
850
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.4 APRIL 2020

PAPER

Data Hiding in Computer-Generated Stained Glass Images and Its
Applications to Information Protection

Shi-Chei HUNG†∗, Nonmember, Da-Chun WU††a), Member, and Wen-Hsiang TSAI†††,††††, Nonmember

SUMMARY The two issues of art image creation and data hiding are
integrated into one and solved by a single approach in this study. An au-
tomatic method for generating a new type of computer art, called stained
glass image, which imitates the stained-glass window picture, is proposed.
The method is based on the use of a tree structure for region growing to
construct the art image. Also proposed is a data hiding method which uti-
lizes a general feature of the tree structure, namely, number of tree nodes,
to encode the data to be embedded. The method can be modified for uses in
three information protection applications, namely, covert communication,
watermarking, and image authentication. Besides the artistic stego-image
content which may distract the hacker’s attention to the hidden data, data
security is also considered by randomizing both the input data and the seed
locations for region growing, yielding a stego-image which is robust against
the hacker’s attacks. Good experimental results proving the feasibility of
the proposed methods are also included.
key words: computer art, stained glass image, data hiding, region growing,
covert communication, watermarking, image authentication

1. Introduction

In the era of computer networks, more and more people ex-
change digital images over the Internet. Many methods have
been proposed to make digital images more artistic before
publishing them. New types of computed-generated art im-
age are also proposed. However, when such art images are
transmitted over networks, people can duplicate or tamper
with them easily. Thus, the issue of information protection
must be considered seriously.

Many studies on automatic art image creation [1]–[12]
and data hiding for information protection have been con-
ducted. But rare of them integrate respective solutions to
the two issues into a single approach. If one wants to cre-
ate an art image to decorate his/her websites, e.g., and does
not want the image to be downloaded and modified, ad-
ditional watermarking works need be carried out to pro-
tect the copyright of the image. Also, when one wants to

Manuscript received September 9, 2019.
Manuscript revised November 29, 2019.
Manuscript publicized January 15, 2020.
†The author was with the Department of Computer Science,

National Chiao Tung University, Hsinchu, Taiwan.
††The author is with the Department of Computer and Commu-

nication Engineering, National Kaohsiung University of Science
and Technology, Kaohsiung, Taiwan.
†††The author is with the Department of Computer Science,

National Chiao Tung University, Hsinchu, Taiwan.
††††The author is also with the Department of Information Com-

munication, Asia University, Taichung, Taiwan.
∗Presently, with Somuch Co. Ltd., Taipei, Taiwan.

a) E-mail: dcwu@nkust.edu.tw (Corresponding author)
DOI: 10.1587/transinf.2019EDP7239

conduct covert communication via a secret message, one
way is to hide the message into an art image which, by
its artistic appearance, may detract a hacker from tamper-
ing with it. Or it might also happen that an art image pub-
lished on the Internet is modified and claimed illicitly to be
original. In such a case, image authentication is needed.
In this study, an automatic method is proposed to create a
new type of art image, which imitates the stained glass im-
age often seen on church windows. Furthermore, a new
method for data hiding via such art images is proposed,
which may be adapted to solve all the three issues of water-
marking for copyright protection [13], [14], covert commu-
nication [11], [14], and image authentication [15], [16] just
mentioned.

About art image generation, Hertzmann [1] sur-
veyed stroke-based rendering algorithms for creating non-
photorealistic images which are composed by discrete el-
ements like paint strokes and stipples. The main goal of
these algorithms is to make generated images look like
real artworks such as oil painting. Figure 1 shows an
example of images created by Hertzmann [2], [3] where
Fig. 1 (a) is a source painting and Fig. 2 (b) is the cor-
responding computer-generated oil painting image. Fig-
ures 2 (a) through 2 (d) shows some mosaic or tile images
generated automatically by Hausner [4], Haeberli [5] and
Matsumura et al. [6]. Recently, with the fast development
of neural networks and deep learning applications, Chen,
et al. [7] and Gatys, et al. [8] proposed image style transfer
methods based on the use of convolutional neural networks
to generate art images. The methods can transfer given im-
ages to specific styles like those created by famous artists,
as shown in Figs. 2 (e) through 2 (j).

Stained glass windows are composed of glass pieces of
different shapes, colors, and sizes. They first appeared in
the 7th century, had heydays in the 16th century, and are
still being built today [9]. Figure 3 (a) shows the detail of a

Fig. 1 Computer-generated oil-painting images. (a) The source painting.
(b) An image imitating (a) created by Hertzmann [2], [3].

Copyright c© 2020 The Institute of Electronics, Information and Communication Engineers

HUNG et al.: DATA HIDING IN COMPUTER-GENERATED STAINED GLASS IMAGES AND ITS APPLICATIONS TO INFORMATION PROTECTION
851

stained glass window in a church. Mould [10] proposed an
algorithm for automatic creation of stained glass images like
those in Figs. 3 (b) and 3 (c).

Briefly speaking, in the proposed method for stained
glass image generation, a source image is processed by
quantization and region growing to obtain a group of glass
regions which looks like a stained glass version of the source
image. In the proposed data hiding method, a technique of
slight glass cracking is carried out to achieve the purpose of
bit-code embedding in the image. The proposed data hiding
technique can be modified further to fit the aforementioned
three applications of information protection. It is mentioned
by the way that the proposed method, differently from those
that hide data in natural images, is proposed for applica-
tions on art images (here, on stained glass images) with the
specific characteristics of the art image considered in detail
in designing the data embedding and extraction algorithms.

Fig. 2 Art images generated by computers. (a) A painting in Sistine
Chapel by Michelangelo. (b) A mosaic image imitating (a) by Haus-
ner [4]. (c) Another mosaic image imitating (a) by Haeberli [5]. (d) A
tile image generated by Matsumura et al. [6]. (e) An art image generated
by Chen, et al. [7] with (f) as the input according to V. van Gogh’s post-
impressionism art style of the painting “Starry Night” shown in (g). (h) An
art image generated by Gatys, et al. [8] with (i) as the input according to E.
Munch’s expressionism art style of the painting “The Scream” shown in (j).

Fig. 3 Stained glass windows and computer-generated images. (a) A
stained glass window of The Crucifixion, St. James Church, Staveley, UK.
(b), (c) Two stained glass images generated by Mould [10].

This contrasts with those data hiding methods which usually
just consider the general properties of natural images while
conducting data embedding and extraction.

In the remainder of this paper, the proposed method
for creating stained glass images is presented in Sect. 2.
The proposed processes for data embedding and extraction
via stained glass images, which implementing the proposed
method are described in Sects. 3 and 4, respectively. The
three applications of the proposed method mentioned pre-
viously are described in Sect. 5, with conclusions given in
Sect. 6.

2. Automatic Creation of Stained Glass Images

A stained glass window is composed of multiple glass re-
gions separated by black and thin gaps, called leading. A
new type of art image, imitating the picture seen on the
stained glass window, is proposed in this study from the
viewpoint of data hiding in this study. It is called as usual
stained glass image in this paper. In Sect. 2.1, a review of an
existing method for stained glass image creation proposed
by Mould [10] will be given. In Sect. 2.2, the ideas behind
the method proposed in this study for automatic creation of
the proposed new type of stained glass image are described;
and an algorithm for implementing the ideas is presented in
Sect. 2.3. Finally, some experimental results yielded by the
proposed method are presented in Sect. 2.4.

2.1 Review of a Method for Stained Glass Image Creation

In Mould’s method [10], at first an input image is segmented
into regions which then are smoothed by image processing
techniques. Next, the resulting regions are filled with colors
chosen from a palette of heraldic tinctures, which are close
to those of real stained glasses. Finally, a displacement-
mapped plane representing imperfections in the regions is
rendered, and leading is applied to the gaps between the re-
gion boundaries to obtain the final result.

Some results created by Mould [10] is shown in Fig. 4,
where Fig. 4 (a) is the source image and Fig. 4 (b) is the seg-

Fig. 4 An example of stained glass images created by Mould [10]. (a) An
original image entitled Gretzky. (b) Segmented regions of (a). (c) Region
boundaries of (b). (d) Smoothed region boundaries of (b). (e) A final ver-
sion of generated stained glass images. (f) Another version of generated
stained glass images with a different background.

852
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.4 APRIL 2020

Fig. 5 Proposed creation process of stained glass images.

mentation result shown as color regions. Figure 4 (c) is the
region boundaries of Fig. 4 (b), and Fig. 4 (d) is a smoothed
version of Fig. 4 (c). Figure 4 (e) is a final stained glass
image, and Fig. 4 (f) is another whose background pattern
and colors are different from those of Fig. 4 (e).

The appearances of the stained glass images created
by Mould’s method [10] are close to those seen on the real
stained glass windows, but the method is not designed from
the viewpoint of data hiding while the method proposed
in this study instead is, though the generated stained glass
images are less similar to the real ones. As examples for
comparisons, some results yielded by the two methods with
identical source images can be seen later in Fig. 11. Granted
that the images generated by the proposed method are not so
realistic as commonly-seen stained glass images, hopefully
it may still be regarded as a new type of computer art via
which data hiding can be conducted and detraction of the
hacker’ attention on the hidden data can be achieved!

2.2 Ideas of the Proposed Method

The proposed method for creating a stained glass image
from a given source image is illustrated by the flowchart
shown in Fig. 5. At first, the source image is quantized to
yield simple color regions. Then, noise in the resulting im-
age is eliminated by a voting filter. Subsequently, discrete
pixels called seeds are sprinkled over the color regions ran-
domly. Randomization of the seeds is adopted mainly for
keeping the security of the embedded data in the stained
glass image. Then, region growing is applied to each seed
to obtain a group of glass regions. In this process, a glass
region tree is constructed. Finally, large gaps between the
glass regions are filled with extra glass regions by a gap fill-
ing process. As a result, a stained glass image is created.
More details of these steps are described next.

(A) Preprocessing of the source image
The preprocessing operations applied to the input image are

Fig. 6 Image preprocessing before region growing. (a) A source image,
(b) a quantized image of (a). (c) A filtered image of (b). (d) A square voting
filter of size 11 × 11.

quantization and filtering. Take Fig. 6 as an example, where
the R, G, and B values of each pixel’s color in Fig. 6 (a) are
quantized into three bits, with one bit for each color channel.
The result is shown in Fig. 6 (b), in which the color regions
are seen to be shattered. This will affect the result of region
growing. So, a 11 × 11 voting filter as shown in Fig. 6 (d)
is applied to each pixel in Fig. 6 (b) which accumulates the
numbers of pixels for each color within the filter scope, and
resets the pixel’s color to be that with the maximum accumu-
lation value. Figure 6 (c) is the filtering result with the noise
removed. Now, region growing can be applied to Fig. 6 (c)
to obtain a group of color regions, called glass regions.

(B) Tree structure for region growing
In more detail, each glass region formed by region growing
is obtained through the construction of a glass region tree of
a structure as illustrated by Fig. 7 (a). Specifically, a node in
the tree is either an internal node or a leaf node. An internal
node has at least one child node and a leaf node does not.
In addition, a tree node may also be classified as an expand-
ing node or a succeeding node. An expanding node is the
first node or the last one at a tree level (i.e., the rightmost
or leftmost node when the tree level is laid out horizontally
as shown in Fig. 7 (a)), and a succeeding node is one in be-
tween. For example, in Fig. 7, each expanding node is en-
closed by red thick border lines and each succeeding node
by black thin border lines. Also, as illustrated by Fig. 7 (a),
each expanding node has, if any, two child nodes, one being
an expanding node and the other a succeeding one. On the
other hand, a succeeding node has, if any, only a child node
which is a succeeding node as well.

(C) Construction process of glass region trees
While constructing a glass region tree T , the nodes grown

HUNG et al.: DATA HIDING IN COMPUTER-GENERATED STAINED GLASS IMAGES AND ITS APPLICATIONS TO INFORMATION PROTECTION
853

Fig. 7 Structure and expansion of the glass region tree. (a) A tree of
a glass region; (b)–(f) Examples for illustrating details of Steps 2 and 3
in Algorithm 1. (g) Figure descriptions. Note (explanations of the tree
levels L1–L7) – L1: the root of glass region tree; L2: the start level of region
growing with two expanding nodes (in each of the four directions); L3–L7:
intermediate levels of tree growing (with the number of levels depending
on the size of the color region being grown).

of T correspond to the pixels in a preprocessed image S. So,
e.g., “adding two expanding nodes N1 and N2 to a node N0

as its two child nodes” means finding two pixels P1 and P2

in S corresponding respectively to N1 and N2 with each of
P1 and P2 being a neighbor of the pixel P0 corresponding to
N0 in S and being corresponding to an expanding node for
further tree growing. Thus, in the sequel, we will discuss
tree nodes directly, regarding “tree node” and “image pixel”
as two equivalent terms, so long as the pixel has the property
required by the tree node. The details of glass region tree
construction are described as an algorithm as follows.

Algorithm 1: Constructing a glass region tree.
Input: a color region G in a preprocessed image S and a

pixel P0 in G.
Output: a glass region tree T for color region G with pixel

P0 as its root R.
Steps:

1. Take pixel P0 as the root R of a tree T ; and at the high-
est tree level L1 of T , add two expanding nodes to tree
level L2 as the child nodes of R, and assign them as
internal.

2. At each tree level Li for i ≥ 2, perform the following
steps.
2.1 For each internal node Nj, generate horizontally

or vertically a child node C j in image S, assign it
as both internal and succeeding, and perform the
following two steps.
(i) If Nj and C j are not both in region G, then

regard C j as out of bound, discard it, and re-
assign Nj as a leaf node.

(ii) If the depth of C j is greater than that of its
neighboring sibling, then regard C j as inap-
propriate, discard it, and re-assign Nj as a
leaf node.

2.2 For each node Nj
′ which is both internal and ex-

panding, generate diagonally a child node C j
′ in

image S, assign it as internal and expanding, and
perform the following two steps.
(i) If Nj

′ and C j
′ are not both in region G, then

regard C j
′ as out of bound, and discard it.

(ii) If the depth of C j
′ is greater than that of its

neighboring sibling, then regard C j
′ as inap-

propriate, and discard it.
2.3 If no child node is generated in Steps 2.1 and 2.2,

terminate the tree growing process and exit; else,
increase index i by 1, and go back to Step 2.

The major steps of Algorithm 1 above for constructing a
glass region tree are explained here using Fig. 7 as an illus-
trative example. In Fig. 7, a dashed green curve is used to
enclose the pixels of a color region derived from the prepro-
cessing process. Initially in Step 1, two expanding nodes are
added at tree level L1 as the child nodes of the tree root R,
and regard them as internal nodes.

In Step 2.1 of Algorithm 1, for each internal nodes at
tree level Li (i ≥ 2), a child node which is internal and suc-
ceeding is generated. Then, Step 2.1(i) is performed, yield-
ing a result which can be illustrated by Figs. 7 (b) and 7 (c).
As shown in Fig. 7 (b), four succeeding nodes are generated
at level Li+1, in which the rightmost one is located, differ-
ently from its parent, in a color region outside the dashed
green curve. So, according to Step 2.1(i), it is regarded as
out of bound and is discarded, with its parent node being
transformed into a leaf node instead of being an internal one
as shown by Fig. 7 (c).

In Step 2.2, for each internal node which is also an
expanding one at tree level Li, a child node which is both
internal and expanding is generated. Then, Step 2.2(i) is
performed, yielding a result which can be illustrated by
Figs. 7 (d) and 7 (e). As shown in Fig. 7 (d), only one ex-
panding node is generated at level Li+1 which is the leftmost
node at level Li+1; the rightmost node at Li, though expand-
ing in nature originally, has been transformed to be a leaf

854
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.4 APRIL 2020

node in Step 2.1(i), and so cannot be extended to generate
child nodes at level Li+1. However, as shown in Fig. 7 (e),
the generated leftmost node at level Li+1 is located in a color
region differently from its parent node; therefore, it is dis-
carded without transforming its parent node to be a leaf node
according to Step 2.2(i).

Steps 2.1(i) and 2.2(i) as illustrated can be seen to have
a function of keeping the depth differences of neighboring
leaf nodes smaller than or equal to one. The reason for
designing them in this way is illustrated by a counter ex-
ample shown in Fig. 7 (f) where the depth difference of the
two neighboring leaf nodes is four, and the blue line is the
edge defined by the two leaf nodes. It can be seen that this
edge overlaps another color region outside the dashed green
curve. This will result in yielding overlapping glass regions
after region growing. That is why we have to keep the depth
differences of neighboring leaf nodes to be smaller than or
equal to one by carrying out Steps 2.1(ii) and 2.2(ii).

Finally, in Step 2.3, we decide to terminate the tree
growing process if no child node is generated in Steps 2.1
and 2.3. After the process terminates, the pixel group cor-
responding to the derived tree nodes will become part of a
glass region yielded by the proposed glass region growing
process described next.

2.3 Proposed Glass Region Growing Process

After preprocessing the source image, a color region im-
age like Fig. 6 (c) is derived. Then, region growing is
started. The ideas behind this process, an algorithm to im-
plement them, and a gap filling scheme are described in the
following.

(A) Ideas of the proposed glass region growing process
After seed sprinkling, at first four trees are ‘rooted’ at each
seed pixel, which are denoted by Nt, Et, St, and Wt for the
four directions of north, east, south, and west, respectively,
as shown in Fig. 8. This work is accomplished by forming
an initial glass range of 3 × 3 nodes with the seed pixel as
the center, which is shown in Fig. 8 (a) or 8 (c) as the central
square enclosed by the pink boundary lines. And starting
from the top-middle node and around the eight boundary
nodes of the initial glass range, every two boundary nodes
are taken sequentially to form an initial node pair of each of
the four trees of Nt, Et, St, and Wt in order, which are shown
as the purple, pink, blue, and orange node pairs in the ini-
tial glass range in Fig. 8 (a) or 8 (b). Then, the four trees
are grown in the four directions, respectively, by applying
Algorithm 1. The trees of all seeds are grown simultane-
ously level by level. The resulting four trees are shown by
different colors in Fig. 8.

Subsequently, the leaf nodes in each tree and then the
four trees are linked integrally to form the boundary of a
complete glass region. The links of the leaf nodes are drawn
as blue lines and those of the trees as yellow lines, as shown
in Fig. 8. Specifically, a leaf node link is created simply by
linking every pair of adjacent leaf nodes in each tree. On

Fig. 8 Illustration of region growing. (a) Linking leaf nodes. (b) Nota-
tions. (c) Linking trees. (d) Notations identical to (b). Note (explanations
of the notations) – (1) root node: a node on which a seed is sprinkled and
from which region growing starts; (2) leaf node: a node having no child
node and lying on the boundary of the region; (3) internal node: a node
which is not a leaf node; (4) expanding node: the first or last node at a
tree level (i.e., the rightmost or leftmost node when the tree level is laid out
horizontally); (5) succeeding node: a node between two expanding nodes.
(6) Nt, Et, St, and Wt: the north, east, south, and west trees starting from
the root node.

the contrary, the four trees are not linked simply by linking
the rightmost and leftmost leaf nodes of two adjacent trees
because a link so created may be out of the color region,
as illustrated by Fig. 8 (a) where the link between the two
neighboring trees Nt and Et is out of the color region, lead-
ing to glass-region overlapping in the final region growing
result. Note that in the above discussions and those in the se-
quel, it is assumed that each tree has its root located on the
top, so that the terms rightmost and leftmost can be used; if
not so, it is assumed that the tree has been rotated to be so.

In order to solve the aforementioned glass-region over-
lapping problem, at first the node expanding pass (NEP) of
a given leaf node is defined, which is an upward trace of
all the expanded nodes from the leaf node to the tree root.
These nodes in the NEP are all grown in the tree growing
process described by Algorithm 1. Then, the problem is
solved by a scheme consisting of the following three steps.

HUNG et al.: DATA HIDING IN COMPUTER-GENERATED STAINED GLASS IMAGES AND ITS APPLICATIONS TO INFORMATION PROTECTION
855

(i) Find in an upward direction the first expanding node
N1e in the NEP P1 of the leftmost leaf node N1f of a
tree T1 (like Nt in Fig. 8 (c)), and construct a partial
NEP P1

′ of P1 consisting of all the nodes traced from
the expanding node N1e to the leaf node N1f .

(ii) Do similarly to find in an upward direction the first ex-
panding node N2e in the NEP P2 of the rightmost leaf
node N2f of the clockwisely-neighboring tree T2 (like
Et in Fig. 8 (c)), and construct a partial NEP P2

′ of P2

consisting of all the traced nodes from the expanding
node N2e to the leaf node N2f .

(iii) Regarding all the nodes in each of the partial NEP’s
P1
′ and P2

′ as already being linked together, link the
two trees T1 and T2 by linking N1f and N2f which con-
nect to the two partial NEP’s P1

′ and P2
′, respectively,

resulting in a chain link of P1
′ – N1f – N2f – P2

′ for
use as part of the final glass region boundary (like the
L-shaped boundary appearing at the concave corner at
the middle right side of the glass region in Fig. 8 (c)).

The above steps together will be called in the sequel the tree
linking scheme for a pair of clockwisely-neighboring trees
(i.e., T1 and T2 in the above description).

Two points need be noted in the above region grow-
ing process. First, according to the proposed glass region
tree growing process described by Algorithm 1, each glass
region has a minimum size of 3 × 3, or equivalently, nine
nodes, as shown by the pink squares enclosing the initial
glass range in the middle of Fig. 8 (a) or 8 (c). Therefore,
in order to prevent the resulting glass regions from overlap-
ping one another, while conducting seed sprinkling, we have
to keep the inter-seed distance at least three nodes in magni-
tude. Furthermore, in this study we let the distance between
nodes to be two pixels. Therefore, the minimum inter-seed
distance must be six pixels.

The second point to be noticed is that more than one
seed might be located undesirably in a color region after
seed sprinkling. In order to prevent this from happening,
a global tree map is created for use in the proposed glass
region growing process to record the positon of each gen-
erated seed in order. And after the first seed is recorded in
the map, every seed generated later at a certain position is
checked against the map to see if a formerly-generated seed
has been sprinkled into an identical color region already; if
so, then discard the seed and generate another until the colli-
sion case is avoided. Furthermore, the position of each node
generated in the glass region tree construction process is also
recorded in the map. And if a parent node, which is internal
originally, ‘wants’ to extend a child node into an occupied
node position in the map, then the status of the parent node
is transformed from an internal node to a leaf node. Finally,
it is mentioned that the tree map will also be used for the
gap filling process described next.

(B) Proposed glass region gap filling process
Though the problem of multiple seeds sprinkled in an iden-
tical color region can be solved as described above, it might
happen contrarily that no seed is sprinkled in certain regions,

Fig. 9 Illustration of the gap filling process.

causing gaps between the grown regions. For example, the
blue polygons in Fig. 9 are the regions yielded by the glass
region growing process, and it can be seen that between
them there exist gaps which should be filled up further.

In this study, for gap filling, initially the tree map is
scanned. If no tree node is found within a certain square
area of 15 × 15 pixels, an additional seed is put at the cen-
ter of that square and the previously-proposed glass region
growing process is applied on it. For example, the yellow
polygons in Fig. 9 are the additional glass regions which are
found by such a gap filling process.

(C) Proposed glass region growing process
The proposed glass region growing process realizing all the
above-mentioned ideas is described as an algorithm below.

Algorithm 2: Glass region growing to create a stained
glass image.

Input: a source image S and a secret key K.
Output: a stained glass image G.
Steps:
Stage 1 — initialization (including preprocessing, tree

map setup, and random seed sprinkling).
1. Preprocess the source image S by quantization and

noise filtering to obtain a simplified image S′.
2. Set up a tree map M of the same size as that of S′

with cells to record generated seeds and nodes, initially
empty.

3. Use a random number generator R with the secret key
K as the input to sprinkle randomly seeds with the min-
imum inter-distance of 6 pixels into S′ in the following
way.
3.1 For each generated seed d at random position

(x, y), check the content of the tree map M at (x, y),
and if there already exists a seed there, then dis-
card d; else, save seed d into M at (x, y).

3.2 Repeat Step 3.1 until the number of saved seeds
equal to a pre-selected threshold Td.

Stage 2 — constructing glass region trees.
4. For each sprinkled seed d, perform the following steps

856
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.4 APRIL 2020

to yield a glass region Rd.
4.1 Identify the color region R where seed d is located.
4.2 Regard d as the root of four glass region trees la-

beled as Nt, Et, St, and Wt in the clockwise direc-
tion and construct an initial part of each tree in the
following way.
(i) Form an initial glass range Rinit of 3×3 nodes

with d as the center.
(ii) Starting from the top-middle node and

around the eight boundary nodes of Rinit, take
sequentially every two boundary nodes to
form an initial node pair of each of Nt, Et,
St, and Wt in order.

4.3 Perform Algorithm 1 with R and d as the input to
grow each of the four trees.

4.4 Link the four trees, Nt, Et, St, and Wt, in the fol-
lowing way to produce the desired glass region Rd.
(i) Link every pair of adjacent leaf nodes of each

of the four trees.
(ii) For every pair (T1,T2) of clockwisely-

neighboring trees of the four trees (i.e., for
every pair of (Nt,Et), (Et, St), (St,Wt), and
(Wt,Nt)), perform a tree linking scheme in
the following way to link T1 and T2.
(1) Trace upward all the expanded nodes

from the leftmost leaf node N1f of T1

to the root node d to construct the node
expanding pass (NEP), P1, of N1f ; and
find the first expanding node N1e in P1

to trace all the nodes from N1e to N1f to
construct a partial NEP P1

′ of P1.
(2) Do similarly to (1) to construct the NEP,

P2, of the rightmost leaf node N2f of T2

and find the first expanding node N2e in
P2 to construct a partial NEP P2

′ which
includes all the traced nodes from N2e to
N2f .

(3) Regarding all nodes in each of the par-
tial NEPs P1

′ and P2
′ as already be-

ing linked together, link T1 and T2 by
linking N1f and N2f which connect to
P1
′ and P2

′, respectively, resulting in a
chain link of P1

′ – N1f – N2f – P2
′ which

can be used as part of the final glass re-
gion boundary.

(iii) Take all the nodes of the four linked trees as
the desired glass region Rd.

Stage 3 — conducting gap filling and composing the de-
sired stained glass image.

5. Scan the tree map to find any square area of size 15 ×
15 with no tree node filled, and conduct the following
steps for each of the square areas so found.
5.1 Put a seed into the center of the square area.
5.2 Perform Steps 4.1 through 4.4 to yield a glass

region.
6. Compose the desired stained glass image G in the fol-

lowing way and exit.

Fig. 10 An experimental result. (a) A source image. (b) A stained glass
image created with (a) as the input.

Fig. 11 Some experimental results with the left column including the
source images, the middle including the images created by Mould [10], and
the right including those created by the proposed method.

6.1 Copy into G those pixels in source image S cov-
ered by all the glass regions yielded in Steps 4
and 5.

6.2 Apply leading to those pixels in G (i.e., color them
by black) which are not filled up in Step 6.1.

In the next section, Sect. 3, the proposed data hiding tech-
niques for uses in the three applications of watermarking, se-
cret communication, and image authentication, will be pre-
sented. The data are embedded into the glass region gen-
erated with randomly scattered seeds, but not into the glass
regions which are generated by gap filling except in the ap-
plication of image authentication.

2.4 Experimental Results and Discussions

Figure 10 is a result of applying Algorithm 2 above, where
Fig. 10 (a) is the source image and Fig. 10 (b) the yielded
stained glass image in which it can be seen that the glass re-
gions do not overlap one another. This characteristic is good
for data embedding and extraction later. More experimen-
tal results are shown in Fig. 11 where the images in the first
column are the source, those in the middle are the stained
glass images created by Mould’s method [10], and those in

HUNG et al.: DATA HIDING IN COMPUTER-GENERATED STAINED GLASS IMAGES AND ITS APPLICATIONS TO INFORMATION PROTECTION
857

the last created by the proposed method.

3. Data Hiding in Stained Glass Images

In this section, the proposed data hiding method in a glass
region is presented, whose basic ideas are described in
Sect. 3.1; and the hiding technique, which is based on a
scheme of tree node number modification, is proposed in
Sect. 3.2. An involved issue is the acquisition of effective
trees, which is described in Sect. 3.3 with a solution pro-
posed. Finally, an algorithm to implement these ideas is
presented in Sect. 3.4.

3.1 Basic Ideas of Proposed Data Hiding Method

The feature utilized in this study for data hiding via stained
glass images is the number of tree nodes in a glass region
tree; by removing a computed number of the deepest tree
nodes, message data can be hidden in a stained glass image.
Though this will cause little cracks at the edges and cor-
ners of the glass regions, the change in the resulting image
appearance is still acceptable visually. For example, as illus-
trated by Fig. 12 (a), the two nodes on the top and enclosed
by red boundaries are the deepest nodes of the north tree Nt
of a glass region, which can be removed to embed data in
the proposed data hiding method. Figure 12 (b) shows the
result of removing them, creating a little crack in the glass
region represented by the tree nodes.

Although four trees are enclosed in a glass region, not
all of them can be used for data hiding; the number of nodes
in a tree must be large enough so that the data can be embed-
ded by removing some tree nodes without causing relatively
intolerable crack distortions. We name the trees that can be
used for data hiding effective trees. More details on effective
trees will be discussed subsequently, and so will be the glass
region feature detection process.

The overall concept of embedding data into a stained
glass image is illustrated by the flowchart shown in Fig. 13.
Since only one type of glass feature is used for data
hiding, only one of the three aforementioned applica-
tions of secret communication, watermarking, and image
authentication can be implemented at a time. No matter
what kind of data to be embedded is, the input data are first
transformed into a bit-code sequence in advance. Then, the
previously-described stained glass image creation process
is performed with glass region trees yielded. Afterwards,
the bit sequence of the data is embedded by removing some
deepest nodes of every single effective tree. More details are
discussed next.

3.2 Data Embedding by Tree Node Number Modification

The core concept of data hiding by tree node number modi-
fication proposed in this study can be illustrated by Fig. 14.
Assume that a message is to be embedded into a glass region
tree T with TNN nodes. Initially, the remainder, REM, of
dividing the number, TNN, by a divisor, DIV, is computed,

Fig. 12 An example of removing nodes for data hiding. (a) A glass re-
gion copied from Fig. 8 (b) with two nodes (enclosed by red boundaries on
the top) to be removed. (b) A glass region with data to be embedded by
removing two nodes.

Fig. 13 Proposed process for embedding bit-code data into a stained
glass image obtained from a source image.

Fig. 14 Core concept of data hiding via stained glass images.

where DIV is to be determined. The value of REM will thus
range between 0 and DIV − 1 as shown by the following
formula:

REM = TNN mod DIV , 0 ≤ REM < DIV − 1. (1)

Then, the value range of REM is divided into several sub-
ranges, with each sub-range representing a specific bit-code.
In the case of Fig. 14, the bit-code is assumed to contain two
bits, so the range is divided into four sub-ranges represent-
ing the bit-codes 00, 01, 10 and 11. In other words, the
number of sub-ranges, NSR, is computed by the following
formula:

NSR = 2bitN , (2)

858
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.4 APRIL 2020

where bitN is the number of bits to be embedded into tree T
and is a pre-selected parameter. It is noted here that because
each sub-range includes several values of REM, a certain
degree of tolerance of detection errors can be achieved. Take
Fig. 14 as an example, where there are four sub-ranges, and
each sub-range includes three values of REM. If an REM
falls, for example, into the first sub-range which includes
the three values 0, 1, and 2, then no matter what value REM
is, as long as it is one of the three values, it means that the
bit-code 00 is embedded into tree T . Now, the value of DIV
can be determined as follows:

DIV = SSR × NSR, (3)

where SSR is the number of REM values spanned by a sub-
range and NSR is the number of sub-ranges decided by
Eq. (2) above. So, the value of DIV in Fig. 14 is 3 × 4 = 12.

Now, to embed a bit-code C into tree T , in this study
it is proposed that the value REM be adjusted to be the cen-
tral value of the target sub-range which represents the bit-
code C. This way is considered also helpful to allow the
computed REM value to have an even larger tolerance of er-
rors to represent a bit-code (i.e., the computed REM may be
any of those values slightly larger or smaller than the cen-
tral value in the target sub-range without causing errors of
bit-code representations). This means that the number NNR
of nodes to be removed from tree T should be computed by

NNR = |REM − central value of target sub-range|. (4)

For the example of Fig. 14, assume that the value REM
is 9 and the bit-code to be embedded is 01. The target
sub-range representing bit-code 01 is the second one whose
central value is 4. So the number of nodes to be removed
from tree T , NNR, for embedding bit-code 01 is computed
as NNR = |9 − 4| = 5. By removing the five deepest nodes
from tree T , the new REM will become the central value,
four, of the second sub-range, which still represents the bit-
code 01.

3.3 Acquiring Effective Trees for Data Hiding

Before data embedding via a stained glass image can be con-
ducted, for each tree T of a glass region, it needs to know
if data can be embedded into T , or equivalently, to know if
the tree is effective with a sufficient number of nodes to be
removed for the data hiding purpose. Specifically, as dis-
cussed previously, with the parameter DIV fixed, at most
DIV − 1 nodes are removed from a target tree. Also, each
tree in a glass region contains at least three nodes in the pro-
posed creation process as mentioned previously. Therefore,
an effective tree must contain at least DIV + 3 nodes for a
bit-code to be embedded in all cases. We call this minimum
number of nodes in an effective tree for data embedding, the
minimum tree size, and denote it by minTSE. Also, to pre-
vent glass regions from being broken into tiny pieces, we
let the value of minTSE be DIV × 2 + 3 instead of just the
above-mentioned value of DIV + 3.

Fig. 15 Concept of acquiring effective trees in data embedding and
extraction.

On the other hand, during data extraction, because the
value of minTSE now is taken to be DIV ×2+3 and because
at most DIV − 1 nodes are removed from a target tree for
data embedding, the minimum number of nodes in an effec-
tive tree for data extraction, which is denoted by minTSD
subsequently, should thus be

(DIV × 2 + 3) − (DIV − 1) = DIV + 4.

In other words, if the number TNN of nodes of a tree is not
smaller than the value minTSD above, it can be decided that
there are data embedded in the tree.

Now, it might happen that a tree has its number of
nodes larger than minTSD and smaller than minTSE, as
shown in the blue area of Fig. 15, then it might occur that
no message is embedded in the data embedding process but
some meaningless bit-codes are extracted out in the data ex-
traction process. To avoid such a case, it is proposed to re-
duce the value of TNN to be minTSD by removing some of
the deepest nodes of the target tree during the process of ac-
quiring effective trees. Then, there will be no tree with its
value of TNN between minTSD and minTSE (i.e., in the blue
area in Fig. 15) after the effective tree acquisition process.

3.4 Data Embedding Algorithm

The above discussions about the proposed data embedding
process are summarized as an algorithm in the following.

Algorithm 3: Embedding bit-code data into the glass re-
gions of a stained glass image.

Input: a sequence GR of n glass regions of a source image
S; a sequence B of m bit-codes of a message M with each
bit-code having bitN bits; and two pre-selected parame-
ters minTSE and minTSD representing the minimum tree
size and the minimum number of nodes in an effective
tree, respectively.

Output: a stego-stained glass image G with B embedded.
Steps:

1. Append an ending bit-code pattern Bm+1 to the end
of the sequence B of bit-codes, resulting in a new se-
quence B′ = {B0, B1, . . . , Bm, Bm+1} with each Bi hav-
ing bitN bits.

2. Retrieve the four glass region trees from each GRi

in the input sequence of glass regions, GR = {GR1,
GR2, . . . ,GRn}; and concatenate the resulting 4n trees

HUNG et al.: DATA HIDING IN COMPUTER-GENERATED STAINED GLASS IMAGES AND ITS APPLICATIONS TO INFORMATION PROTECTION
859

into a sequence, RT = {RT0,RT1, . . . ,RT4n}.
3. For each RTi in RT with TNNi nodes, perform one of

the following two cases to acquire a sequence of effec-
tive trees, ET = {ET0,ET1, . . . ,ETk}, where k ≤ 4n:
3.1 if TNNi > minTSE, then add RTi into ET as ETi;
3.2 if minTSD ≤ TNNi < minTSE, then

(i) let n = TNNi − minTSD;
(ii) remove the n deepest nodes of RTi so that

TNNi = minTSD; and
(iii) add the resulting RTi into ET as ETi.

4. For each pair of Bi and ETi, i = 1, 2, . . . ,m+1, perform
the following steps.
4.1 Obtain the value REMi for ETi according to

Eqs. (1) through (3) by the following steps:
(i) count the number TNNi

′ of nodes in ETi;
(ii) compute the number NSR of sub-ranges of

the range RGi of REMi as NSR = 2bitN ;
(iii) decide the number SSR of REMi spanned by

a sub-range of range RGi;
(iv) compute the divisor DIV for REMi as

DIV = SSR × NSR;

(v) compute the remainder REMi as

REMi = TNNi
′ mod DIV

so that 0 ≤ REMi < DIV − 1.
4.2 Compute the corresponding number NNRi of

nodes to remove from ETi according to Eq. (4) as

NNRi = |REMi − CVi|
where CVi is the central value of the target sub-
range determined by the bit-code Bi.

4.3 Remove the deepest NNRi nodes from ETi.
5. Construct the desired stego-stained glass image G, ini-

tially empty, in the following way and exit.
5.1 Copy into G those pixels in the source image S

which correspond to the nodes of all trees in the
resulting sequence ET of trees.

5.2 Apply leading to those pixels in G (i.e., color them
by black) which are not processed in Step 5.1.

Note that in the above algorithm, an ending bit-code
pattern is appended to the end of the bit-code sequence,
which is embedded as well into the stego-image. It will be
used as the signal to end the bit-code extraction operations
during the data extraction process as discussed next.

4. Extraction of Data from Stego-Images

In this section, after a description of the ideas behind the
proposed data extraction process in Sect. 4.1, an algorithm
implementing the ideas is presented in Sect. 4.2. Some ex-
perimental results are shown in Sect. 4.3.

4.1 Ideas of Proposed Method

A flowchart of the proposed process for data extraction from

Fig. 16 Proposed process for extracting data from a stego-image.

stego-stained glass images is shown in Fig. 16. The secret
key is applied in the glass feature detection process, which,
as done in the image creation process, is used for seed gen-
eration using a random number generator. A seed sequence
is derived, which is identical to the one derived in the image
creation process. The seed sequence is then sprinkled on the
stego-image instead of on the color region image, differently
from what is done in the data hiding process. Subsequently,
the processes of glass region tree construction and glass re-
gion growing, as presented in Sect. 3, are conducted to yield
a sequence of glass regions GR = {GR0,GR1, . . . ,GRn}. The
two sequences of glass regions derived in the image cre-
ation process and in the region growing process here pre-
sumably are identical. Also, the effective glass region trees
ET0,ET1, . . . ,ETk are picked out. By counting the number
REMi of nodes in each single effective tree ETi, the embed-
ded bit-code sequence can be extracted.

4.2 Data Extraction Algorithm

An algorithm to implement the above ideas of data extrac-
tion is presented in the following.

Algorithm 4: Extracting hidden data from a stego-
stained glass image.

Input: a stego-stained glass image G into which the se-
quence B of bit-codes of a message M was embedded
with each bit-code having bitN bits; and the secret key
K used in the data embedding process.

Output: the sequence B of bit-codes of M.
Steps:

1. With the stego-image G and the secret key K as inputs,
perform Algorithm 2 to generate a sequence of glass re-
gions GR = {GR0,GR1,GR2, . . . ,GRn} with each GRi

including four glass region trees.
2. Retrieve the four glass region trees from each GRi, i =

1, 2, . . . , n, and concatenate the resulting 4n trees into

860
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.4 APRIL 2020

Fig. 17 Detection result of a stained glass image.

a sequence, RT = {RT0,RT1, . . . ,RT4n}.
3. Perform Step 3 of Algorithm 3 to acquire a sequence

of effective trees, ET = {ET0,ET1, . . . ,ETk}, from RT
where k ≤ 4n.

4. From each ETi, i = 1, 2, . . . , k, perform the following
steps to construct a sequence B of bit-codes, initially
empty.
4.1 Count the number of nodes in ETi and take it as

the value of REMi.
4.2 Let the number of values spanned by a sub-range

of the range RGi of all possible values of REMi be
denoted by SSR which is pre-selected.

4.3 (Determine which sub-range the value REMi falls
in) Compute the decimal value Ci = �REMi/SSR�
where �·� is the integer ceiling function; and de-
cide that REMi falls in the Ci-th subrange of range
RGi.

4.4 Transform Ci into a bit-code Bi of bitN bits.
4.5 If Bi is not the ending bit-code pattern which is as-

sumed to be known in advance, then put Bi into B
in order; else, exit with B as the desired sequence
of bit-codes of the message M.

4.3 Experimental Results

Figure 17 shows the result of glass regions found by Algo-
rithm 4 with a stego-image as the input. The white points
sprinkled on the image are the seeds generated by the secret
key. The blue polygons are the found glass regions accord-
ing to the seeds. As can be seen, they fit well the original
color regions in the stego-image. Subsequently, the embed-
ded data are extracted from the effective trees, into which
message data have been embedded.

About the data embedding capacities of the pro-
posed method, three images named ‘Lena’, ‘Pepper’, and
‘Madonna and Child’ with different sizes of 512 × 512,
600 × 800, and 773 × 1140, respectively, were tested with
their embedding capacities being counted while running
Algorithm 3 with input messages composed of random

Table 1 Statistics of data embedding capacities of three tested images
resulting from different numbers of sprinkled seeds.

Fig. 18 Graphs showing trends of data embedding capacities of three
tested images resulting from different numbers of sprinkled seeds.

bit-codes. The results for a series of cases of sprinkling dif-
ferent numbers of seeds are shown in Table 1 and Fig. 18.

It can be seen from the table and figure that the data
embedding capacity is affected not only by the image size
and content as is usually known but also by the number N
of sprinkled seeds because each seeds grows to yield a glass
region. Specifically, there exists an optimal number Nmax of
sprinkled seeds by which the resulting data embedding ca-
pacity becomes the maximum. For example, for the image
of ‘Lena’ with size 512 × 512, the embedding capacity be-
comes the maximum value of 345 when Nmax = 300; for
‘Pepper’ with size 600× 800, the maximum capacity of 623
occurs when Nmax = 600; and for ‘Madonna and Child’ with
size 773×1140, the maximum capacity of 1300 occurs when
Nmax = 900.

The reason why an optimal data embedding capacity

HUNG et al.: DATA HIDING IN COMPUTER-GENERATED STAINED GLASS IMAGES AND ITS APPLICATIONS TO INFORMATION PROTECTION
861

will occur when a certain number Nmax of seeds are sprin-
kled on each image is twofold: (1) if the number N of sprin-
kled seeds is too large, then the image will be divided into
too many small glass regions so that regions that are large
enough to be effective for secret bit embedding become very
few, resulting in a small data embedding capacity; and (2) if
the number N of sprinkled seeds is too small on the con-
trary, then the image will be divided into too few glass re-
gions, though large enough, so that again there will yield too
few glass regions to generate a sufficient number of effective
regions, resulting again in a small data embedding capacity.

5. Data Hiding Applications

Three applications of the proposed data hiding technique via
stained glass images are described in this section, namely,
covert communication, watermarking for copyright protec-
tion, and image authentication.

5.1 Covert Communication via Stained Glass Images

Covert communication here means embedding a message
data into a given stained glass image and transmitting the
resulting stego-image to a receiver in a secret way. The aim
is to protect the message from being intercepted by hackers.

(A) Secret Message Embedding
The proposed process for embedding a secret message into
a stained glass image for covert communication is presented
as an algorithm below.

Algorithm 5: Embedding a secret message in a stained
glass image for covert communication.

Input: a source image S, a secret message M, and a secret
key K.

Output: a stego-stained glass image G with M embedded.
Steps:

1. Perform the steps in Stages 1 and 2 of Algorithm 2 with
source image S and secret key K as the inputs to yield a
sequence GR = {GR0,GR1, . . . ,GRn} of glass regions.

2. Transform the input message M into a sequence B =
{B0, B1, . . . , Bm} of bit-codes, each with bitN bits.

3. Use the secret key K and a random number generator
to randomize B, resulting in a randomized bit-code se-
quence B′ = {B0

′, B1
′, . . . , Bm

′}.
4. Perform the data embedding algorithm, Algorithm 3,

with sequences GR and B′ as the inputs to yield a stego-
stained glass image G as the desired output.

It is noted that Stage 3 of Algorithm 2, which mainly
performs the work of gap filling, is not carried out in Step
1 of the above algorithm, Algorithm 5. This is owing to the
reason that it is not desired to use those glass regions yielded
by gap filling for data hiding, because the gaps change in
size after data embedding, leading possibly to undesirable
changes of the yielded glass regions during data extraction
which in turn causes erroneous extracted bit-code data.

Fig. 19 Experimental results of secret message hiding in stained glass
image for covert communication. (a) A stained glass image without hidden
data. (b) A stained glass image with a secret message embedded. (c) A
detailed part of (a). (d) The detailed part of (b) corresponding to (c). (e) The
secret message extracted from (b), which is correct with the meaning of the
Chinese being “Damou, one thing I did not dare to mention to you till today
is: I love you.” (f) The erroneous extraction result of (b) with a wrong
key with the extracted data being random noise mixed with meaningless
Chinese characters.

(B) Secret Message Extraction
The proposed message data extraction process is de-

scribed as an algorithm in the following.

Algorithm 6: Extracting the secret message embedded
in a stego-stained glass image.

Input: a stego-stained glass image G and the secret key K
used in embedding a secret message M in G.

Output: the secret message M embedded in G.
Steps:

1. Perform Algorithm 4 with image G and key K as the in-
puts to extract the sequence B of bit-codes of the mes-
sage M as the output.

2. Transform the bit-code sequence B backward into the
text format to get the desired secret message M.

(C) Experimental Results
Figure 19 shows some experimental results of secret

message embedding and extraction via a stained glass im-
age for covert communication using Algorithms 5 and 6.
Figures 19 (a) and 19 (b) are stained glass images without
and with secret message data embedded, respectively. Fig-
ures 19 (c) and 19 (d) are the details at the upper left cor-
ners of Figs. 19 (a) and 19 (c), respectively. By comparing
Figs. 19 (c) and 19 (d), we can find that the glass regions

862
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.4 APRIL 2020

of Fig. 19 (d) have been cracked slightly. Figure 19 (e) is
a secret message extracted from Fig. 19 (b) with a correct
secret key. The message is identical to the one embedded
originally (the extracted data are in Chinese whose mean-
ing is explained in the figure). Figure 19 (f) is the data ex-
tracted from Fig. 19 (b) with a wrong key, which are just
noise mixed with some meaningless characters. These re-
sults prove that the key works well for the purpose of hidden
data security protection.

5.2 Application to Watermarking for Copyright Protection

The second application of the proposed data hiding method
via stained glass images is watermarking for copyright pro-
tection. It means that if a watermark, whose shape is usu-
ally easy to differentiate (like a logo, a shop sign, etc.), is
embedded in a stained glass image to yield a stego-image
with no difference from the original one in appearance, then
later when the stego-image is stolen for illicit purposes, the
owner of the image may claim his/her copyright of the im-
age by extracting the watermark to show to the public.

(A) Watermark Embedding
The proposed algorithm for embedding a watermark for
copyright protection is similar to that for embedding a se-
cret message for covert communication but with three dif-
ferences as described in the following.

(i) The bit-code sequence B = {B0, B1, . . . , Bm} to be em-
bedded into the source image is obtained from trans-
forming a watermark W which may be an image, in-
stead of from a secret message which is usually com-
posed of characters.

(ii) The required number of glass regions used for water-
mark embedding is equal to the number of bit-codes of
B, say, m. Accordingly, the sequence GR of the glass
regions is denoted as GR = {GR0,GR1, . . . ,GRm}.

(iii) After acquiring the sequence of effective trees, ET =
{ET0,ET1, . . . ,ETk}, each bit-code Bi is embedded into
all the effective trees which come from GRi, i =
1, 2, . . . ,m. Because each GRi has at most four effec-
tive trees in the set ET, each bit-code Bi will thus be
embedded at most four times into GRi. The repetitions
of embedding each bit-code will result in better robust-
ness of the embedded watermark W.

To implement the above requirements, at first Step 4 of the
bit-code embedding algorithm, Algorithm 3, need be modi-
fied as follows.

4. (Embedding each Bi into every effective tree ET j of re-
gion GRi) For each pair of Bi and GRi, i = 1, 2, . . . ,m+
1, and for each effective tree ET j of GRi in ET, per-
form Steps 4.1 through 4.3 of Algorithm 3 except that
all variables involved with subscript i there are changed
to be with subscript j.

Let the new version of Algorithm 3 revised as above be
named Algorithm 3A. Now, the complete data embedding

algorithm proposed for watermarking can be conducted by
performing an algorithm called Algorithm 7, which is simi-
lar to Algorithm 5 except the following two operations:
(1) a watermark W is taken to be one of the input data,

whose pixels’ values are transformed in Step 2 of the
algorithm into a sequence of bit-codes, each with bitN
bits; and

(2) Step 4 of the algorithm is implemented by Algorithm
3A described above, instead of by the original Algo-
rithm 3.

(B) Watermark Extraction
The process for extracting an embedded watermark for

copyright protection is similar to that for extracting a se-
cret message for covert communication, i.e., similar to Al-
gorithm 6. A difference is that a voting strategy is applied
on the bit-codes extracted from all the effective trees coming
from a glass region in order to extract a bit-code Bi embed-
ded in glass region GRi. To implement this difference, Step
4 of Algorithm 4 is modified to be as follows.

4. (Apply a voting strategy on all the effective trees of a
glass region) For each glass region GRi, i = 1, 2, . . . , n,
perform the following steps to construct a sequence B
of bit-codes, initially empty.
4.1 For each effective tree ET j of GRi, perform Steps

4.1 through 4.4 of Algorithm 4 to extract a bit-
code Bi with bitN bits and put it into a bit-code set
STi of GRi, which is set empty initially.

4.2 (Voting) Check all the bit-codes in STi, find out
the one which appears for the largest number of
times, and denote it as Bi.

4.3 If Bi is not an ending bit-code pattern assumed to
be known in advance, then put Bi into B in order;
else, exit with B as the desired sequence of bit-
codes of the message M.

Let the new version of Algorithm 4 revised as above be
named Algorithm 4A. Now, a complete algorithm for the
proposed watermark extraction process can be conducted by
performing an algorithm called Algorithm 8, which is simi-
lar to Algorithm 6 except the following two operations:
(1) a watermark instead of a secret message is extracted by

the algorithm; and
(2) Algorithm 4A instead of Algorithm 4 is conducted to

extract the hidden bit-codes.

(C) Experimental Results
Some experimental results yielded by Algorithms 7 and 8
are shown in Fig. 20, where Fig. 20 (c) is a watermark, and
a lower-resolution version of it was used as the input to
Algorithm 7, yielding Fig. 20 (a) as the stego-image. Fig-
ure 20 (b) is a damaged version of Fig. 20 (a), imitating an
attack result from a hacker. Figures 20 (d) and 20 (f) are the
watermarks extracted from Figs. 20 (a) and 19 (b), respec-
tively, using Algorithm 8. It can be seen that there are some
salt-and pepper noise in Fig. 20 (f), but the watermark is rec-
ognizable. This means that the proposed embedding and ex-
traction algorithms are robust to a certain degree of image

HUNG et al.: DATA HIDING IN COMPUTER-GENERATED STAINED GLASS IMAGES AND ITS APPLICATIONS TO INFORMATION PROTECTION
863

Fig. 20 Experimental results of watermarking a stained glass image.
(a) A stained glass image with a lower-resolution version of watermark
(c) embedded invisibly. (b) A damaged image of (a). (c) A watermark one
of whose lower resolution version is embedded into (a). (d) The watermark
extracted from (a) with a correct key. (e) The watermark extracted from (a)
with a wrong key. (f) The watermark extracted from (b).

damaging. Figure 20 (e) is the watermark extracted from
Fig. 20 (b) with a wrong key, which says that the embedded
watermark is protected properly by the secret key. All of
these results show the feasibility of the proposed processes
for watermarking for copyright protection.

5.3 Application to Image Authentication

The third application of the proposed method is image au-
thentication which means that by embedding authentication
signals into a stained glass image to yield a stego-image with
no visual difference, if later the image is modified illicitly,
the image owner may use the proposed data extraction algo-
rithm to retrieve the authentication signals to judge whether
the image is tampered with or not.

(A) Authentication Signal Embedding
The proposed process for embedding authentication signals
is also similar to that for embedding a secret message. How-
ever, in order to verify the entire stained glass image, au-
thentication signals are also embedded in the glass regions
created in the gap filling process, differently from the cases
of embedding secret messages and watermarks proposed
previously.

More specifically, assume that the sequence of glass
regions for signal embedding is GR = {GR0,GR1, . . . ,GRn,
GRn+1, . . . ,GRf } where GRn+1 through GRf are created in
the gap filling process. At first, an authentication-signal
generation scheme is performed, which uses the secret key
K and a random number generator Ran(x) to generate an au-
thentication signal Si for each GRi in GR by the following
two steps:
(a) compute the following value

hi = (ri × gi × bi) mod 1013 (5)

where ri, gi and bi are the three values of the color of

GRi and 1013 is a chosen prime number; and
(b) compute the desired authentication signal Si as

Si = (hi + Ran(K + hi)) mod bitN (6)

where bitN is a pre-selected number of bits for repre-
senting each authentication signal Si.

A sequence of authentication signals, S = {S0, S1, . . . , Sn,
Sn+1, . . . , S f } is thus generated, which is then transformed
into the binary form, with each Si becoming a bit-code
Bi with bitN bits, resulting in a bit-code sequence B =
{B1, B2, . . . , Bf }. Finally, the revised data embedding algo-
rithm, Algorithm 3A, with the sequences GR and B as the
inputs is performed to yield a stego-image G as the desired
output. This process of authentication-signal embedding is
named Algorithm 9 for reference in the sequel.

Note that with the secret key K involved in the above
algorithm, the security of the generated signals can be pro-
tected. Also, each authentication signal Si is embedded into
all the effective trees of a region GRi in the algorithm, mean-
ing that bit-code Bi may be embedded into GRi more se-
curely for up to four times because GRi has at most four
effective trees, just like the case of watermark embedding
discussed previously.

(B) Authentication Signal Extraction and Verification
To verify a stego-image G with hidden authentication sig-
nals, at first the authentication-signal generation scheme
performed initially by Algorithm 9 is carried out to gener-
ate a sequence of presumably original authentication signals
S = {S0, S1, . . . , Sn, Sn+1, . . . , S f } from the regions in G ac-
cording to Eqs. (5) and (6). In this process, to compute Sj for
n < j ≤ f , the gap filling process is performed to obtain the
region GRj. Next, Algorithm 4A is carried out with G and
a secret key K as the inputs to extract a bit-code sequence
B = {B1, B2, . . . , Bf } of the hidden authentication signals in
G. Then, B = {B1, B2, . . . , Bf } is transformed backward into
its authentication signal version S′ = {S1

′, S2
′, . . . , S f

′}. Fi-
nally, verification of S′ is conducted by comparing each Si

′
in S′ with the corresponding Si in S for i = 1, 2, . . . , f : if for
any i, Si

′ � Si, then it is decided that G has been tampered
with. This process of authentication-signal extraction and
verification is named Algorithm 10 in the sequel.

(C) Experimental Results
As an example of experimental results, Fig. 21 (a) is a
stained glass image with authentication signals embedded
using Algorithm 9, and Fig. 21 (b) is the verification result of
Fig. 21 (a) using Algorithm 10. The polygons with blue bor-
ders are the detected results which indicate that the bounded
glass regions are not tampered with. Figure 22 (a) is a dam-
aged image of Fig. 21 (a). The regions which are tampered
with are bounded by a red rectangle. In the rectangle, the
color of the glass region is modified. Also, some green
strokes are added. Figure 22 (b) is the verification result of
Fig. 22 (a). The red areas are the regions found by Algorithm
10 to have been tampered with. These results show that the
verification result can indicate the modified areas properly.

864
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.4 APRIL 2020

Fig. 21 Results of authentication. (a) A stained glass image with authen-
tication signals embedded. (b) Authentication result of (a).

Fig. 22 Experimental results of image authentication. (a) A damaged
image of Fig. 20 (a) with a region’s color changed and some green strokes
added. (b) Authentication result of (a).

6. Concluding Remarks

In this study, the two topics of art image creation and data
hiding are integrated into one and solved by a single ap-
proach using various data embedding and extraction pro-
cesses. A common user can thus generate art images and
embed data in them easily for three information protection
applications, namely, covert communication, watermarking,
and image authentication. The embedded data respectively
are a secret message, a watermark, or a set of authentication
signals.

More specifically, an automatic method for generating
a type of stained glass image has been proposed. The im-
age imitates the stained glass picture seen on church win-
dows. The color regions of an image of such a type are
generated via the use of a tree structure which has the merit
of providing a general type of feature, namely, number of
tree nodes. Based on this feature, a new data hiding method
is proposed, which reduces the tree node number to encode
data bits to achieve message embedding. Though this data
embedding method will yield slight cracks at the edges of
glass regions, the result is visually acceptable and presum-
ably will not arouse the hacker’s suspicion of the embed-
ded message. Furthermore, the proposed method is gen-
eral in nature, and so need only be changed slightly for use

in each of the three aforementioned information protection
applications. Hidden data security is also considered by ran-
domizing both the input data before being embedded and
the seed sprinkling locations for region growing, yielding
a stego-image which is robust against the hacker’s attack.
Good experimental results are yielded, which prove the fea-
sibility of the proposed methods.

Acknowledgments

This work was supported partially by the National Sci-
ence Council, Taiwan under Grant No. 94-2422-H-468-001
where Prof. Wen-Hsiang Tsai is the PI and Prof. Da-Chun
Wu is the Co-PI. A small part of the result of this study
(no more than 1/4) has been published in 2005 International
Symposium on Intelligent Signal Processing and Communi-
cations Systems held at Hong Kong in Dec. 2005 [18].

References

[1] A. Hertzmann, “A Survey of Stroke-based Rendering,” IEEE Com-
puter Graphics & Applications, vol.23, no.4, pp.70–81, Aug. 2003.

[2] A. Hertzmann, “Painterly rendering with curved brush strokes of
multiple sizes,” Proc. 1998 Int. Conf. on Computer Graphics &
Interactive Techniques (SIGGRAPH 1998), Orlando, FL, USA,
pp.453–460, July 19-24, 1998.

[3] A. Hertzmann, “Fast paint texture,” Proc. 2002 Int. Conf. on
Computer Graphics & Interactive Techniques (SIGGRAPH 2002),
Annecy, France, pp.91–96, June 3-5, 2002.

[4] A. Hausner, “Simulating Decorative Mosaics,” Proc. 2001 Int.
Conf. on Computer Graphics & Interactive Techniques (SIGGRAPH
2001), Los Angeles, CA, USA, pp.573–580, Aug. 12-17, 2001.

[5] P.E. Haeberli, “Paint by numbers: Abstract image representations,”
F. Baskett, ed., Computer Graphics (SIGGRAPH ’90 Proceedings),
vol.24, pp.207–214, Aug. 1990.

[6] N. Matsumura, H. Tokura, Y. Kuroda, Y. Ito, and K. Nakano,
“Tile Art Image Generation Using Conditional Generative Adver-
sarial Networks,” Proc. 6th Int. Symp. on Computing & Network-
ing Workshops (CANDARW 2018), Takayama, Japan, pp.209–215,
Nov. 27-30, 2018.

[7] D. Chen, L. Yuan, J. Liao, N. Yu, and G. Hua, “StyleBank: An Ex-
plicit Representation for Neural Image Style Transfer,” Proc. IEEE
Conf. on Computer Vision & Pattern Recognition, Honolulu, HI,
USA, pp.2770–2779, July 21-26, 2017.

[8] L.A. Gatys, A.S. Ecker, and M. Bethge, “Image Style Transfer
Using Convolutional Neural Networks,” Proc. 2016 IEEE Conf.
on Computer Vison & Pattern Recognition, Las Vegas, NV, USA,
pp.2414–2423, June 27-30, 2016.

[9] J. Osborne, Stained Glass in England, Alan Sutton Publishing,
Phoenix Mill, Ltd., Mumbai, India, 1997.

[10] D. Mould, “A stained glass image filter,” Proc. 14th Eurographics
Workshop on Rendering, Leuven, Belgium, pp.20–25, June 25-27,
2003.

[11] Y.-L. Lee and W.-H. Tsai, “A New Data Transfer Method via Signal-
rich-art Code Images Captured by Mobile Devices,” IEEE Trans.
Circuits Syst. Video Technol., vol.25, no.4, pp.688–700, 2015.

[12] M.A.N.I. Fahim and S. Hossain, “A Simple Way to Create Pointil-
listic Art from Natural Images,” Proc. 3rd IEEE Int. Conf. on Cyber-
netics (CYBCONF-2017), Exeter, UK, pp.1–5, Feb. 24, 2017.

[13] F. Ernawan, M.N. Kabir, and Z. Mustaffa, “A Blind Watermark-
ing Technique Based on DCT Psychovisual Threshold for a Robust
Copyright Protection,” Proc. 12th Int. Conf. for Internet Technol.
& Secured Transactions (ICITST 2017), Cambridge, UK, pp.92–97,
Dec. 11-14, 2017.

http://dx.doi.org/10.1109/mcg.2003.1210867
http://dx.doi.org/10.1145/280814.280951
http://dx.doi.org/10.1145/383259.383327
http://dx.doi.org/10.1109/candarw.2018.00047
http://dx.doi.org/10.1109/cvpr.2017.296
http://dx.doi.org/10.1109/cvpr.2016.265
http://dx.doi.org/10.1109/tcsvt.2014.2355693
http://dx.doi.org/10.1109/cybconf.2017.7985751
http://dx.doi.org/10.23919/icitst.2017.8356354

HUNG et al.: DATA HIDING IN COMPUTER-GENERATED STAINED GLASS IMAGES AND ITS APPLICATIONS TO INFORMATION PROTECTION
865

[14] S.P. Singh and G. Bhatnagar, “A robust watermarking scheme based
on image normalization,” Proc. 2018 IEEE 14th Int. Colloquium on
Signal Processing & Its Applications (CSPA 2018), Batu Ferringhi,
Malaysia, pp.140–144, March 9-10, 2018.

[15] C.-K. Chan and L.M. Cheng, “Hiding Data in Images by Simple
LSB Substitution,” Pattern Recognition, vol.37, no.3, pp.469–474,
2004.

[16] C.-W. Lee, “Multipurpose Protection for Numeric Data with Capa-
bilities of Self-Authentication and Ownership Declaration,” IEEE
Access, vol.6, pp.71152–71167, 2018.

[17] Y.-S. Chen and R.-Z. Wang, “Reversible Authentication and
Cross-Recovery of Images Using (t, n)-Threshold and Modi-
fied-RCM Watermarking,” Optics Communications, vol.284, no.12,
pp.2711–2719, 2001.

[18] S.-C. Hung, D.-C. Wu, and W.-H. Tsai, “Data Hiding in Stained
Glass Images,” Proc. 2005 Int. Symp. on Intelligent Signal Process-
ing & Communications Syst., pp.129–132, Hong Kong, Dec. 13-16,
2005.

Shi-Chei Hung received the B. S. degree in
2003 and the M. S. degree in 2005, both in com-
puter science from National Chiao Tung Univer-
sity, Hsinchu, Taiwan. He was a research assis-
tant in the Computer Vision Laboratory in the
Department of Computer Science at National
Chiao Tung University from 2003 to 2005. He
was with the MediaTek Inc. from 2005 to 2008
as a software engineer. He is currently with
Somuch Co. Ltd., Taipei, Taiwan whose busi-
ness is based on Internet Marketing, and works

as the general manager of the company. His current research interests in-
clude image processing, computer vision, computer art, and information
hiding.

Da-Chun Wu received the B.S. degree in
computer science and the M.S. degree in infor-
mation engineering from Tamkang University,
Taipei, Taiwan, in 1983 and 1985, respectively,
and the Ph. D. degree in computer and infor-
mation science from National Chiao Tung Uni-
versity, Hsinchu, Taiwan, in 1999. He joined
the faculty of the Department of Information
Management, Ming Chuan University, Taipei,
Taiwan, in 1987. From 2002 to 2018, he was
with National Kaohsiung First University of Sci-

ence and Technology (NKFUST), Kaohsiung, Taiwan. From 2010 to 2014,
he was the Director of Library and Information Center of the university, and
from 2015 to 2018, he was the Head of the Department of Computer and
Communication. Dr. Wu is currently an Associate Professor of National
Kaohsiung University of Science and Technology (NKUST), Kaohsiung,
Taiwan. His recent interests include multimedia security, image process-
ing, and deep learning.

Wen-Hsiang Tsai received the B. S. degree
in EE from National Taiwan University, Taiwan,
in 1973, the M. S. degree in EE from Brown
University, USA in 1977, and the Ph. D. degree
in EE from Purdue University, USA in 1979.
Since 1979, he has been with National Chiao
Tung University (NCTU), Taiwan, where he is
now a Life-time Chair Professor of Computer
Science. At NCTU, he has served as the Head of
the Department of Computer Science, the Dean
of General Affairs, the Dean of Academic Af-

fairs, and a Vice President. From 1999 to 2000, he was the Chair of the
Image Processing and Pattern Recognition Society of Taiwan, and from
2004 to 2008, the Chair of the IEEE Computer Society in Taiwan. From
2004 to 2007, he was the President of Asia University, Taiwan. Dr. Tsai has
been an Editor or the Editor-in-Chief of several international journals, in-
cluding Pattern Recognition, IEEE Transactions on Information Forensics
and Security, and the Journal of Information Science and Engineering. He
has published 162 journal papers and 259 conference papers, and received
more than 50 paper awards from various academic societies. His research
interests include computer vision, information security, and autonomous
vehicle applications.

http://dx.doi.org/10.1109/cspa.2018.8368701
http://dx.doi.org/10.1016/j.patcog.2003.08.007
http://dx.doi.org/10.1109/access.2018.2880609
http://dx.doi.org/10.1016/j.optcom.2011.01.058
http://dx.doi.org/10.1109/ispacs.2005.1595363

