX Y Z X Y     ,  

where cos1, sin1, and tan1 are computed from (u1, v1) 
ows that the according to (1) and (3). This equality sh

directional vector between O1 and Puser is (cos1, sin1, tan1) 
in CCS 1. An angle 1 is defined on the XZ-plane as illustrated 
in Fig. 8, which can be expressed as 1 = tan1(tan1/cos1). 
Similarly, the angle 2 defined on the XZ-plane can be derived 
to be tan1(tan2/cos2). Accordingly, we can derive 1 to be 

 2 1 1 2
1 1 2 2 2 2

       
         

 
,  

 

2 1

2

   

Fig. 8. A top-view of the coordinate systems. The baseline D, orientation 

angles 1 and 2, and a point Puser on the user’s body are also drawn. 

and 2 is just 2 = 1  . This completes the derivations of the 
orientation angles 1 and 2 of the two cameras. 

B. Calculating 3D Data of Space Feature Points 

Let P be a space feature point with coordinates (X, Y, Z) in 
CCS 1, and let the projection of P onto the omni-image taken 

y Camera 1 be the pixel p1 located at image coordinate

From (1) and (3) with R1 = 

b s (u1, v1). 
2 2

1 1X Y , we have 

    T T

1 1 1 1 1 1 1cos sin tanX Y Z R     (16) 

where cos1, sin1, and tan1 are computed from (u1, v1) by (1) 
and (3). Equation (16) describes a light ray L1 going through the 
origin O1 with directional vector d1′ = [cos1 sin1 tan1]

T in 
CCS 1. To transform the vector into the coordinate system 
X-Y-Z, we have to rotate d1′ along the Y-axis through the angle 
1 as illustrated in Fig. 8. As a result, the transformed light ray 
L1 goes through (0, 0, 0) with its directional vector d1 being 

 d1 = 
1 1 1cos 0 sin cos  

10 1 0 sin

1 1 1sin 0 cos tan


   

    . 

  
   
      

Similarly, let the space feature point P be located at (

(17) 

X′, Y′, Z′) 
taken by 

Ca
in CCS 2 and its projection onto the omni-image 

mera 2 be the pixel p2 located at image coordinates (u2, v2). 
Then, similarly to the derivation of (16) we can obtain the 
following equation to describe L2 in CCS 2: 

    T

2 2 2 2sin tanX Y Z R
T

2 2 2cos   , (18) 

here R2 = w 2 2
2 2X Y . As illustrated in Fig. 8, we can 

transform the light ray L2 from CCS 2 to the coordinate system 
X-Y-Z by rotating the ray through the angle 2 and translating it 
by the vector [D 0 0]T. As a result, the transformed light ray L2 
goes through (D, 0, 0) with its directional vector d2 being  

 d2 = 
2 2 2

2

2 2 2

cos 0 sin cos

0 1 0 sin

sin 0 cos tan

  


  

   
   
   
      

. (19) 

We now have two light rays L1 and L2 both going through 
everything including the works of sy

setup, camera calibration, and feature detection is conducted 
the space point P. If stem 
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ac

e of the midpoint 
m on the shortest line segment between the two lig
nd L2, as illustrated in Fig. 9. 

b ain is solution
n Fig

curately without incurring errors, these two lines should 
intersect perfectly at one point which is just P. But unavoidably, 
various errors of imprecision always exist so that the 
intersection point does not exist. One solution to this problem is 
to estimate the coordinates of point P as thos
P ht rays L1 
a

To o t  th , let d be the vector perpendicular to d1 
and d2 as shown i . 9, which can be expressed as d1d2, 
where  denotes the cross-product operator. Since Q1 is on light 
ray L1, its coordinates (X1, Y1, Z1) can be expressed as 

    T T

1 1 1 1 10 0 0X Y Z d   (20) 

where 1 is an unknown scaling factor. Let S1 be the plane 
ontaining P2 nd Q2. As illustrated in Fig

vector n1 of plane S1 is d2d, or equivalently, d2(d1d2). Since 
P2 and Q  are both on this plane, we get to know that the vector 
P

c , Q1 a . 9, the normal 

1

2Q1 is perpendicular to n1. This fact can be expressed by 

        T T

2 1 1 1 1 1 2 1 20 0 0P Q n X Y Z D d d d      


.  

Combining the above equality with (20), we get 

      T

1 1 2 1 20 0 0d D d d d        

from which the unknown scalar 1 can be solved to be 

 
 


  

2 1 2
1

2 1 2 1

D
d d d d

 
  

1 , (21) 

where e1 = [1 0 0]T. Similarly, since Q2 is on light ray L2, the 
coordinates (X2, Y2, Z2) of Q2 can be expressed as 

d  d d e

    T T

2 2 2 20 0X Y Z D d2   (22) 

where 2 is another unknown scaling factor. Let S2 be the plane 
containing P1, Q1 and Q2. The normal vector n2 of this plane is 
d1d = d1(d1d2). Since P1 and Q2 are both on this plane, the 
vector P1Q2 is known to be perpendicular to n2, leading to the 
following equality: 

 .       T T

1 2 1 2 2 2 1 1 20 0 0 0PQ n X Y Z d d d      




Combining the above equality with (22), we get 

     T

2 2 1 1 20 0 0D d d d d    

 

,  

which can be solved to get the unknown scalar 2 as 

 

 
 

Fig. 9. Illustration of deriving the middle point Pm of light rays L1 and L2.

 
  

1 1 2
2

1 1 2 2

d d d
D

d d d d


  
 

  
1e

. (23) 

Since Pm is the midpoint between Q1 and Q2, the coordinates 
Xm, Ym, Zm) of Pm can be expressed as (

 
m 1 2

m 1 2
1

X X X

Y Y Y

 

m 1 2
2

Z Z Z

     
             
            

 

a of 
space point P: 

, 

which, when combined with (20), (21), (22), and (23), leads to 
th following estimation result for use as the desired 3D date 

m

2 1 2 1 1 1 2 1
m 1 1

1 1 2 2 1 1 2 2
m

1 ( ( )) ( ( ))

2 ( ( )) ( ( ))

X
d d d d d d

Y D d d
d d d d d d d d

Z

 
2

      
             

e e
e , (24) 

where e1 = [1 0 0]T and D is the baseline to be determined. 

C.

To compute the baseline D, we make use of a fact about 
iangulation in binocular computer vision: t
etermined up to a scale without knowin

baseline D [26]. This fact can also be seen from (24), where the 

es taken of the user 
standing in front of the two cameras as mentioned previously, 

extract two points on the head and the feet of the user, 
spectively. Let Phead and Pfoot denote 

respectively. On the other hand, as stated previously, we can 
compute the 3D data up to a scale of the two points, which we 

 can be expressed as 

 Phead = D·P′head, and Pfoot = D·P′foot, 

here D is the actual baseline value. Let H′ be the Euc
distance between P′head and P′foot; and let H be the real distance 

he 
H′. 

ine D, the system parameters are now 
p, the three steps of the proposed 

e two 

 
 

 Finding Baseline D 

tr he 3D data can be 
d g the value of the 

baseline D is a scaling factor of the computed 3D data. 
Specifically, within the omni-imag

we 
re their real 3D data, 

denote as P′head and P′foot, respectively, using (24) with the term 
D in it ignored. Then, the relations between the data Phead, Pfoot, 
P′head, and P′foot

w lidean 

between Phead and Pfoot, which is just the known height of t
user. Then, the baseline D can finally be computed as D = H/

After finding the basel
all adapted. To sum u
adaptation method are briefly described as follows. First, the 
included angle  between the two optical axes are determined 
using space line features as discussed in Section V. Then, by 
asking the user to stand at the middle point in front of the two 
omni-cameras, the orientation angles 1 and 2 of th
cameras are calculated as described in Section VI-A. Finally, 
the baseline D is calculated using the height H of the user as 
described in this section. An overview of the proposed 
adaptation method is also described in Algorithm 1. 

VII. EXPERIMENTAL RESULTS AND DISCUSSIONS 

In this section, we describe first how we calibrate the 
omni-cameras to obtain their intrinsic parameters in Section 
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VII-A. Then, we present several experimental results to show 
ra e oposed line 

etection me hod, and the 
the feasibility, reliability, and accu cy of th  pr
d thod, the system setup adaptation met
3D computation process in Section VII-B through VII-D. 

A. Omni-Camera Calibration 

In the first step, the lens center and the focal length of the 
perspective camera should be calibrated. As illustrated in Figs. 
10(a) and 10(b), the mirror boundary, appearing as a circle in 
each captured omni-image, was extracted to robustly estimate 
the camera center and the focal length according to [23]. 
Specifically, we found a circle to fit the circular mirror 
boundary like that appearing in Fig. 10(b), and defined the 
camera center as the center of the fitting circle. Also, as shown 
in Fig. 10(a), we derived the camera’s focal length f, according 
to the properties of similar triangles and the rotational 
invariance of the omni-camera [27][28], as 

 
r

f M
R

  (25) 

et 

where M is the distance from the lens center to the camera 
center Om, R is the radius of the mirror base in the real-world 
space, and r is the radius of the mirror base in the taken image. 
The measured values in our experiments are R = 4.0 cm, M = 
8.6 cm, and r = 243 pixels for both cameras, from which the 
focal lengths f were derived to be 522.45 according to (25). 

Next, we solve  from (1) to g

 
sec sec

tan tan

 
 





.  

Combining the above equality with (1) and (2), we can get 

 

2 2

2 2 2 2

2 2 2 2

1 1
f Z

u v X Y
f Z

u v X Y


  

 


 

. (26) 

The above equation shows that, if we have a landmark point 
with known image coordinates (u, v) and known camera 
oordinates (X, Y, Z), then the eccen

Although the eccentricity  is theoretically a constant value, 

y, 
w r equation to describe the 
ccentricity , which comes from a fu
ith respect to the mirror’s radius r acc

  = g·r + h, (27) 

where g and h are two coefficients, and r is as defined in (2). 

c tricity  can be calculated. 

we found in this study that we can achieve better accuracy in 
3D data computation if a linear polynomial can be used to 
describe . The reason is that such a polynomial can be used to 
cope with some types of errors, including the radial distortion 
of the perspective camera’s lens, the imprecise measurements 
coming from the calibration process, and the manufacturing 
im irror shape. Accordinglprecision of the hyperboloidal m

e propose the following first-orde
e nctional expansion of  
w ording to the rotational 
invariance property as used in several studies [27][28]: 

 
(a) 

 
(b) 

F

-order 
pproximation method, we
 these experiments, w

 
measurement errors. The average 3D measurement error is 
6.3% with a standard deviation of 1.4% when using a constant 
eccentricity, which is reduced to an average error of 1.9% with 
a standard deviation of 0.71% when using the first-order 
approximation. This shows the effectiveness of the first-order 
approximation method for computing the eccentricity . It is 
noted here that the first-order coefficient g is supposed to be 
small since i ould be a constant in the . Otherwise, it 
m  
t
p r is not 
of

ig. 10. Illustration of omni-camera calibration. (a) Relationship between 

mirror and image plane. (b) An omni-image of a calibration board. 

 
In our experiments, a calibration board as shown in Fig. 10(b) 

was designed and put in front of the omni-camera. Each cross 
point Pi on the board was taken as a landmark point as stated in 
Algorithm 1, and used to calculate the eccentricity i by (26). 
After the values i corresponding to all the landmark points 
were derived according to (26), the coefficients g and h in (27) 
were computed finally using a Levenberg–Marquardt 
algorithm [29] to be 0.0022 and 1.9211, respectively. 

To demonstrate the effectiveness of the first
a  conduct two experiments as follows. 
In e measure the 3D data of the 60 
landmarks on a calibration board, and compute the 3D

t sh ory
eans any of the three possibilities: (1) the measurements in

he calibration are not accurate enough; (2) the lens of the 
e spective camera is heavily distorted; or (3) the mirror
 a good hyperboloidal shape.  

B. Space Line Detection Ability 

In Sections IV-A, IV-D, and IV-B, three techniques of 
improvements on increasing the detection ability and reliability 
of the proposed Hough-based space line detection method have 
been proposed, which are called parameterization, peak cell 
extraction, and accumulation, respectively, henceforth. Some 
comparisons are provided here to show the effectiveness of the 
proposed improvement techniques. About parameterization, 
we compare the effect of our technique with that proposed in 
[16]. About peak cell extraction, we compare our technique 
using the proposed filter with a traditional method. And about 
accumulation, we compare the adaptive thresholding technique 
we propose with a traditional accumulation method [31][32]. 
Accordingly, four different space line detection experiments 
have been designed, which are listed in Table I. 

The input omni-image of the four experiments is shown in 
Fig. 11(a). In each experiment, at first we found the edges in the 
omni-image to get those shown in Fig. 11(b). We then applied 
the Hough-based space line detection method to find 50 space 
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lines. And finally we drew the detected lines on the omni-image. 
The results of the four experiments are shown in Figs. 11(c) 
through 11(f), respectively. 

As shown in Fig. 11(c), since the parameterization proposed 
in [16] has a singularity when n = 0, only space lines near the 

 reliably. In contrast, when 
us

ity to positive 
on

periphery region can be detected
ing the proposed parameterization technique, space lines in 

the center region can be detected as shown in Fig. 11(d), but are 
quite crowded. After using the proposed peak cell extraction 
technique, the detected lines are more separated as shown in 
Fig. 11(e). Finally, after the proposed adaptive thresholding 
technique was applied in the last experiment, the detection 
result was improved further, yielding lines with more 
diversified directions, as shown in Fig. 11(f). 

To summarize, the proposed techniques have at least three 
advantages over the traditional ones. First, the proposed 
parameterization technique has no singularity problem, and the 
range of the Hough space is fixed within [1, 1]. In contrast, the 
method proposed in [16] has a singularity when n = 0, and the 
range of the parameters goes from negative infin

e. Second, space lines can be extracted more effectively by 
the proposed peak cell extraction technique. Third, the 
projection curve corresponding to the Hough cells in a cell 
support is of equal widths everywhere, which further improves 
the detection result. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 11. The space line detection results of the four different experiments. 

(a) Input omni-image. (b) Edge detection results. (c)-(f) 50 space lines 

detected in Experiments 1 through 4, respectively, Experiement 4 based 

on use of all proposed improvement methods shows the best result. 

TABLE I 
FOUR DIFFERENT SPACE LINE DETECTION EXPERIMENTS 

 parameterization peak cell extraction accumulation 

Exp. 1 proposed in [16] traditional  traditional 
Exp. 2 proposed traditional  traditional 
Exp. 3 proposed proposed traditional 
Exp. 4 proposed proposed proposed 

C. Adaptation Ability 

Some experimental results are given here to show the 
adaptation ability under different cameras and environments. 
Two types of cameras were used, which are perspective 
cameras and catadioptric omni-cameras, and three different 
environments were considered, which are a corridor, a hall, and 
a room, as shown in Figs. 12(a) through 12(c). 

Four different experiments were conducted: Experiment 1 is 
conducted in the corridor w th omni-cameras; Experimen n 
the hall with ni-cameras; Experiment 3 e room with 
omni-cameras; and Experiment 4 also in the room but with 
perspective cameras. In each experiment, the two cameras were 
oriented in different angles (i.e., 30°, 15°, 0°, 15°, and 30°). 
Fifty space line features were first extracted as proposed in 
Section IV. Then, the angle  was automatically calculated 
using these lines as proposed in Section V. The results are 
shown in Fig. 12(d). The X-axis specifies the ground truth of 
the angle , and the Y-axis specifies the absolute error the 
calculated angle . 
 

i t 2 i
 om  in th

of 

(a) (b) 

 
(c) 

 
(d) 

Fig. 12. Experimental results under different cameras and environments. 

(a) A corridor. (b) A hall. (c) A room. (d) Adaptation results of angle . 
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In Experiments 1 and 2, since the lines in the corridor and 
hall are relatively simple and obvious, the adaptation result is 
accurate with errors of about 2° as shown by the green and 

urple curves in Fig. 12(c). Also, since we use omni-cameras in 
these experiments, the lines can still be captured even when the 
two cameras were oriented with a large angle. Thus, the 
adaptation result remains accurate when the angle  is large. In 
Experiment 3, since the space lines in the room are more 
complicated, the adaptation becomes more difficult. However, 
since the omni-cameras can capture a large field of view of the 
environm , a plenty number of space lines can be captured. 
Therefore, the adaptation result is accurate as well, with errors 
of about 4° as shown by the red curve in Fig. 12(c). In contrast, 
the adaptation errors are about 10° when perspective cameras 
were used, as shown by the blue curve in Fig. 12(c), and they 
become unacceptable (larger than 20°) when the included angle 
 is large. These experimental results show the feasibility of the 
proposed adaptation methods, as well as the power of the 
omni-cameras in the automatic adaptation process. 

D. Adaptation and 3D Acquisition Ability 

A series of experiments are conducted to test the adaptation 
ability and the 3D acquisition precision in the room 
environment shown in Fig. 12(b). In each of the experiments, 
the two cameras were placed at a distance about 180cm to each 
other, and both were oriented randomly within the range of 
±40°. After the cameras were set up, two omni-images of the 
environment were captured as shown, for example, n Figs. 
13(a) and 13(d), respectively, and used to calculate the cluded 
angl 
a s, 
a

p

ent

i
in

e  according to Step 5 of Algorithm 1. Next, a user was 
sked to stand in the middle region in front of the two camera
s shown in Figs. 13(b) and 13(e), to calculate the orientation 

angles 1 and 2 and the baseline D according to Step 6 of 
Algorithm 1. After these adaptation tasks were done, a board 
with 60 landmarks was held by the user, as shown in Figs. 13(c) 
and 13(f), to test the precision of the resulting 3D computation.  

In these experiments, three different degrees of adaptation 
were implemented and the corresponding results compared: (1) 
no adaptation was conducted with the camera orientations and 
baseline set to be 1 = 2 = 0° and D = 180 cm (D is the 
ground-truth value); (2) the left omni-camera was set up to face 
forward with the values 1 = 0°, D = 180cm, and 2 adapted to 
be ; and (3) all the parameters 1, 2, and D were adapted 
according to the proposed method. Denoting (Xi, Yi, Zi) as the 
ground-truth location of a landmark point, and (Xi′, Yi′, Zi′) as 
the calculated location, we define the 3D error E of each 
landmark point as 

      2 2 2 2 2 2
i i i i i i i i iE X X ' Y Y' Z Z ' X Y Z        . (28) 

The comparison results are shown in Fig. 14 in which the 
D errors, and the 

ho
vertical axis specifies the average of the 3

rizontal axis specifies the system orientation angle which is 
defined as the maximum of the two orientation angles 1 and 2. 

(a) 
 

(b) (c) 

(d) 
 

(e) (f) 

Fig. 13. Sample omni-images of an experiment. (a)(d) Taking a shot of the 

environment to calculate . (b)(e) A user standing in the middle region in 

front of the cameras to calculate baseline D and orientation angles 1 and 

2. (c)(f) A board held by the user to test the 3D computation precision. 

 
As can be seen from Figs. 14(a) and 14(b), when no 

parameter is adapted with the results shown by the blue curve, 
the 3D errors are seen to become larger as the orientation angle 
becomes larger, showing the necessity of an automatic system 
adaptation process. When only the orientation 2 of the right 
omni-camera is adapted with the result shown by the red curve, 

is observed that the 3D errors are sometimes lower but
rgely. This results from the fact that the left omni-cam

assumed to face forward in this case. Thus, if the left 

3D errors are lower than 8% even when the system orientation 
angle is large. This shows the feasibility, reliability, and 
validity of the proposed system adaptation method. 

It is noted that these 3D measurements are calculated under a 
certain unintended inaccurate system setup. For example, it is 
required  the two omni-cam ands be adjust o be at 
an identi height, but there ht still exist a s  distance, 
say 1cm, between the heights of the two stands. Similarly, 
although the optical axes are assumed to be parallel to the 
XZ-plane, a small angle, say 1°, might be included between the 
optical axes and the XZ-plane. To see the effect of such 
unintended system setup inaccuracy, a plot of the average 3D 
errors resulting from a series of planned inaccurate setups is 
d up 
e e 
3 e 
p

sing the proposed vision system, we have also created a 
ga

it  vary 
la era is 

omni-camera is actually placed to face forward in the 
experiment, the error measure is lowered; otherwise, the error 
is large as expected. Finally, when all the parameters 1, 2 and 
D are adapted with the results shown by the purple curve, the 

that
cal 

era st
 mig

ed t
mall

rawn in Fig. 14(c). As can be seen, at the reasonable set
rrors of 1 cm in height and 2o in included angle, the averag
D error is 2.805%, which is tolerable in real-time gam
laying according to our experimental experience. 

U
me application in our experiments, which allows a user to 

play a 3D maze game, as illustrated by Fig. 15. The game is 
played mainly by the use of a finger with a yellow cot as a 
cursor, controlling the avatar going around and up and down in 
the maze to reach the destination. The 3D position of the 
simulated cursor is computed by analyzing the omni-image pair 
to detect the feature point of the finger cot and calculating its 
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3D position by the proposed method. Fig. 15 shows the game 
playing environment and three views of the 3D maze from 
different directions at a certain moment. When playing the 
game, the avatar moves towards the correct direction and 
responds as quickly as the player’s finger moves. This realtime 
effect comes mainly from the 3D computations all by the uses 
of the analytic formulas derived previously. It is noted in game 
playing that, if the player stands too far from the cameras, it will 
be too hard to detect the feature point on his/her finger, which 
influence the 3D calculations. Also, since there is a blind circle 
in omni-images, the 3D tracking process will fail momentarily. 
Otherwise, in normal cases, the avatar can be controlled by the 
player easily, which shows the feasibility of the proposed 
system for game playing and other similar applications.  
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Fig. 14. Experimental results of three different degrees of adaptations. (a) 

The 3D errors. (b) The standard deviations of the 3D errors. The proposed 

adaptation methods yield the best results as shown by the purple curves. 

(c) The 3D errors resulting from the uninteded inaccurate setups. 

VIII. CONCLUSIONS 

A new two-omni-camera stereo vision system for general 3D 
vision applications with a capability of automatic adaptation to 
any camera setup has been proposed. The adaptation process 
yields the values of the two omni-cameras’ orientations and 
distance (baseline), from which the 3D data of space feature 
points can be computed precisely. Experimental results show 
the feasibility of the proposed system. In contrast, the cameras’ 
orientations and distance of t conventional binocular vision 
system are all fixed because of its nonadjustable configuration.  

The proposed vision system has several advantages over 
conventional systems. First, the user can interact with the 
system within a wide area because the proposed system uses 
two omni-cameras, instead of traditional projective cameras, to 
capture omni-images which cover large fields of view. This is a 
desired property for many applications. For example, it can be 
used in exhibitions to interact with humans in a large area, in 
3D indoor surveillance of large public spaces, or in future 
virtual sporting environmen here people are walking or 
running in a wide area. Today, commercial products also try to 
solve the small field-of-view problems of conventional cameras. 
For example, the Microsoft Kinect uses a motorized tilt 
mechanism to track the user’s activities to overcome this 
problem [5]. In contrast, the proposed system does not suffer 
from this problem. Second, the proposed system can be set up 
flexibly, and so is appropriate for more real applications and 
more convenient for non-tec  users. Third, the proposed 
system yields better precisi n computed 3D data than 
t e 
m o 
o
which m
that the p le in environments 
wi

he 

ts w

hnical
on i

raditional short-baseline stereo systems. This comes from th
erit of the structure of the proposed system  the tw

mni-cameras are affixed to two independent camera stands 
ay be placed farther away from each other. It is noted 

roposed system is less applicab
th natural scenes as backgrounds where horizontal parallel 

lines are fewer for use by the system. 
Future studies may be directed to applying the proposed 

system to more human-machine interaction activities. 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 15. Use of proposed vision system for a 3D maze game. (a) A player 

of the game wearing a yellow finger cot with the two omni-cameras. 

(b)(c)(d) Three different views of the 3D maze game at a certain moment.
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