
Line-based Cubism-like Image A New Type of
Art Image and Its Application to Lossless Data

Hiding

Shan-Chun Liu and Wen-Hsiang Tsai, Senior Member, IEEE

Abstract—A new method of combining art image generation

and data hiding to enhance the camouflage effect for various
information hiding applications is proposed. First, a new type of
computer art, called line-based Cubism-like image, which keeps a
characteristic of the Cubism art — abstraction by prominent lines
and regions from multiple viewpoints — is proposed. In the
creation process with an input source image, prominent line
segments in the image are detected and rearranged to form an
abstract region-type art image of the Cubism flavor. Data hiding
with the minimal distortion is carried out skillfully during the
process of re-coloring the regions in the generated art image by
shifting the pixels’ colors for the minimum amount of ±1 while
keeping the average colors of the regions unchanged. Based on a
rounding-off property in integer-valued color computation, the
proposed data hiding technique is proved by theorems to be
reversible, and thus useful for lossless recovery of the cover art
image from the stego-image. Four security enhancement measures
are also adopted to prevent hackers from extracting embedded
data correctly. Experimental results show the feasibility of the
proposed method.

Index Terms—computer art image, line-based Cubism-like
image, cover image, stego-image, reversible data hiding.

I. INTRODUCTION

n recent years, the topic of automatic art image creation via
the use of computers arouses interests of many people, and

many methods have been proposed [1]-[9]. Hertzmann [1]
surveys the ideas and algorithms of creating art images by
stroke-based rendering which is an automatic approach to
creating non-photorealistic imagery by the use of discrete
elements like paint strokes and stipples. The common goal of
creating these image styles is to make the generated art images
look like some other types of images. For example, two images
created by watercolor painting and oil painting in Hertzmann [2]
and Hertzmann [3], respectively, are shown in Fig. 1. Some
examples of other types of computer art images are shown in

Fig. 2, where Fig. 2(a) is one created by pen-and-ink drawing
proposed by Salisbury [4], Fig. 2(b) is a stipple image via a
stipple placement method proposed by Mould [5], and Fig. 2(c)
shows a stain-glass image created by an image filter presented
in Mould [6].

(a) (b)

(c) (d)

Fig. 1. Art images created by Hertzmann [2], [3]. (a) and (c) Original images
(b) Created art image with watercolor painting effect [2]. (d) Created art
image with oil painting effect [3].

(a) (b) (c)

Fig. 2. Some types of computer-generated art images. (a) A pen-and-ink
drawing from Salisbury [4]. (b) A stipple image from Mould [5]. (c) A
stained glass image from Mould [6].

Mosaic image is also a type of computer art image about
which many investigations have been conducted. Each mosaic
image is composed of many small identical tiles, such as
squares, circles, triangles, and so on. Different from
conventional mosaic images which have tiles all arranged in a
fixed orientation, Hausner [7] created a type of tile mosaic
image by placing tiles to follow the edges in the input image to
make the created art image look smoother. An example is
shown in Fig. 3(a). Another important criterion for art image
creation is to limit the number of strokes so that the resulting
image looks like an abstract painting, such as the image shown
in Fig. 3(b) which comes from Haeberli [8]. Besides, Song, et al.
[9] produces an abstract synthetic art by fitting shapes like

I

Manuscript received November 29, 2011. This work was supported in part

by the National Science Council, Taiwan under Grant 99-2631-H-009-001.
Shan-Chun Liu is with the Institute of Computer Science and Engineering at

National Chiao Tung University, Hsinchu, Taiwan 30010 (e-mail:
azurecoral@gmail.com).

Wen-Hsiang Tsai is with the Department of Computer Science at National
Chiao Tung University, Hsinchu, Taiwan 30010. He is also with the
Department of Information Communication at Asia University, Taichung,
Taiwan 41354 (Tel.: 886-3-5731763, fax: 886-3-5721490, e-mail:
whtsai@cis.nctu.edu.tw)

1

triangles or rectangles to the regions in segmented images, like
the one shown in Fig. 3(c).

(a) (b) (c)

Fig. 3. Some more computer-generated art images (a) Image created by Hausner
[7]. (b) Image created by Haeberli [8]. (c) Image created by Song, et al. [9].

Some paintings of the Cubism style are dominated by lines

and regions, like those shown in Fig. 4, to show abstractly a
characteristic of the Cubism art multiple-viewpoint. In this
study, we try to imitate such line-type Cubism paintings to
create automatically an abstract type of art image, called
line-based Cubism-like image, from a given source image. Line
segments in the source image are detected by appropriate image
processing techniques, and prominent ones are kept after
removing noise line segments. Regions formed by the
prominent lines then are created and the pixels in each region
are re-colored identically by the average color of the region.
Two art images so created in this study are shown in Fig. 5.

(a) (b)

(c)

Fig. 4. Some images of line-type Cubism paintings. (a) “After Colonial
Cubism” by Robert Rooney, 1993. (b) “Planet X Landscape Painting” by
Mark Webster, 2010. (c) “New Cubism” by Koichiro Kimura, 2011. (d)
“Factory, Horta de Ebbo” by Pablo Picasso, 1909.

On the other hand, Davis [20] proposed the concept of signal

rich art, and pointed out watermarking as a key component in
achieving such art. Data hiding is a technique for watermarking
and other applications, which embeds data imperceptibly into a
cover image (or more generally, into cover media), so that
people cannot perceive the existence of the hidden data in the
resulting stego-image (or stego-media). Otori and Kuriyama
[21] hid data into texture images with the hidden data being
robustly recoverable from images photographed from print
media. Uccheddu et al. [22] proposed a wavelet-based blind
technique for watermarking 3D models. It is desired in this
study to hide message data into the generated art image for
various applications. It is also hoped that the characteristic of

the art image creation process can be utilized effectively to
carry out the data embedding work. This way of combining art
image creation and data hiding, which may be called aesthetic
data hiding, is a new idea of information hiding. Attracted by
the art exhibited by the image, people hopefully will pay no
attention to the hidden data in the art image; and via this
camouflage effect, the embedded data can be kept securely or
transmitted covertly.

(a) (b)

(c) (d)

Fig. 5. Examples of line-based Cubism-like images created in this study. (a)
and (c) Source images. (b) & (d) Created art images from the source images.

Two criteria for designing data hiding techniques are

imperceptibility of distortion in the stego-image due to data
embedding and recoverability of the original cover image
content from the stego-image. To achieve imperceptibility, a
weakness of the human visual system in differentiating small
color or grayscale differences is often utilized, e.g., by the least
significant bit (LSB) modification scheme proposed by Chan
and Cheng [10] or by the contrast-keeping data embedding
scheme proposed by Wu and Tsai [11]. In this study, a scheme
of using the minimum color shiftings of 1 for data embedding
is proposed. To achieve recoverability of the cover image
which requires lossless data embedding, the most common
approach is to compress a portion of the cover image and
embed the result with the intended payload into the cover image,
such as Fridrich, et al. [12] and Awrangjeb and Kankanhalli
[13]. Another approach is to manipulate a group of pixels as a
unit to embed a bit of information, like Tian [14] and
Vleeschouwer, et al. [15]. A third approach is to use the
histogram shifting technique which can embed large volumes
of data, e.g., Ni, et al. [16] and Lee and Tsai [17]. In this study,
we use a new scheme of keeping average region colors
unchanged to achieve the goal of lossless data hiding. Note that
there exist very few lossless data hiding techniques so far.

More specifically, in this study we hide message data in the
automatically-generated Cubism-like image during the image
creation process by shifting the colors of the pixels in the image
regions slightly for the minimum amounts of 1 while keeping
the average colors of the regions unchanged. In this way, the
original art style of the image with uniform regions may be kept.
The color differences in the resulting image are difficult to be

2

found by a hacker because the human visual system is weak in
discriminating small color changes. Also, by constraining the
numbers of the embedded binary values of 0’s and 1’s to keep
the average region colors unchanged, the data embedding
process can be reversed so that lossless recovery of the cover
image from the stego-image can be achieved, as proved by
theorems in this study. In this way, the original art style in the
cover image can be resumed. The security issue is also
considered, and four enhancement measures are proposed.
Good experimental results show the feasibility of the proposed
method.

In the remainder of this paper, we describe the proposed
technique for creating the line-based Cubism-like art image
automatically in Section 2, the proposed data hiding technique
in Section 3, followed by conclusions and some suggestions for
future studies in Section 4. Experimental results are also shown
in Sections 2 and 3 to demonstrate the feasibility of the
proposed method.

II. LINE-BASED CUBISM-LIKE IMAGE CREATION PROCESS

A. Idea of Line-based Cubism-like Image Creation

Cubism artists transform a natural scene into geometric
forms in paintings by breaking up, analyzing, and
re-assembling objects in the scene from multiple viewpoints. In
addition, with the scene objects rearranged to intersect at
random angles, each Cubism painting seems to be composed of
intersecting lines and fragmented regions in an abstract style.
The idea of the proposed art image creation technique is
inspired by these concepts of the Cubism art.

Specifically, there are two major stages in the proposed
line-based Cubism-like image generation process prominent
line extraction and region re-coloring. In the first stage, at first
we extract line segments from a given source image by edge
detection and the Hough transform. Then, we conduct short line
segment filtering and nearby line merging. In the second stage,
at first we create regions in the image by extending the line
segments to the image boundary to partition the image space.
Then, we re-color the regions by the average region colors and
whiten the boundaries of the regions.

B. Algorithm for Line-based Cubism-like Image Creation

The details of the above process are described as an
algorithm in the following.

Algorithm 1: line-based Cubism-like image creation.
Input: a source image S, the minimum line segment length Lmin,

and the minimum line distance Dmin.
Output: a line-based Cubism-like image SC.
Steps.
Stage 1 Prominent line extraction.
Step 1. (Edge detection) Apply Canny edge detection [18] to

image S, resulting in a new image S′ of edge points.
Step 2. (Line segment detection) Applying the Hough

transform [19] to S′ to find a list of line segments L1,

L2, …, Lm sorted according to their lengths, yielding a
second new image S′′ of the line type.

Step 3. (Prominent line extraction) Find prominent lines in S′′
by the following steps.

3.1 Select those line segments in S′′ with lengths larger
than threshold Lmin and discard the others, resulting in a
shorter list of line segments L1′, L2′, …, Ln′.

3.2 For all i = 0 through n and all j = 0 through n with i j
and both Li′ and Lj′ not deleted yet, compare Li′ and Lj′
and if the distance between Li′ and Lj′ is smaller than
threshold Dmin, then delete the shorter one of Li′ and Lj′.

Stage 2 Region re-coloring.
Step 4. (Line extension) Extend each remaining line segment in

S′′ to the image boundaries of S′′.
Step 5. (Region partitioning) Partition S′′ into regions R1,

R2, …, RK by the extended lines.
Step 6. (Region re-coloring) Re-color each region Ri in S′′ by

the following steps with i = 1, 2, …, K.
6.1 Compute the area Ai (in unit of pixel) of Ri and the

average color (Cir, Cig, Cib) of all the pixels in Ri.
6.2 Re-color each pixel in Ri by (Cir, Cig, Cib).

Step 7. (Line re-coloring) Re-color all region boundaries in S′′
by the white color.

Step 8. Take the final S′′ as the desired line-based Cubism-like
image SC.

Two thresholds, the minimum line segment length Lmin and
the minimum line distance Dmin, are used in Algorithm 1, which
affect the flavor of the generated art image according to our
observation of the experimental results. Considering the mutual
influence between the image size and the line segment length,
we take one tenth of the image width as the initial values of Lmin
and Dmin for use in Algorithm 1, and repeated the executions of
Algorithm 1 by varying the values of Lmin and Dmin in our
experiment. Some results are shown in Fig. 6 from which we
see that a smaller initial value of Lmin will cause extraction of
more lines, which increases the complexity of the created
image and gives an impression closer to the original image
content. Contrarily, fewer lines will result from the use of a
larger value of Lmin, making the resulting image simpler and
more abstract. The effect of varying the value of Dmin is similar.

(a) (b)

(c) (d)

Fig. 6. Experimental results of varying threshold values of Dmin and Lmin. (a)
Source image with size 1024768. (b) Art image created from (a) with initial
values of Dmin = 102, Lmin = 102. (c) Art image created from (a) with Dmin =
102, Lmin = 20. (d) Art image created from (a) with Dmin = 200, Lmin = 102.

3

C. Experimental Results

From the above discussions, we see that different selections
of the two threshold values Lmin and Dmin will result in totally
different visual effects in the created art images. However, it is
difficult to decide which result is better than the others because
the decision is obviously dependent on people’s individual
feelings of art. Therefore, in this study we just offer a series of
results yielded by the use of different sets of values of the two
thresholds for the user to inspect and choose. Specifically, we
use the three values of 0.5/10, 1/10, and 2/10 times the image
width as the values for the thresholds Lmin and Dmin. As a result,
each threshold has three choices, resulting in nine choices of
the threshold pair. Then, we generate nine art images, each
corresponding to one of the nine threshold combinations, for
the user to choose as his/her favorite art image. Two examples
using input images of a university church and the Eiffel Tower
are shown in Figs. 7 and 8. In each of the two examples, the
source image is shown in (a) the result of using the initial
values of the two thresholds (1/10 times the image width) is
shown in (b). A seemingly better choice is shown in (l).

(a) (b)

(c) (d) (e)

(f) (g) (h)

(i) (j) (k)

(l)

Fig. 7. Experimental results with a church image as input. (a) Source image
with size 1024768. (b) Initial Dmin = 102 and initial Lmin = 102. (c) (Dmin, Lmin)
= (51, 51). (d) (Dmin, Lmin) = (51, 102). (e) (Dmin, Lmin) = (51, 204). (f) (Dmin, Lmin)
= (102, 51). (g) (Dmin, Lmin) = (102, 102). (h) (Dmin, Lmin) = (102, 204). (i) (Dmin,
Lmin) = (204, 51). (j) (Dmin, Lmin) = (204, 102). (k) (Dmin, Lmin) = (204, 204). (l) A
seemingly better choice of the 9 images (d).

(a) (b)

(c) (d) (e)

(f) (g) (h)

(i) (j) (k)

(l)

Fig. 8. Experimental results with an image of Eiffel Tower as input. (a) Source
image with size 7681024. (b) Initial Dmin = 102 and initial Lmin = 102. (c)
(Dmin, Lmin) = (51, 51). (d) (Dmin, Lmin) = (51, 102). (e) (Dmin, Lmin) = (51, 204). (f)
(Dmin, Lmin) = (102, 51). (g) (Dmin, Lmin) = (102, 102). (h) (Dmin, Lmin) = (102,
204). (i) (Dmin, Lmin) = (204, 51). (j) (Dmin, Lmin) = (204, 102). (k) (Dmin, Lmin) =

(204, 204). (l) A seemingly better choice of the 9 images (g)

III. DATA HIDING VIA LINE-BASED CUBISM-LIKE IMAGES

A. Idea of Proposed Data Hiding Technique

In the proposed Cubism-like image creation process
described by Algorithm 1 above, one major step is to re-color
the pixels in each image region with the average color of all the

4

pixels in the region, resulting in an image visually looking like
the source image. We take advantage of this step as well as a
weakness of the human visual system in differentiating small
color changes to design the data hiding technique in this study.

To be more specific, the proposed data hiding technique
embeds message data into a cover cubism-like image by
changing each pixel’s color value in the cover image for the
minimum amount of 1 in each color channel. As a result,
people cannot tell the visual difference between the cover
image and the stego-image. This effect, in addition to that of
attracting people by the artistic content of the Cubism-like
image, gives the proposed data hiding technique a camouflage
effect which arouses no suspicion from hackers. Furthermore, a
reversible region re-coloring scheme, which keeps the average
color of each region unchanged, is designed as a substitute of
the original re-coloring process in Algorithm 1. This
reversibility guarantees that we can extract the data embedded
in the stego-image to restore the original content of the cover
image losslessly. It is also noted that changing pixels’ colors
slightly while keeping average region colors unchanged, as
proposed in this study, creates integrally a mosaic effect in the
regions, which makes the stego-image look nearly identical to
the cover image and thus enhances the camouflage effect of the
proposed technique.

The proposed data hiding technique as described above is
designed according to theorems derived in this study from the
rounding-off property in integer-valued color computation. The
details are described next. We assume that each image used in
this study is a color one of the RGB model.

B. Principle of Lossless Data Embedding

In the proposed region re-coloring process, when embedding
a bit b into a pixel with color c, if b is 0, then we decrement c by
an integer value a, and if b is 1, then we increment c by a. After
hiding message bits into the pixels’ colors in a region by color
shifting in this way, the region’s average color will also be
changed. It is found in this study that the property of
rounding-off in integer computation may be utilized to modify
this region re-coloring process to keep the average region color
unchanged, resulting in a reversible region re-coloring process,
as proved in the following.

Lemma 1. The total numbers N0 and N1 of data bits of 0’s and
1’s, respectively, embeddable in an image region R with area A
(in unit of pixel) by re-coloring R by color shiftings of the
amount of a without changing the average color Co of R in
each of the three color channels is constrained by the following
inequality:

 –A/2 (N1 – N0)a < A/2. (1)

Proof.
For each of the three color channels R, G, and B, first let C1,

C2, …, CA be the color values of the A pixels in region R. Then,
the average color value Co of R is

Co = (C1 + C2 + … + CA)/A.

Next, while re-coloring R by color shiftings of the amount of

a, if the average region color is to be kept unchanged, the
computed average color C of R should lie in the range of Co
0.5 to Co + 0.5 so that C can be rounded to be a value identical
to the original average value Co because the color values in
each color channel are integer numbers. That is, the following
inequality should hold:

–0.5 + Co C < Co + 0.5.

Third, if N0 0’s and N1 1’s are embedded into R, then there
arises a total extra amount of color shiftings of –N0a + N1a.
Therefore, the new average region color C is

C = (C1 + C2 + … + CA – N0a + N1a)/A.

Combining the three equalities derived above, we can get

Co – 0.5 C = [CoA + (N1 – N0)a]/A < Co + 0.5

which may be transformed into the following inequality:

 –A/2 (N1 – N0)a < A/2.

Theorem 1. When the data bits are embedded into the cover
image to cause the minimum distortion in the mean square error
(MSE) sense, the constraint of (1) becomes

 –A/2 N1 – N0 < A/2. (2)

Proof.
With each of N0 pixels’ values in each region R being

decremented by a and each of N1 pixels’ values in R being
incremented by a, it is easy to figure out that the MSE of R in
the stego-image with respect to the cover image is just N0(–a)2
+ N1(+a)2 = (N0 + N1)a2. The minimum value of this MSE
occurs obviously when a = 1. Consequently, if the data bits are
embedded to cause the minimum distortion, a should be taken
to be 1 and (1) becomes

 –A/2 N1 – N0 < A/2.

The inequality (2) above constrains integrally the numbers
N0 and N1 of embeddable message data bits of 0’s and 1’s,
respectively, and is used in this study to design the proposed
data hiding algorithm. The following corollary gives respective
constraints to N0 and N1 for some extreme cases of data bits.

Corollary 1. When the stego-image is yielded with the
minimum distortion by color shiftings of the amount of 1 in
region re-coloring, the maximum numbers N0 and N1 of
embedded 0’s and 1’s are constrained respectively by

 A/4 N0 < 3A/4; A/4 < N1 3A/4. (3)

And for the extreme case that the data bits are either all 0’s or
all 1’s, the numbers N0 or N1 are constrained respectively by

 N0 A/2; N1 < A/2. (4)

Proof.
In the best case, the maximum number of embeddable bits in

a region is just the number A of pixels in the region, that is,

 N0 + N1 = A

which, when combined with (2) above, leads to the following

5

two inequalities:

–A/2 2N0 – A < A/2; –A/2 A – 2N1 < A/2,

or equivalently, to

A/4 N0 < 3A/4; A/4 < N1 3A/4.

respectively, as can be easily figured out.
On the other hand, for the extreme case where the message

data are composed of all 0’s, then N1 equals zero, and (2)
becomes –A/2 –N0 < A/2, or equivalently, N0 A/2. Similarly,
if the message data are composed of all 1’s, then N0 equals zero,
and (2) becomes –A/2 N1 < A/2 so that N1 < A/2.

Theorem 2. Data embedding in a region by color shiftings of
the amount of 1 to embed 0’s and 1’s, respectively, under the
constraint of (2) is lossless, i.e., the embedded data may be
retrieved to resume the original stego-image perfectly.
Proof.

If the numbers of 0’s and 1’s embedded in a region R are N0
and N1, respectively, and if A and Co are the area and the
original average color of R, then the new average color C of R is

C = [CoA + N0(–1) + N1(+1)]/A = Co + (N1 N0)/A
which, when constrained by (2), leads to

 Co – 0.5 C = Co + (N1 N0)/A < Co 0.5.

Accordingly, C becomes Co after being rounded to the nearest
integer for use as a color value.

With the new average color C of region R being unchanged
and equal to Co, we may compute the difference between Co
and the color value CP of each pixel P in R to check if there is a
color shifting of 1 at P; if so, then extract the data bit of 0 or 1,
respectively, and replace the shifted color CP of P by the
original average region color Co. In this way, the original cover
art image can be recovered perfectly. This means that the
original data embedding scheme is lossless.

C. Algorithm of Proposed Data Hiding Technique

The proposed data hiding process, which is based on the
creation process of the line-based Cubism-like image and the
lossless data embedding principle described previously, is
composed of two stages data string randomization and
embedding capacity computation; and data embedding. In the
first stage, at first we transform the data string to be hidden into
a digit sequence of 0’s and 1’s and append an ending pattern
(with at least one digit other than 0 and 1) to the end of the
sequence to keep its length a multiple of three. By the ending
pattern, we can determine where the embedded data string ends
in a sequence of extracted digits in the later data extraction
process. Next, we try to obtain the information of two
parameters of each region, namely, its area and average color,
by performing Algorithm 1. Then, we use a secret key to
randomize the order of the regions in the input image, and take
the resulting sequence as the order for data hiding. For each
region, in order to keep the average color of the region
unchanged, we limit the embedded amount of message data bits
in each region by the constraint of (2) in Theorem 1. In the

second stage, we embed the input data sequence by shifting the
pixels’ colors for the amounts of 1 according to the
above-mentioned data hiding order. After the data sequence is
exhausted, there might exist regions into which no data is
embedded. We deal further with these intact regions to keep the
coloring style of all regions consistent. For this, we create a
random binary string of 0’s and 1’s with the bit numbers
roughly constrained by (2), and use the same data embedding
process to embed it into the intact regions. At the end, a
stego-image is generated with the input data string embedded
imperceptibly. A detailed algorithm to implement these steps is
given as follows.

Algorithm 2. Embedding a data string into a Cubism-like
image created from a given image.

Input: an image S, a secret key Ks, four random-number
generator functions f1, f2, f3, and f4, and a message data
string M in character form.

Output: a stego-image S′ into which M is embedded.
Steps.
Stage 1 Data string randomization and embedding capacity
computation.
Step 1. (Randomizing and segmenting the data string)

Randomize and segment the data string M by the
following steps.

1.1 Transform M in character form into a binary string, and
randomize the order of its bits to generate a new string
M′ using function f1 with secret key Ks as the seed.

1.2 Regard each bit of M′ as a digit and append an ending
pattern with at least one and no more than three
identical digits d other than 0’s and 1 to the end of M′ to
form a new digit sequence M′′ with its length being a
multiple of three.

1.3 Divide M′′ into a sequence of 3-digit segments, m1,
m2, …, mN.

Step 2. (Generating an art image and computing related
parameters) Generate an art image and compute the
areas and average colors of the regions in the image by
the following steps.

2.1 Perform Algorithm 1 with S as the input source image
to obtain an output art image S′ which has regions R1,
R2, …, RK with areas A1, A2, …, AK and average region
colors (C1r, C1g, C1b), (C2r, C2g, C2b), …, (CKr, CKg,
CKb), respectively.

2.2 Randomize the order of regions R1 through RK using
function f2 with secret key Ks as the seed to generate an
ordered region sequence CS = {R1′, R2′, …, RK′}, and
change in accordance the orders of the areas and
average region colors of the regions, resulting in the
new ordered sequences of areas and average region
colors, {A1′, A2′, …, AK′} and {(C1r′, C1g′, C1b′), (C2r′,
C2g′, C2b′), …, (CKr′, CKg′, CKb′)}, respectively.

Step 3. (Calculating the maximum data embedding capacity of
each region) Take sequentially an unprocessed region
Ri′ in sequence CS, and compute the maximum data

6

embedding capacity Qi of Ri′ by the following steps
with the initial value of Qi set to be zero.

3.1 Let (Nr0, Nr1), (Ng0, Ng1), and (Nb0, Nb1) denote the
numbers of 0’s and 1’s embeddable in the R, G, and B
color channels, respectively, in Ri′ with their initial
values all set to be zero.

3.2 Take an unprocessed 3-digit segment mt with digits
drdgdb of data string M′′ and compute (Nr0, Nr1), (Ng0,
Ng1), and (Nb0, Nb1) for dr, dg, and db, respectively, in
the following way:
(a) if dr = 0, increment Nr0 by 1; else, increment Nr1

by 1;
(b) if dg = 0, increment Ng0 by 1; else, increment Ng1

by 1;
(c) if db = 0, increment Nb0 by 1; else, increment Nb1

by 1.
3.3 If all of the following three inequalities hold:

 –Ai′/2 Nr1 – Nr0 < Ai′/2;
 –Ai′/2 Ng1 – Ng0 < Ai′/2;
 –Ai′/2 Nb1 – Nb0 < Ai′/2,

then increase Qi by 3; else, regard Qi to have reached
the maximum data embedding capacity for Ri
according to Theorem 1 and go to Step 4.

3.4 If the data sequence M′′ is not exhausted, then go to
Step 3.2 to repeat the above two steps.

Stage 2 Data embedding.
Step 4. (Embedding the data) Perform the following steps to

embed data into region Ri′ of S′.
4.1 Randomize the order of the pixels in Ri′ to generate an

ordered pixel sequence HS = {p1′, p2′ , …, pt′} using
function f3 with secret key Ks and the index i of Ri′
together as the seed.

4.2 Embed an unembedded 3-digit segment ml with digits
drdgdb of sequence M′′ into an unprocessed pixel pj′
with color values (Cjr′, Cjg′, Cjb′) taken sequentially
from pixel sequence HS by the following steps.
(a) Obtain new color values (Cjr′′, Cjg′′, Cjb′′) for pj′

by modifying the original ones (Cjr′, Cjg′, Cjb′) in
the following way for h = r, g, and b:

i. increment Cjh′ by 1 if dh = 1;
ii. decrement Cjh′ by 1 if dh = 0;

iii. do nothing to Cjh′ if dh = d (an ending
pattern digit).

(b) Re-color pixel pj′ by the new color values (Cjr′′,
Cjg′′, Cjb′′).

(c) Decrement the maximum data embedding
capacity Qi by 3.

(d) If Qi is not equal to zero, then go to Step 4.2 to
repeat the steps of (a) through (c) above.

Step 5. (Ending of looping) Repeat Steps 3 and 4 if sequence
M′′ is not exhausted.

Step 6. (Re-coloring the intact regions) Re-color each region
Rk′ with area Ak′ in S′, which has not been used for data
embedding so far, by the following steps.

6.1 Create a random digit string B with size Ak′/2 1 of
0’s and 1’s for Rk′ using function f4 with secret key Ks
as the seed, and call B a camouflage string.

6.2 Perform Steps 3 through 5 to re-color the pixels of Rk′
to embed camouflage string B.

Step 7. Take the final image S′ as the desired stego-image.

In the above algorithm, wrap-around problems in color
values might occur in Steps of 4.2(a)-i and 4.2(a)-ii when the
average region color value in any of the three color channels is
255 or 0. In such cases, we will obtain a stego-image with
undesirable noise. To avoid such cases, we adjust the extreme
average color values of 255 and 0 in any color channel to be
253 and 1, respectively, before data hiding. Such slight color
alternations in the generated stego-image will cause nearly no
visual difference to humans but will solve the problem.

D. Data Extraction Process
The proposed data extraction process, which is based on

Theorem 2, is basically a reverse version of the proposed data
hiding process and consists of two stages embedded data
extraction and data de-randomization. In the first stage, we
recover the region re-coloring sequence in the stego-image and
obtain the area and the average color of each region in the
stego-image. Based on the average color of each region, we
retrieve the message data embedded in the stego-image by
comparing it with the pixels’ colors in the region. In the second
stage, the retrieved data are de-randomized to get the original
message data using the secret key. The details are described as
an algorithm in the following.

Algorithm 3: extracting the hidden data string.
Input: a stego-image S; and the secret key Ks and three random

number generators f1, f2, and f3 used in Algorithm 2.
Output: the data string M embedded in S.
Steps.
Stage 1 Embedded data extraction.
Step 1. (Extracting the regions and related parameters)

Conduct region growing in a raster-scan order to find
the regions R1, R2, …, RK in S, and compute their
respective areas A1, A2, …, AK and average colors (C1r,
C1g, C1b), (C2r, C2g, C2b), …, (CKr, CKg, CKb).

Step 2. (Retrieving the region re-coloring sequence)
Randomize the initial raster-scan order of the regions
R1 through RK to retrieve the region re-coloring
sequence CS = {R1′, R2′, …, RK′} using f2 with secret
key Ks as the seed, and change in accordance the orders
of the areas and the average colors of the regions,
resulting in the new ordered sequences of areas and
average colors, {A1′, A2′, …, AK′} and {(C1r′, C1g′, C1b′),
(C2r′, C2g′, C2b′), …, (CKr′, CKg′, CKb′)}, respectively.

Step 3. Create a message data sequence M′ with an empty
initial content.

Step 4. (Extracting the embedded data) Take an unprocessed
region Ri′ in CS and perform the following steps to
extract the embedded data in Ri′ to compose M′.

7

4.1 Randomize the initial raster-scan order of the
pixels in Ri′ to retrieve the pixel re-coloring
sequence HS = {p1′, p2′, …, pT′} using function f3
with secret key Ks and the index of Ri′ together as
the seed.

4.2 Take sequentially an unprocessed pixel pj′ with
color (Cjr′′, Cjg′′, Cjb′′) in sequence HS.

4.3 Extract three embedded data digits dr, dg, and db
from the difference values between the color (Cjr′′,
Cjg′′, Cjb′′) of pixel pj′ and the average color (Cir′,
Cig′, Cib′) of region Ri, respectively, by the
following way, where h = r, g, and b:
(a) if Cjh′′ < Cih′, then set dh to be 0;
(b) if Cjh′′ > Cih′, then set dh to be 1;
(c) if Cjh′′ = Cih′, then set dh to be d (an ending

pattern digit).
4.4 If none of dr, dg, and db is d (the ending pattern

digit), then append drdgdb to M′ and go to Step 4 to
repeat Steps 4.1 through 4.3; else, ignore digits of
d and append the remaining one(s) to M′.

Stage 2 Data de-randomization.
Step 5. Re-order the digits in M′ using f1 with secret key Ks as

the seed, regard the result as a binary string composed
of 0’s and 1’s, and transform it into character form as
the desired data string M.

Note that in Step 4.4 above, with the help of the ending
pattern digit d, the end of embedded data string can be detected
so that extraction of the camouflage strings, which were
embedded into some regions as conducted in Step 6 of
Algorithm 2, can be skipped.

E. Security Consideration

As can be seen, under the usual assumption that the
algorithms are known to the public, a hacker could extract the
embedded data from a stego-image by the proposed data
extraction process described by Algorithm 3. Against this, we
adopt four measures in Algorithm 2 to enhance the security of
the proposed technique using a secret key: (1) randomization of
the data string to be embedded; (2) randomization of the
processing order of the regions; (3) randomization of the
processing order of the pixels in each region; and (4)
embedding camouflage strings in intact regions to mislead a
hacker to guess data in them erroneously. With these measures,
the risk for the embedded data to be stolen is greatly reduced.

F. Experimental Results

Figs. 9 through 14 show some experimental results of
applying the proposed data hiding method to Cubism-like
images. Fig. 9(a) and Fig. 12(a) are two source images. Figs.
9(b) and 12(b) are the generated Cubism-like images using
Algorithm 1 with no message data embedded. Fig. 9(c) is a
stego-image into which a message data string “Meet me at
21:30. See you.” has been embedded with the secret key “test”
and Fig. 12(c) is a stego-image into which a message data string
“Hi, I am Helen. Nice to meet you!” has been embedded with
the secret key “door.” As can be seen, the stego-images are

almost identical to the cover art images of Figs. 9(b) and 12(b).
On the other hand, the message data can be retrieved only when
the right key is used in the data extraction process, like the
results shown in Figs. 10 and 13. If a hacker uses a wrong key
in the data extraction process, the extraction work will fail, as
shown by the examples of Figs. 11 and 14.

In addition, the stego-images qualities are still good after the
average region colors are changed for data embedding, as
indicated by the very small MSE and high PSNR values listed
in Table 1 of all the stego-images shown previously in this
paper. The MSE and PSNR values were computed with respect
to the generated Cubism-like images as the cover images.

(a) (b)

(c) (d)

Fig. 9. An experimental result. (a) Source image. (b) Generated
Cubism-like image with no message data embedded. (c) Stego-image
with color shiftings of ±1. (d) Stego-image with color shiftings of ±1
through ±8.

Fig. 10. Result of extracting embedded message data with a right key.

Fig. 11. Result of extracting erroneous message data with a wrong key.

8

(a) (b)

(c) (d)

Fig. 12. Another experimental result. (a) Source image (cover image). (b)
Generated Cubism-like image with no message data embedded. (c)
Stego-image with color shiftings of ±1. (d) Stego-image with color
shiftings of ±1 through ±8.

Fig. 13. Result of extracting embedded message data with a right key.

Fig. 14. Result of extracting erroneous message data with a wrong key.

G. Extension of Proposed Method

The proposed method and experimental results presented so
far are all based on the color shiftings of ±1 for data embedding.
Actually, an extension of the proposed method based on color
shiftings of ±1 through ±a with a > 1 may also be tried. For
example, with a = 2, we may use the color shiftings of –2, –1,
+1, +2 to represent the embeddings of 2-bit message data 00, 01,
10, 11, respectively. In this way, it is not difficult to figure out
that the data embedding capacity may be doubled at the
sacrifice of stego-image quality degradation. Similarly, with a
= 4, the capacity may be quadrupled, and so on. To see the

quality degradation trend, we conducted an additional series of
experiments for a = 1, 2, 4, and 8 using an extended version of
the proposed method. The input message is made to be long
enough to fill up all the regions in each cover image. Two
resulting images for a = 8 are shown in Figs. 9(d) and 12(d),
which, when compared with Figs. 9(c) and 12(c), respectively,
exhibit almost no visible difference. Also, we list all the MSE
and PSNR values for a = 1, 2, 4, and 8 in Table 2, from which
we can see that there is no obvious degradation in the
stego-image quality as a increases from 1 to 8.

Table 1. MSE and PSNR of stego-images generated with color shiftings of ±1.

Source
image

Stego-
image

 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 12

MSE 0.4516 0.4835 0.4827 0.4861 0.4872
PSNR 51.583 51.287 51.294 51.263 51.254

Table 2. MSE and PSNR of stego-images with color shiftings ±1 through ±a.

Stego-image

 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 12

MSE (a = 1) 0.4691 0.5010 0.5001 0.4878 0.4886
PSNR (a = 1) 51.419 51.133 51.140 51.248 51.242
MSE (a = 2) 0.4739 0.5057 0.5050 0.4931 0.4910
PSNR (a = 2) 51.373 51.091 51.098 51.202 51.220
MSE (a = 4) 0.4963 0.5281 0.5273 0.4956 0.4935
PSNR (a = 4) 51.173 50.904 50.910 51.179 51.198
MSE (a = 8) 0.5637 0.5955 0.5948 0.5973 0.5012
PSNR (a = 8) 50.620 50.382 50.387 50.369 51.131

H. Comparisons with Other Reversible Data Hiding Methods

To demonstrate more of the feasibility of the proposed
method, we have compared it with several other typical
reversible data hiding methods [16, 23, 24] based on the
histogram modification, difference expansion, and
integer-to-integer wavelet transform techniques, respectively.

First, while the other methods hide data directly into cover
images to yield stego-images, the proposed method instead
generates an art image first into which data then are embedded,
as shown in Fig. 15. The stego-image so generated is of an art
flavor which hopefully will attract from hackers more attention
on the artistic content and less suspicion about the hidden data.
In contrast, the stego-image yielded by the other methods looks
similar to the cover image in most cases.

Next, distortion reduction in the stego-image is a critical
issue of other methods, but it is not so for the proposed method
because the stego-image yielded by the proposed method is just
an art image with an abstract style and so does not have to look
precisely like the original cover image. Even if image distortion
is cared about, the proposed method yields good-quality
stego-images as well with very high PSNR values, all larger
than 50, as can be seen from Tables 1 and 2. As to the data
hiding capacity, it can be figured out from Section III.B that
when the data to be embedded are random in binary form, the

9

proposed method yields a data hiding rate r whose value is
roughly in proportion to the value a of color shifting, i.e., r = 1
when a = 1; r = 2 when a = 2; and so on, which are quite high.
If the comparison considers the resulting stego-image quality
and the data hiding rate simultaneously, then the
aforementioned PSNR and hiding rates suggest that the
proposed method is superior to most existing methods.

(a)

(b)

Fig. 15. Comparison of frameworks of conventional and proposed data hiding
methods. (a) Framework of conventional data hiding methods. (b) Framework
of the proposed method.

Finally, about the computational complexity, the computing

load of the proposed method during data hiding mainly comes
from Steps 3 and 4 of Algorithm 2, whose complexity may be
analyzed to be of the order O(n) where n is the size of the image,
because the main tasks in the two steps are just scanning of the
pixels in the regions of the art image. This linear complexity
says that the computational load of the proposed method is
light.

IV. CONCLUSIONS

In this paper, a new method of combining art image
generation and data hiding to enhance the camouflage effect for
various information hiding applications is proposed. At first, a
new type of computer art, called line-based Cubism-like image,
and a technique to create it automatically from a source image
have been proposed. The method finds line segments in the
source image by the Canny edge detection technique and the
Hough transform, combines nearby line segments, extends the
remaining lines to the image boundaries, and re-color the
created regions by their average colors, to create an abstract
type of the original source image as the desired art image. Then,
by utilizing the characteristics of the Cubism-like image
creation process, a data hiding technique has been proposed.
Based on the minimum color shiftings of the values of 1, the
technique embeds message data into the pixels of the regions of
the generated art image while keeping the average region colors
unchanged. The data embedding process is proved to be
lossless by theorems so that the cover image can be recovered
perfectly after the embedded message data are extracted.

The proposed method has several merits. First, it generates
Cubism-like images as stego-images to distract the hacker’s
attention to the message data embedded in them. Also, by using

the minimum color shiftings of ±1 to embed data bits, the
resulting pixels’ color differences between the generated
Cubism-like image and the stego-image are so small that a
hacker will take no notice of the existence of the hidden data.
Consequently, the proposed data hiding technique is very
suitable for use in covert communication or secret keeping.
Furthermore, four measures of randomization of the input
message data and the processing order of them with a secret key
and several random-number generating functions have been
adopted in the proposed method. This enhances greatly the
security of the proposed method.

For future studies, about the Cubism-like image creation
process, it is interesting to investigate automatic selection of
appropriate art images for people. About the use of the
proposed data hiding technique, besides covert communication
and secret keeping, it may also be tried to conduct image
authentication by embedding authentication signals into a
generated art image for verification of possible tampering with
the image. To increase the data embedding capacity, the
histogram modification technique [16] may be adopted for data
hiding if the constraint of keeping region colors unchanged can
be removed; or simple LSB replacement may be applied as well
if the requirement of cover-image reversibility is not needed.

REFERENCES
[1] A. Hertzmann, “A survey of stroke-based rendering,” IEEE Computer

Graphics and Applications, vol. 23, no. 4, pp. 70-81, July-Aug. 2003.
[2] A. Hertzmann, “Painterly rendering with curved brush strokes of multiple

sizes,” Proc. 1998 Int. Conf. on Computer Graphics & Interactive
Techniques (SIGGRAPH 1998), Orlando, Florida, USA, pp. 453-460, July
1998.

[3] A. Hertzmann, “Fast paint texture,” Proc. 2002 Int. Conf. on Computer
Graphics & Interactive Techniques (SIGGRAPH 2002), Annecy, France,
June 3-5, pp. 91-96, 2002.

[4] M. P. Salisbury, M. T. Wong, J. F. Hughes, and D. H. Salesin, “Orientable
textures for image-based pen-and-ink illustration,” Proc. 1997 Int. Conf.
on Computer Graphics & Interactive Techniques (SIGGRAPH 1997), Los
Angeles, California, USA, pp. 401-406, 1997.

[5] D. Mould, “Stipple placement using distance in a weighted graph,” Proc.
Int. Symp. on Computational Aesthetics in Graphics, Visualization &
Imaging, Banff, Alberta, Canada, pp. 45-52, 2007.

[6] D. Mould, “A stained glass image filter,” Proc. of 14th Eurographics
Workshop on Rendering, Leuven, Belgium, pp. 20-25, 2003.

[7] A. Hausner, “Simulating decorative mosaics,” Proc. 2001 Int. Conf. on
Computer Graphics & Interactive Techniques (SIGGRAPH 01), Los
Angeles, California, USA, pp. 573-580, August 2001.

[8] P. Haeberli, “Paint by numbers: abstract image representations,” Proc.
1990 Int. Conf. on Computer Graphics & Interactive Techniques
(SIGGRAPH 1990), Dallas, Texas, USA, pp. 207-214, 1990.

[9] Y. Z. Song, P. L. Rosin, P. M. Hall, and J. Collomosse, “Arty shapes,” Proc.
Computational Aesthetics in Graphics, Visualization & Imaging, Lisbon,
Portugal, pp. 65-72, 2008.

[10] C. K. Chan and L. M. Cheng, “Hiding data in images by simple LSB
substitution,” Pattern Recog., vol. 37, pp. 469-474, March 2004.

[11] D. C. Wu and W. H. Tsai, “Embedding of any type of data in images based
on a human visual model and multiple-based number conversion,” Pattern
Recog. Letters, vol. 20, pp. 1511-1517, August 1999.

[12] J. Fridrich, M. Goljan and R. Du, “Lossless data Embedding—new
paradigm in digital watermarking,” EURASIP Journal on Applied Signal
Processing, vol. 2, pp. 185–196, 2002.

[13] M. Awrangjeb and M. S. Kankanhalli, “Reversible watermarking using a
perceptual model,” J. Electron. Imag., vol. 14, no. 013014, Mar. 2005.

[14] J. Tian, “Reversible data embedding using a difference expansion,” IEEE
Trans. on Circuits Syst. & Video Technol., vol. 13, no. 8, pp. 890–896, Aug.
2003.

10

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

11

[15] C. de Vleeschouwer, J. F. Delaigle and B. Macq, “Circular interpretation of
bijective transformations in lossless watermarking for media asset
management,” IEEE Trans. on Multimedia, vol. 5, no. 1, pp. 97–105, Mar.
2003.

[16] Z. Ni, Y. Q. Shi, N. Ansari and W. Su, “Reversible Data Hiding,” IEEE
Trans. on Circuits Syst. & Video Technol., vol. 16, no. 3, pp. 354-362,
March 2006.

[17] C. W. Lee and W. H. Tsai, “A lossless large-volume data hiding method
based on histogram shifting using an optimal hierarchical block division
scheme,” J. of Inform. Sci. & Eng., vol. 27, no. 4, pp. 1265-1282, 2011.

[18] J. Canny, “A computational approach to edge detection,” IEEE Trans. on
Pattern Analysis & Machine Intelligence, vol. 8, no. 6, pp. 679-698, 1986.

[19] R. C. Gonzalez and R. E. Woods, Digital image processing. 2nd ed.,
Prentice Hall, Upper Saddle River, New Jersey, USA, 2002.

[20] B. Davis, "Signal rich art: enabling the vision of ubiquitous computing,"
Proc. SPIE 7880, 788002 (2011); doi:10.1117/12.881742.

[21] H. Otori and S. Kuriyama, “Robust Data Hiding on Texture Images,”
Proceedings of Fifth International Conference on Intelligent Information
Hiding and Multimedia Signal Processing (IIH-MSP '09), Kyoto, Japan, pp.
563-566, Sept. 12-14, 2009.

[22] F. Uccheddu, M. Corsini and M. Barni, “Wavelet-based blind
watermarking of 3D models,” Proceedings of 2004 Workshop on
Multimedia and Security (MM & Sec '04), Magdeburg, Germany, pp.
143-154, Sept. 20-21, 2004.

[23] A. M. Alattar, “Reversible watermark using the difference expansion of a
generalized integer transform,” IEEE Trans. on Image Processing, vol. 13,
no. 8, pp. 1147-1156, 2004.

[24] S. Lee, C. D. Yoo and T. Kalker, “Reversible image watermarking based on
integer-to-integer wavelet transform,” IEEE Trans. Inf. Forensics &
Security, vol. 2, no. 3, pp. 321–330, 2007.

Shan-Chun Liu received the B.S. degree in
computer science from National Chiao Tung
University, Taiwan, in 2009 and the M.S. degree in
computer science from National Chiao Tung
University, Taiwan in 2011. She has been a
research assistant at the Computer Vision
Laboratory in the Department of Computer Science
at National Chiao Tung University from August
2009 to July 2011. Her current research interests
include information hiding, image processing, and
computer art.

Wen-Hsiang Tsai recei
om National Taiwan U

M.S. degree in EE fr
in 1977, and the Ph.D.

niversity, USA in 1979.
with National Chiao T
Taiwan, where he is n

puter Science. At N
Head of the Dept. of Com
General Affairs, the Dea

Vice President. From

ve
n iw

om
de

u
o
C
p

n
1

ai has been an Editor or the Editor-in-Chief of several international
jour

d the B.S. degree in EE
fr iversity, Ta an, in 1973,
the Brown University, USA

gree in EE from Purdue
U Since 1979, he has been

ng University (NCTU),
w a Chair Professor of

Com TU, he has served as the
uter Science, the Dean of
of Academic Affairs, and

a 999 to 2000, he was the
Chair of the Chinese Image Processing and Pattern

Recognition Society of Taiwan, and from 2004 to 2008, the Chair of the
Computer Society of the IEEE Taipei Section in Taiwan. From 2004 to 2007, he
was the President of Asia University, Taiwan.

Dr. Ts
nals, including Pattern Recognition, the International Journal of Pattern

Recognition and Artificial Intelligence, and the Journal of Information Science
and Engineering. He has published 146 journal papers and 233 conference
papers and received many awards, including the Annual Paper Award from the
Pattern Recognition Society of the USA; the Academic Award of the Ministry
of Education, Taiwan; the Outstanding Research Award of the National Science
Council, Taiwan; the ISI Citation Classic Award from Thomson Scientific, and
more than 40 other academic paper awards from various academic societies. His
current research interests include computer vision, information security, video

surveillance, and autonomous vehicle applications. He is a Life Member of the
Chinese Pattern Recognition and Image Processing Society, Taiwan and a
Senior Member of the IEEE.

11

	I. INTRODUCTION
	II. Line-based Cubism-like Image Creation Process
	A. Idea of Line-based Cubism-like Image Creation
	B. Algorithm for Line-based Cubism-like Image Creation
	C. Experimental Results

	III. Data Hiding via Line-based Cubism-like Images
	A. Idea of Proposed Data Hiding Technique
	B. Principle of Lossless Data Embedding
	C. Algorithm of Proposed Data Hiding Technique
	D. Data Extraction Process
	E. Security Consideration
	F. Experimental Results
	G. Extension of Proposed Method
	H. Comparisons with Other Reversible Data Hiding Methods

	IV. Conclusions

